二硫化钼地润滑特性
二硫化钼润滑脂标准

二硫化钼润滑脂标准
二硫化钼润滑脂是一种高效的润滑材料,广泛应用于机械制造、汽车制造、航空航天等领域。
为了保证二硫化钼润滑脂的品质,制定了一系列的标准。
本文将介绍二硫化钼润滑脂的标准,包括其性能、检测方法、使用要求等方面。
一、性能要求
1. 外观:应为光滑均匀的黑色膏状物。
2. 锥入度:不大于310mm。
3. 滴点:不低于230℃。
4. 氧化安定性:在100℃下,24h内酸值变化不超过
0.5mgKOH/g。
5. 机械稳定性:在60次往返运动后,锥入度变化不超过30%。
6. 腐蚀性:铜片腐蚀等级不高于1级。
7. 防锈性:在96h内,铜片腐蚀等级不高于1级。
二、检测方法
1. 锥入度:按GB/T 269标准测定。
2. 滴点:按GB/T 3498标准测定。
3. 氧化安定性:按SH/T 0325标准测定。
4. 机械稳定性:按GB/T 7321标准测定。
5. 腐蚀性:按GB/T 5018标准测定。
6. 防锈性:按GB/T 7326标准测定。
三、使用要求
1. 在使用前应先清洗润滑部位,并确保其干燥无水。
2. 使用时应均匀涂抹在润滑部位,避免过量使用。
3. 在高温环境下使用时,应注意防止二硫化钼润滑脂炭化。
4. 在低温环境下使用时,应注意防止润滑脂过度硬化,影响润滑效果。
5. 在长期存储时,应存放在干燥、阴凉、通风的地方,避免受潮。
以上就是关于二硫化钼润滑脂标准的介绍。
通过严格执行标准,可以保证二硫化钼润滑脂的品质和性能,提高机械设备的使用寿命和效率。
3号二硫化钼润滑脂参数

3号二硫化钼润滑脂参数二硫化钼润滑脂是一种高效的润滑脂,由于其优异的性能,在工业领域得到广泛应用。
下面将对3号二硫化钼润滑脂的参数进行详细介绍。
1.外观:3号二硫化钼润滑脂呈银白色,质地柔软,具有一定的粘稠度。
2.成分:3号二硫化钼润滑脂主要成分有二硫化钼、润滑油和添加剂等。
其中,二硫化钼是其主要活性成分。
3.工作温度范围:3号二硫化钼润滑脂适用于-20℃~120℃的工作温度范围。
在这个温度范围内使用,可保持润滑脂的性能稳定,并具有良好的耐高温性能。
4.抗压性:3号二硫化钼润滑脂具有良好的抗压性能,可在高载荷下维持较好的润滑效果,并保护机械部件不受磨损和副动。
5.抗水性:3号二硫化钼润滑脂具有优异的抗水性能,即使在湿润环境中,也能保持其润滑性能,降低因水分进入而引起的摩擦和磨损。
6.抗氧化性:3号二硫化钼润滑脂具有较好的抗氧化性能,能够抵抗氧化腐蚀,有效延长润滑周期和润滑脂的使用寿命。
7.防腐蚀性:3号二硫化钼润滑脂具有良好的防腐蚀性能,可保护金属表面免受腐蚀和氧化,延长设备的使用寿命。
8.不溶性:3号二硫化钼润滑脂不溶于水,能够在水环境中保持其润滑效果,不易被冲刷、冲洗。
9.使用方法:在使用3号二硫化钼润滑脂前,应首先清洁润滑部位,然后将适量的润滑脂均匀涂抹在所需部位上,确保充分润滑。
10.注意事项:在使用3号二硫化钼润滑脂时,应注意避免与酸、碱等化学物质接触,避免过量使用,以免影响润滑效果。
综上所述,3号二硫化钼润滑脂具有良好的耐温、耐水、耐氧化和抗压等性能,适用于各种机械设备的润滑。
在使用过程中,应确保清洁润滑部位,并按照使用要求进行适量涂抹,以确保设备的正常运行和寿命延长。
二硫化钼的润滑特性

书山有路勤为径,学海无涯苦作舟二硫化钼的润滑特性二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟的优点,被誉为“固体润滑之王”而被广泛应用。
作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。
二硫化钼以S—Mo—S 的三明治式夹层相迭加。
层内,S—Mo 间以极性键紧密相连。
层间,S—S 间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力后即能断裂产生滑移。
而这样的滑移面在每两个夹心层间就有一个。
也就是在1μM厚的二硫化钼薄层内就有399 个良好的滑移面。
二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。
除此外,它还具备有许多良好的润滑特性。
(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。
而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。
除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。
(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。
但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s 的重负荷、高速度下润滑性能良好。
即使负荷加大到3200MPa 超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。
这是其他任何液体和固体润滑剂所难达到的。
因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。
(3)耐真空:航天器在500km 以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。
这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下。
含二硫化钼粉润滑油的特性研究

