二硫化钼的润滑特性

合集下载

3号二硫化钼润滑脂参数

3号二硫化钼润滑脂参数

3号二硫化钼润滑脂参数二硫化钼润滑脂是一种高效的润滑脂,由于其优异的性能,在工业领域得到广泛应用。

下面将对3号二硫化钼润滑脂的参数进行详细介绍。

1.外观:3号二硫化钼润滑脂呈银白色,质地柔软,具有一定的粘稠度。

2.成分:3号二硫化钼润滑脂主要成分有二硫化钼、润滑油和添加剂等。

其中,二硫化钼是其主要活性成分。

3.工作温度范围:3号二硫化钼润滑脂适用于-20℃~120℃的工作温度范围。

在这个温度范围内使用,可保持润滑脂的性能稳定,并具有良好的耐高温性能。

4.抗压性:3号二硫化钼润滑脂具有良好的抗压性能,可在高载荷下维持较好的润滑效果,并保护机械部件不受磨损和副动。

5.抗水性:3号二硫化钼润滑脂具有优异的抗水性能,即使在湿润环境中,也能保持其润滑性能,降低因水分进入而引起的摩擦和磨损。

6.抗氧化性:3号二硫化钼润滑脂具有较好的抗氧化性能,能够抵抗氧化腐蚀,有效延长润滑周期和润滑脂的使用寿命。

7.防腐蚀性:3号二硫化钼润滑脂具有良好的防腐蚀性能,可保护金属表面免受腐蚀和氧化,延长设备的使用寿命。

8.不溶性:3号二硫化钼润滑脂不溶于水,能够在水环境中保持其润滑效果,不易被冲刷、冲洗。

9.使用方法:在使用3号二硫化钼润滑脂前,应首先清洁润滑部位,然后将适量的润滑脂均匀涂抹在所需部位上,确保充分润滑。

10.注意事项:在使用3号二硫化钼润滑脂时,应注意避免与酸、碱等化学物质接触,避免过量使用,以免影响润滑效果。

综上所述,3号二硫化钼润滑脂具有良好的耐温、耐水、耐氧化和抗压等性能,适用于各种机械设备的润滑。

在使用过程中,应确保清洁润滑部位,并按照使用要求进行适量涂抹,以确保设备的正常运行和寿命延长。

二硫化钼的润滑特性

二硫化钼的润滑特性

书山有路勤为径,学海无涯苦作舟二硫化钼的润滑特性二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟的优点,被誉为“固体润滑之王”而被广泛应用。

作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。

二硫化钼以S—Mo—S 的三明治式夹层相迭加。

层内,S—Mo 间以极性键紧密相连。

层间,S—S 间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力后即能断裂产生滑移。

而这样的滑移面在每两个夹心层间就有一个。

也就是在1μM厚的二硫化钼薄层内就有399 个良好的滑移面。

二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。

除此外,它还具备有许多良好的润滑特性。

(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。

而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。

除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。

(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。

但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s 的重负荷、高速度下润滑性能良好。

即使负荷加大到3200MPa 超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。

这是其他任何液体和固体润滑剂所难达到的。

因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。

(3)耐真空:航天器在500km 以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。

这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下。

二硫化钼的润滑机理

二硫化钼的润滑机理

二硫化钼的润滑机理一种固体润滑材料若愈能成为优良的润滑剂。

起码应具备两种特性:1.该材料晶体内剪切强度低,有许多良好的天然滑移面。

2.该材料应能牢固附着于底材金属表面上。

只有当该材料与金属底材面间的附着力大于晶体内剪切强度时,滑动才会发生在该材料的晶体内部,而不发生在底材金属与底材金属之间,或底材金属和润滑剂之间。

附着力与剪切强度相差得愈大,该材料的润滑性能愈好,其摩擦系数(μ)与磨损(√)也愈小。

下面从这几方面来研究探讨二硫化钼的润滑机理:1.二硫化钼的晶体结构MoS2中含钼59.94%,硫40.06%。

自然界天然产出的晶体MoS2呗称作“辉钼矿”。

其组成部分与上述理论值相近。

偶有钨、铼、锇或硒、碲作为类质同象元素取代钼或硫,进入晶格,而成为辉钼矿中的微量元素。

2.二硫化钼的晶体结构图二硫化钼的晶体结构是六方晶体系结构,在两层位置相同的硫原子密堆积层中,形成许多三方棱柱体孔隙。

钼原子就处在由六个硫原子形成的三方棱柱配位体的个数恰为钼原子个数的两倍。

1.2 二硫化钼的多型与润滑当二硫化钼层片之间平行相叠加构成了二硫化钼晶体,其叠加方式不同,形成多种同质异构体。

矿物学里称它为“辉钼矿”。

近年来有人依据对称原理和紧密堆积原理,在七层范围内重叠时,用电子计算机推导出了112种类型。

但迄今,自然界里已确定的辉钼矿的类型有两种:2H(六方晶型)辉钼矿石1923年由Dickinson与Pauling所确定。

它系二硫化钼层片接两层相重复的形式叠加。

3R(三方晶型)辉钼矿是1957年由Bell与Herfert发现,它系二硫化钼层片按三层相重叠的形式叠加。

2H与3R型辉钼矿的形成规律与其生成温度有关。

二硫化钼晶型与生成温度的关系:型态胶体胶体晶态3R 晶态2HMoS3 MoS2 MoS2 MoS2生成温度℃20~300 200~300 350~900 600~1300自然界分出的钼矿物质中98%为辉钼矿,而辉钼矿的80%为2H型,仅3%为3R型。

二硫化钼润滑脂的执行标准

二硫化钼润滑脂的执行标准

二硫化钼润滑脂是一种高效的摩擦润滑剂,其主要成分为二硫化钼。

当润滑脂被涂抹在表面上时,二硫化钼会立即形成一层润滑膜,从而减少了运动部件之间的摩擦力,从而达到润滑的效果。

这一层润滑膜具有极高的抗磨损性能,能够承受极高的负荷,特别适合用于高强度和高速度的机械传动机构中。

此外,二硫化钼润滑脂还具有极佳的抗氧化性和耐高温性,即使在极端的温度条件下也能保持其润滑性能,适用于高温和高负荷的环境下。

因此,二硫化钼润滑脂是机械设备和工具中不可或缺的重要部件。

二硫化钼润滑脂的执行标准有:1.GB/T 12691-2008《二硫化钼润滑脂》2.NB/SH/T0587-2016《二硫化钼高温润滑脂技术规范》3.GM9985997-1994《二硫化钼汽车维修润滑脂规格》4.NB/SH/T0588-2016《二硫化钼热交换器润滑脂技术规范》5.GB/T 23430-2009《二硫化钼极压润滑脂技术条件》这些标准对二硫化钼润滑脂的性能进行了具体的规定,包括粘度、胶体、氧化和润滑性能等。