二硫 化钼粉 作为 固体 润滑剂 已广泛应用 f机械 加 工 和航空 技术 等领域 ,并取 得了满 意 的效果 。国外
ቤተ መጻሕፍቲ ባይዱ
流 变 剂 :G A。化 学 纯 。 润湿 剂 : 化学纯 。
,
二 _世 纪 六 七 十 年 代 进 行 了 大 量 的研 究 ,高 纯 卜 度 、小 粒径 的二 流化 钼粉对提高 润滑油脂性 能的 作用 非 常显著 ,载 重汽车 和公 共汽 车的 易损元 件 用 含 3 % 二硫 化钼粉 和不含 硫 化钼粉 的锂 基润滑脂 进行 润滑
anw p t a rvdd fr i M s ob sdwd l. e a w spoie >ol o :l eue iey h i Ke w r s y o d :Mo hI b 蚰硼 Di l l o d r L b i t gOi P eii t n Fo t s l eP  ̄ e u rc i u ̄ an l rcpt i la ao
维普资讯
含 二 硫 化 钼 粉 润 滑 油 的 特 性 研 究
赵 麦 群
( 安 理 J大 学 两 安 西 : 704 ) 108
萋
o tie b ban d y
摘 要 :介 J 硫化 钏 油剂 的制 备原 理 千过 程 采朋 二硫化 钼 粉 表 面处 理 的 方 法 ,获 得 了悬 浮 性 好 、 易 于 分 散 的 — ¨
关 键 词 :二 硫 化 钼 粉 润滑 油 沉淀 漂 浮
Re e r h o o e te fLub ia i i Co t i ng M o 2Po s a c n Pr p r is o rc tng O l n a ni S wde r
Z a iu h o Maq n
二硫化钼的润滑特性

二硫化钼的润滑特性摘要二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。
主题词:二硫化钼润滑特性抗报压真空润滑1.二硫化钼的理化特性:分子式:MoS2分子量:16008颜色:兰-灰到黑色密度α/cm3:4.8-5.0(或4.85 --5.0、4.8)熔点℃:约1500℃(或大于1800℃、1185℃)硬度:mosh1--1.5(或knnop12--60)显微硬度:基础面3.136×102Mpa,棱面 8.82×103Mpa表面能:基础面2.4×10-2J/M2,棱面7.0× 10-1J/M2热胀系数:10-7×10-6/K温度稳定性:空气中-184~400℃(或-180℃~400℃ 400℃、399℃、450℃)。
真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。
化学稳定性:氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、350℃、450℃)开始氧化后。
560℃后(或540℃)剧烈氧化。
潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。
氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。
分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。
分解产物为Mo与S。
能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。
能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。
在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。
二硫化钼的润滑机理

二硫化钼的润滑机理一种固体润滑材料若愈能成为优良的润滑剂。
起码应具备两种特性:1.该材料晶体内剪切强度低,有许多良好的天然滑移面。
2.该材料应能牢固附着于底材金属表面上。
只有当该材料与金属底材面间的附着力大于晶体内剪切强度时,滑动才会发生在该材料的晶体内部,而不发生在底材金属与底材金属之间,或底材金属和润滑剂之间。
附着力与剪切强度相差得愈大,该材料的润滑性能愈好,其摩擦系数(μ)与磨损(√)也愈小。
下面从这几方面来研究探讨二硫化钼的润滑机理:1.二硫化钼的晶体结构MoS2中含钼59.94%,硫40.06%。
自然界天然产出的晶体MoS2呗称作“辉钼矿”。
其组成部分与上述理论值相近。
偶有钨、铼、锇或硒、碲作为类质同象元素取代钼或硫,进入晶格,而成为辉钼矿中的微量元素。
2.二硫化钼的晶体结构图二硫化钼的晶体结构是六方晶体系结构,在两层位置相同的硫原子密堆积层中,形成许多三方棱柱体孔隙。
钼原子就处在由六个硫原子形成的三方棱柱配位体的个数恰为钼原子个数的两倍。
1.2 二硫化钼的多型与润滑当二硫化钼层片之间平行相叠加构成了二硫化钼晶体,其叠加方式不同,形成多种同质异构体。
矿物学里称它为“辉钼矿”。
近年来有人依据对称原理和紧密堆积原理,在七层范围内重叠时,用电子计算机推导出了112种类型。
但迄今,自然界里已确定的辉钼矿的类型有两种:2H(六方晶型)辉钼矿石1923年由Dickinson与Pauling所确定。
它系二硫化钼层片接两层相重复的形式叠加。
3R(三方晶型)辉钼矿是1957年由Bell与Herfert发现,它系二硫化钼层片按三层相重叠的形式叠加。
2H与3R型辉钼矿的形成规律与其生成温度有关。
二硫化钼晶型与生成温度的关系:型态胶体胶体晶态3R 晶态2HMoS3 MoS2 MoS2 MoS2生成温度℃20~300 200~300 350~900 600~1300自然界分出的钼矿物质中98%为辉钼矿,而辉钼矿的80%为2H型,仅3%为3R型。
二硫化钼新型润滑材料基本知识