这些标准对于二硫化钼润滑脂的生产、检测、销售和使用都具有重要的指导意义。

二硫化钼润滑脂在工业、汽车、航空、军事等多个领域都有广泛应用。

在工业中,它常被用于机械设备的轴承、齿轮、链条等润滑,可以提供良好的润滑效果和抗磨保护,延长设备寿命,提升生产效率。

在汽车领域,二硫化钼润滑脂主要用于汽车发动机的润滑,能够防止摩擦部件因摩擦造成的损坏,降低噪音和震动,提高发动机性能和燃油效率。

在航空领域,二硫化钼润滑脂被用于飞机引擎、轴承等关键部位的润滑,以保证飞行安全和持久性。

在军事领域,二硫化钼润滑脂被广泛应用于坦克、装甲车等武器装备的润滑,能够提高武器的运行效率和可靠性,在战场上发挥重要作用。

总的来说,二硫化钼润滑脂凭借其优异的性能,在各个领域都得到了广泛的应用和认可。

润滑脂二硫化钼技术标准

润滑脂二硫化钼技术标准

润滑脂二硫化钼技术标准
二硫化钼润滑脂是一种特种润滑脂,主要用于高速、高温和高压的轴承和齿轮,以及其他需要特殊润滑的部件。

以下是二硫化钼润滑脂的一些技术标准:
1. 颜色:二硫化钼润滑脂通常是深绿色或深褐色。

2. 稠度:二硫化钼润滑脂的稠度通常用针入度来衡量。

针入度越小,润滑脂的稠度越高。

3. 滴点:滴点是衡量润滑脂高温性能的一个重要指标。

滴点越高,润滑脂的高温性能越好。

4. 耐磨性:耐磨性是衡量润滑脂抗磨损能力的一个重要指标。

耐磨性越好,润滑脂的抗磨损能力越强。

5. 防腐蚀性:防腐蚀性是衡量润滑脂对金属的保护能力的一个重要指标。

防腐蚀性越好,润滑脂对金属的保护能力越强。

6. 承载能力:承载能力是衡量润滑脂承受负荷的能力的一个重要指标。

承载能力越强,润滑脂承受负荷的能力越强。

以上就是二硫化钼润滑脂的一些技术标准,具体的技术标准可能会根据产品的具体规格和要求进行调整。

二硫化钼d321r加工参数

二硫化钼d321r加工参数

二硫化钼d321r加工参数一、二硫化钼D321R的基本特性二硫化钼D321R(MoS2 D321R)是一种高性能的固体润滑剂,以其优异的润滑性能在工业领域得到广泛应用。

MoS2 D321R具有以下特点:1.良好的耐高温性能:在高温环境下,二硫化钼D321R仍能保持稳定的润滑效果。

2.抗磨损性能:二硫化钼D321R可以有效降低金属零件间的摩擦系数,减少磨损。

3.良好的油溶性:二硫化钼D321R可与各类润滑油混合,提高润滑效果。

4.环保无污染:二硫化钼D321R在加工过程中不易产生有害物质,有利于环境保护。

二、加工参数的重要性在二硫化钼D321R的加工过程中,合理的加工参数对其性能和应用效果具有重要影响。

关键加工参数包括:1.加工温度:温度对二硫化钼D321R的润滑性能影响较大,合适的加工温度可以提高润滑效果。

2.加工压力:加工压力会影响二硫化钼D321R的分布和渗透能力,进而影响润滑效果。

3.加工速度:加工速度与二硫化钼D321R的消耗量密切相关,过快的加工速度会导致润滑剂消耗过快,降低润滑效果。

4.添加剂选择:合适的添加剂可以提高二硫化钼D321R的性能,拓宽应用范围。

三、加工过程中的关键参数及其优化方法1.合理控制加工温度:通过调整加工设备的热平衡,保持加工过程中的温度稳定,以提高润滑效果。

2.优化加工压力:根据加工材料和润滑剂的特性,选择合适的加工压力,以实现最佳润滑效果。

3.调整加工速度:在保证润滑效果的前提下,适当降低加工速度,以减少二硫化钼D321R的消耗。

4.选择合适的添加剂:根据加工需求,选用具有优良性能的添加剂,提高二硫化钼D321R的润滑性能。

四、应用实例及效果分析以汽车零部件加工为例,通过合理调整加工参数,将二硫化钼D321R应用于轴承、齿轮等关键部件的加工,可有效降低磨损,延长零件使用寿命,提高生产效率。

五、总结与展望二硫化钼D321R作为一种高性能润滑剂,在工业领域具有广泛的应用前景。

二硫化钼润滑油的抗磨机制

二硫化钼润滑油的抗磨机制

二硫化钼润滑油的抗磨机制二硫化钼润滑油是一种特殊的润滑油,其具有优异的抗磨性能。

在分析其抗磨机制之前,需要先了解润滑油的基本原理。

润滑油的作用主要分为润滑和抗磨两个方面。

润滑的作用是减少机械部件之间的摩擦和磨损,降低能量消耗,延长使用寿命。

而抗磨的作用是在机械部件摩擦过程中形成一层保护膜,防止金属表面直接接触,从而减少磨损。

二硫化钼是一种廉价的固体润滑剂,也是一种非常有效的抗磨剂。

它在润滑油中的添加量很少,通常只需千分之几。

二硫化钼的抗磨机制主要有以下几个方面:1.降低摩擦阻力:二硫化钼具有低摩擦系数,能有效降低机械部件之间的摩擦阻力。

当机械部件运动时,二硫化钼会填充在金属表面的微观凹坑中,形成一层光滑的保护膜,减少摩擦力,从而降低能量消耗。

2.减少表面磨损:二硫化钼在高温高压下,会发生化学反应生成一种硫化膜,该膜对金属表面具有很强的附着力,并能抵抗机械部件间的磨损。

硫化膜能有效防止金属表面直接接触,从而减少磨损。

3.提高润滑油的黏度指数:黏度指数是衡量润滑油在不同温度下黏度变化的指标。

二硫化钼能提高润滑油的黏度指数,使得润滑油在高温下保持稳定的黏度,提供持久的润滑性能。

4.抑制硝化和氧化:二硫化钼具有较强的抗硝化和抗氧化能力。

它可以吸附在金属表面上,形成一层保护膜,防止空气中的氧气和氮氧化物对金属的侵蚀,从而减缓金属的氧化速度,延长机械部件的使用寿命。

为了更好地发挥二硫化钼的抗磨作用,通常还会与其他添加剂一起使用。

例如,有机胺类添加剂能与二硫化钼形成复合黏结,提高其在金属表面的附着力。

抗氧化剂和防锈剂能保护润滑油不被氧化和腐蚀。

抗泡剂能有效去除润滑油中的气泡,提高润滑效果。

总结起来,二硫化钼润滑油的抗磨机制主要包括降低摩擦阻力、减少表面磨损、提高润滑油的黏度指数和抑制硝化与氧化。

这些机制相互作用,形成了一层保护膜,阻止金属表面之间的直接接触,从而减少磨损,延长机械部件的使用寿命。

固体润滑剂二硫化钼

固体润滑剂二硫化钼

固体润滑剂二硫化钼2011-07-21 13:41:44 来源:上海市润滑油品行业协会固体润滑是指利用某种固体的粉末、薄膜或整体材料来减少进行相对运动的两个表面间的摩擦与磨损并保护表面免于损伤的作用。

在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物埋、化学反应,生成固体润滑膜从而降低摩擦磨损。

固体润滑剂概念应用较晚,二硫化钼是在20世纪30年代才第一次用作润滑剂的。

目前固体润滑剂已在许多机械产品中应用,多种特殊、严酷工况条件下如高温、高负荷、超低温、超高真空、强氧化或还原气氛、强辐射等环境条件下,常以固体润滑剂作有效润滑,成为航天航空与原子能工业发展所必不可少的技术。