新型固体润滑材料二硫化钼的基本知识为了积极配合二硫化钼(MoS2)新材料的推广应用,现将其基本如识简要加以介绍。
第一节二硫化钼(MoS2)的物理、化学性能及润滑原理.一、比重及硬度二硫化钼(MoS2)是从辉钼矿中精选并经化学和机械处理而制成的一种呈黑灰色光泽的固体粉末,用手指研磨有油雎滑腻的感觉。
二硫化钼(MoS2)的分子式为MoS2。
二硫化钼(MoS2)的比重为4.8。
(比重= 表示二硫化钼(MoS2)与4℃时同体积水的重扭相比的倍数)二硫化钼(MoS2)的分子量为160.07。
(分子虽:即分子的质量,分子等于组成该分子的各原子量的总和。
由于二硫化钼(MoS2)分子质量很小,故不直接以“克”做为量度的基本单位,而是以氧原子质量的 1/16人。
作为质量单位)二硫化钼(MoS2)的硬废为 1一1.5 (莫氏)。
(莫氏硬度:矿物抵抗外界的刻划、压入研磨的能力称为硬度,共分十度。
其排列次序为:1、滑石,2、石膏,3、方解石,4、萤石,5、磷灰石,6、正长石,7、石英,8、黄玉,9、刚玉,10、金刚石) 二硫化钼(MoS2)的莫氏硬度介于滑石及石膏之间。
二、摩擦系数当一物体在另一物体上滑动时,在沿接触摩按表面产生阻力,此阻力叫做摩擦力。
摩擦力的方向与滑动物体运动时方向相反,摩擦力的大小与垂直于接触面的负荷(即正压力)有关,正压力愈大,摩擦力也愈大,滑动时摩擦力与正压力的比值叫做 (动)摩擦系数,即摩擦系数= 摩擦力/正压力摩擦系数是用来衡量物体接触表面的摩拽力的,摩擦系数在数值上等于单位正压力作用下接触面间的摩擦力。
摩擦系数愈小,使物体滑动所需要的力也就愈小。
二硫化钼(MoS2)的摩擦系数可以在 MM200型磨损试验机上进行测试,遵照毛主席关于“认识从实践始”的教导,我们以BM-3二硫化钼(MoS2)润滑膜为例,在两试块接触点相对滑动速庭:为5.02米/分及95.米/分时,改变不同的负荷,测定了相对应的二硫化钼(MoS2)干膜润滑的摩擦系数 (测试方法详见第二章第七节),试验数据如下表。
二硫化钼润滑脂的执行标准