以固体润滑剂作的极压、抗摩添加剂配制的润滑油、脂或膏,成为标准商品则也问市已久。

设备润滑最常用的固体润滑剂包括二硫化钼、石墨和聚四氟乙烯等几种。

允许在设备润滑中的使用量占固体润滑剂全部使用量的大部份。

本文对二硫化钼先行重点介绍。

一、硫化钼(MoS2)的结构与润滑机理作为固体润滑剂二硫化钼早负盛名。

它是从辉钼矿提纯得到的一种矿物质,外观和颜色近似铅粉和石墨。

二硫化钼是呈层状六方晶体结构的物质(其晶体结构和晶体层状结构见图示),是由硫-钼-硫三个平面层构成,由薄层单元所组成。

每个钼原子被三菱形分布的硫原子所包围,它们是以强的共价键联系在一起。

邻近的二硫化钼层均以硫层隔开,且间距较远。

硫与硫原子结合较弱,其结合力主要是范德华力,因而很容易受剪切。

二硫化钼层重迭起来就构成了二硫化钼晶体。

也即是按硫-钼-硫-硫-钼-硫(S-Mo-S-S-Mo-S)的顺序相邻排列而构成的晶体。

据推算,一层厚度仅为0。

025m的二硫化钼层就有40个分子层和39个低剪切力的滑动面。

正是这些低剪切力的滑动面粘附在金属表面,使原来两个金属面间的摩擦转化为MoS2层状结构间的滑移,从而降低摩擦力和减少了磨损,达到了润滑的目的。

二.二硫化钼的主要性能⑴.低摩擦特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二硫化钼的润滑特性摘要二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。

主题词:二硫化钼润滑特性抗报压真空润滑1.二硫化钼的理化特性:分子式:MoS2分子量:16008颜色:兰-灰到黑色密度α/cm3:4.8-5.0(或4.85 --5.0、4.8)熔点℃:约1500℃(或大于1800℃、1185℃)硬度:mosh1--1.5(或knnop12--60)显微硬度:基础面3.136×102Mpa,棱面 8.82×103Mpa表面能:基础面2.4×10-2J/M2,棱面7.0× 10-1J/M2热胀系数:10-7×10-6/K温度稳定性:空气中-184~400℃(或-180℃~400℃ 400℃、399℃、450℃)。

真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。

化学稳定性:氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、350℃、450℃)开始氧化后。

560℃后(或540℃)剧烈氧化。

潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。

氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。

分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。

分解产物为Mo与S。

能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。

能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。

在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。

2、二硫化钼与载荷工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。

用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。

因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。

润滑目的即在于防止工件间直接接触。

油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。

用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。

即使超过了钢铁屈服压强的重载荷3.45×103Mpa下,润滑依旧。

2.1 二硫化钼良好抗报压润滑作用Milne在多种条件下,对多种二硫化钼润滑膜作了深入研究,当载荷有0.09Mpa上升至4.3Mpa时,摩擦系数却由0.1~0.5下降至0.02~0.05或更低。

Bielak等人测定,二硫化钼在2.4×103Mpa下,摩擦系数仅0.025。

Boyn和Rober等人在大气,室温里,对比多种润滑材料在2.8×103Mpa重载荷下的摩擦系数,发现二硫化钼比其他润滑材料摩擦系数都要低。

西村元在对比二硫化钼、铝、聚四氟乙烯等涂层的磨损过程后发现,无论在哪种气氛下,二硫化钼的磨损都非常少,摩擦系数也最低。

汉沽石油化学厂用四球机测定,当锂基脂中添加3%的MoS2后,PB值由40kg上升到66kg以上。

重载荷下,二硫化钼不仅具有很高的稳定性,极低的摩擦系数,还具有很高的磨损寿命。

Magie测定二硫化钼在2.4×102Mpa下,磨损寿命(往复周期)达13万次,二硫化钼复合油脂可达159万次,二硫化钼树脂黏结膜可达986万次。

Stupp亦对比了几种常用固体润滑材料的磨损寿命,氮化硼360次。

磨损寿命依然数二硫化钼最高。

高稳定性,低摩擦系数,高磨损寿命,使二硫化钼成为最佳“抗报压”润滑材料。

2.2 二硫化钼抗报压机理探讨Barrg、Binkelman发现,只有当环境中湿度较大时,才出现载荷加大,二硫化钼摩擦系数下降的现象。

湿度较低,起始摩擦系数就很低,随着载荷上升而下降的趋势就变得不甚明显。

Karpe、Gansheimer、Solomon等人指出:随载荷加大,二硫化钼吸附水蒸气层减少甚至消失,其摩擦系数亦下降,更接近无吸附的最低点。

3、二硫化钼与真空真空,尤其真空高温环境中,二硫化钼显示出比它在大气中更优良的润滑效果,使它在六十年代勃起的宇宙航行中崭露头角。

3.1 油脂和石墨对真空润滑的局限性润滑油脂的基础油是用减压升温蒸馏法生产的。

所以,它在真空,尤其真空高温环境下,它会因汽水逸失而变质。

而且,油蒸汽还会污染仪表和宇航器极有限的空间。

润滑油允许的极限蒸发率为10-7g/cm2。

真空中,石墨虽无数蒸发之虑。

但石墨的润滑,滑动主要发生在晶体间的蒸汽吸附层内,真空使它失去了赖以滑动的蒸汽,摩擦系数也猛升到0.80。

显然,油脂或石墨都不适宜真空润滑。

3.2 二硫化钼良好的真空稳定性真空中,二硫化钼既不会蒸发,亦不会因失去蒸汽而润滑恶化。

真空中二硫化钼变质的原因为“热分解”。

能使二硫化钼热分解的温度很高,真空里为982~1093℃,惰性气体中为1350~1470℃。

低于该温度,二硫化钼是相当稳定的。

3.3 二硫化钼良好的真空润滑性与石墨相反,真空中的二硫化钼,其摩擦系数明显下降。

表一石墨与二硫化钼润滑特性对比表润滑材料摩擦系数热稳定温度℃大气内惰性气体中真空中大气中真空中湿度高湿度低石墨0.15~0.250.5 0.50 0.4510072000M oS20.10~0.250.10~0.040.02~0.110.05~0.05750200显然,真空里的二硫化钼不仅温度适应范围大,而且很稳定,低于800℃时,摩擦系数不随温度升高而提高,高于1000℃后,摩擦系数才开始随温度升高而举证,润滑开始劣于石墨。

Brewel测出在10-9Pa高真空里的二硫化钼摩擦涂膜润滑的滚动轴承,摩擦系数仅0.0016;而10-6Pa、3000r/min、2kg负荷下,二硫化钼溅射膜润滑的轴承,工作寿命已超过1500时。

3.4 二硫化钼真空润滑机理探讨二硫化钼的润滑与它显微变化一致:Flom在光学显微镜下观测到,二硫化钼在真空中的劈开面光滑,在大气中的劈开面不光滑,津合裕子用电镜发现,摩擦都会使二硫化钼晶体微观晶化,而真空中微晶化程度远比大气中低得多。

不难理解,真空中二硫化钼润滑比大气中时好得多。

再深入探讨,许多学者将这些现象又归结到湿度的影响,气压境地,二硫化钼表面水蒸气吸附层减少甚至消失,水蒸气对润滑干扰随之降低或消失,真空润滑效果自然会提高。

4.二硫化钼与环境温度环境温度对润滑剂稳定性和润滑效果影响很大。

真空中温度影响前已做了阐述,下边主要讲大气中温度的影响。

4.1 油脂对润滑温度的局限性太低的温度会使油脂冻结。

而高温下润滑油会因蒸发、氧化、极性变化而变质,润滑脂亦会因凝缩分油而变质。

事实上,在远高于冻结温度或远低于变质温度之前,温度已通过粘度变化干扰到油脂的润滑效果。

温度下降,油脂黏度上升而变得粘稠;温度上升,油脂黏度下降而变得稀薄。

当温度升高到稀薄的油脂无法保持完整的润滑膜;或者,当温度下降到粘稠的油脂无法形成连续的润滑膜时,都将使润滑失败。

常规里,润滑油允许使用的温度上限,应低于他闪点20-30℃,温度下限应高于它凝点约5-10℃。

实用中,用于-45℃(高级冷冻机油)到250℃(高级航空硅油)间。

润滑脂低温范围很严,更易凝固,温度上限应低于其滴点20-30℃。

实用中,钙基脂≤80℃、钡基脂≤120℃、锂基脂≤120℃。

在高于上限或低于下限的温度范围里,油脂将无法正常润滑。

4.2 二硫化钼良好的温度稳定性二硫化钼无汽水、黏度之虑。

温度对它的干扰仅体现在热分解与氧化上。

热分解温度比氧化温度高。

大气中,不待热分解已氧化完了。

所以,大气中以氧化为主,真空中也以热分解为主。

低温只能延缓二硫化钼的氧气,所以,它的低温稳定性很好。

即使 -184℃仍润滑自如。

大气中,二硫化钼随温度上升,氧化加剧,它受温度和空气流量变化影响很大。

干燥空气中,二硫化钼在400℃以下是比较稳定的。

400℃开始氧化,540℃后氧化加剧。

对湿度、酸度较高的环境,起始氧化温度要低的多。

但是,轻微的氧化对二硫化钼润滑的影响并不大。

4.3 二硫化钼良好高温润滑作用大气中,二硫化钼的摩擦系数与温度,摩擦时间的关系。

显然,实践证明,加二硫化钼后的摩擦系数远比没润滑剂的干摩擦好得多。

当温度低于350℃时,二硫化钼的摩擦系数随温度升温而下降,或随摩擦时间延长而下降,润滑更有效。

当温度高于350℃后,摩擦系数随温升和时间延长而上升,润滑开始恶化;温度高于400℃,该变化明显;温度高于540℃后,变化显著,润滑明显恶化。

Lancaster也指出,二硫化钼与石墨不同,在温度不太高时,润滑几乎不随摩擦时间的延长而变化。

5、二硫化钼与速度在很低速度或设备启动时,润滑油脂出现“黏滑”与“冷焊”。

Stribeck曲线和相应方程看出:当滑动速度ω→0时,摩擦系数μ显著升高。

(k-轴承参数,n-黏度,p-载荷),轴承处于混合摩擦状态出现磨损。

速度ω过高,摩擦系数也开始上升,直至超出工作范围上限。

二硫化钼对超低或特别高速干扰不明显,适应性很强。

各种二硫化钼膜对应速度变化,摩擦系数互不同,但低速(ω→0)时的值不太高,而高速(30~40m/s)时值很低,使二硫化钼对速度适应范围大大拓展开来。

另外,已形成的二硫化钼膜,其磨损寿命很高,对低速和高速环境工作的可靠性良好。

这是油脂润滑无法比拟的。

6 二硫化钼与幅照幅照之下,润滑油脂会变质,粘度指数和酸值也将发生变化。

这与放射线使其不饱和键或极性键交联、氧化有关。

冈野测定了不同机油耐幅照能力。

使其黏度或酸值变化25%所需的放射量分别为:聚苯5000×106rad,矿油或甲苯硅油100×106rad,烷基双酯油50×106rad,烷基硅油或烯烃5×106rad。

他发现,随辐射量的增加,磨损也明显增加。

强幅照下,二硫化钼表现出远比润滑油高得多的稳定性。

在7×108R(1.8×105c/kg)照辐射前后,二硫化钼的摩擦与磨损并无明显变化。

表二幅照对MoS2润滑的影响静摩擦系数动摩擦系数磨损量×10-3cm³幅照前0.13~0.140.11~0.12306.1幅照后0.130.11382.³甚至摩擦系数远比幅照前低。

对于照辐射状态的原子反应堆,要求维修周期长、润滑可靠。

因而常选用二硫化钼作润滑。

比如:英国“龙”高温气冷核反应堆的转动密闭在充氮干套管中,其轴承喷绘二硫化钼后,摩擦系数保持唉0.0013,磨损也很小,西德AVR高温球床核反应堆。

相关文档
最新文档