二硫化钼润滑脂是一种高效的摩擦润滑剂,其主要成分为二硫化钼。
当润滑脂被涂抹在表面上时,二硫化钼会立即形成一层润滑膜,从而减少了运动部件之间的摩擦力,从而达到润滑的效果。
这一层润滑膜具有极高的抗磨损性能,能够承受极高的负荷,特别适合用于高强度和高速度的机械传动机构中。
此外,二硫化钼润滑脂还具有极佳的抗氧化性和耐高温性,即使在极端的温度条件下也能保持其润滑性能,适用于高温和高负荷的环境下。
因此,二硫化钼润滑脂是机械设备和工具中不可或缺的重要部件。
二硫化钼润滑脂的执行标准有:1.GB/T 12691-2008《二硫化钼润滑脂》2.NB/SH/T0587-2016《二硫化钼高温润滑脂技术规范》3.GM9985997-1994《二硫化钼汽车维修润滑脂规格》4.NB/SH/T0588-2016《二硫化钼热交换器润滑脂技术规范》5.GB/T 23430-2009《二硫化钼极压润滑脂技术条件》这些标准对二硫化钼润滑脂的性能进行了具体的规定,包括粘度、胶体、氧化和润滑性能等。
这些标准对于二硫化钼润滑脂的生产、检测、销售和使用都具有重要的指导意义。
二硫化钼润滑脂在工业、汽车、航空、军事等多个领域都有广泛应用。
在工业中,它常被用于机械设备的轴承、齿轮、链条等润滑,可以提供良好的润滑效果和抗磨保护,延长设备寿命,提升生产效率。
在汽车领域,二硫化钼润滑脂主要用于汽车发动机的润滑,能够防止摩擦部件因摩擦造成的损坏,降低噪音和震动,提高发动机性能和燃油效率。
在航空领域,二硫化钼润滑脂被用于飞机引擎、轴承等关键部位的润滑,以保证飞行安全和持久性。
在军事领域,二硫化钼润滑脂被广泛应用于坦克、装甲车等武器装备的润滑,能够提高武器的运行效率和可靠性,在战场上发挥重要作用。
总的来说,二硫化钼润滑脂凭借其优异的性能,在各个领域都得到了广泛的应用和认可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二硫化钼的润滑特性摘要二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。
主题词:二硫化钼润滑特性抗报压真空润滑1.二硫化钼的理化特性:分子式:MoS2分子量:16008颜色:兰-灰到黑色密度α/cm3:4.8-5.0(或4.85 --5.0、4.8)熔点℃:约1500℃(或大于1800℃、1185℃)硬度:mosh1--1.5(或knnop12--60)显微硬度:基础面3.136×102Mpa,棱面8.82×103Mpa表面能:基础面2.4×10-2J/M2,棱面7.0×10-1J/M2热胀系数:10-7×10-6/K温度稳定性:空气中-184~400℃(或-180℃~400℃400℃、399℃、450℃)。
真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。
化学稳定性:氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、350℃、450℃)开始氧化后。
560℃后(或540℃)剧烈氧化。
潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。
氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。
分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。
分解产物为Mo与S。
能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。
能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。
在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。
2、二硫化钼与载荷工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。
用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。
因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。
润滑目的即在于防止工件间直接接触。
油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。
用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。
即使超过了钢铁屈服压强的重载荷3.45×103Mpa下,润滑依旧。
2.1 二硫化钼良好抗报压润滑作用Milne在多种条件下,对多种二硫化钼润滑膜作了深入研究,当载荷有0.09Mpa上升至4.3Mpa时,摩擦系数却由0.1~0.5下降至0.02~0.05或更低。
Bielak等人测定,二硫化钼在2.4×103Mpa下,摩擦系数仅0.025。
Boyn和Rober等人在大气,室温里,对比多种润滑材料在2.8×103Mpa重载荷下的摩擦系数,发现二硫化钼比其他润滑材料摩擦系数都要低。
西村元在对比二硫化钼、铝、聚四氟乙烯等涂层的磨损过程后发现,无论在哪种气氛下,二硫化钼的磨损都非常少,摩擦系数也最低。
汉沽石油化学厂用四球机测定,当锂基脂中添加3%的MoS2后,PB值由40kg上升到66kg以上。
重载荷下,二硫化钼不仅具有很高的稳定性,极低的摩擦系数,还具有很高的磨损寿命。
Magie测定二硫化钼在2.4×102Mpa下,磨损寿命(往复周期)达13万次,二硫化钼复合油脂可达159万次,二硫化钼树脂黏结膜可达986万次。
Stupp亦对比了几种常用固体润滑材料的磨损寿命,氮化硼360次。
磨损寿命依然数二硫化钼最高。
高稳定性,低摩擦系数,高磨损寿命,使二硫化钼成为最佳“抗报压”润滑材料。
2.2 二硫化钼抗报压机理探讨Barrg、Binkelman发现,只有当环境中湿度较大时,才出现载荷加大,二硫化钼摩擦系数下降的现象。
湿度较低,起始摩擦系数就很低,随着载荷上升而下降的趋势就变得不甚明显。
Karpe、Gansheimer、Solomon等人指出:随载荷加大,二硫化钼吸附水蒸气层减少甚至消失,其摩擦系数亦下降,更接近无吸附的最低点。
3、二硫化钼与真空真空,尤其真空高温环境中,二硫化钼显示出比它在大气中更优良的润滑效果,使它在六十年代勃起的宇宙航行中崭露头角。
3.1 油脂和石墨对真空润滑的局限性润滑油脂的基础油是用减压升温蒸馏法生产的。
所以,它在真空,尤其真空高温环境下,它会因汽水逸失而变质。
而且,油蒸汽还会污染仪表和宇航器极有限的空间。
润滑油允许的极限蒸发率为10-7g/cm2。
真空中,石墨虽无数蒸发之虑。
但石墨的润滑,滑动主要发生在晶体间的蒸汽吸附层内,真空使它失去了赖以滑动的蒸汽,摩擦系数也猛升到0.80。
显然,油脂或石墨都不适宜真空润滑。
3.2 二硫化钼良好的真空稳定性真空中,二硫化钼既不会蒸发,亦不会因失去蒸汽而润滑恶化。
真空中二硫化钼变质的原因为“热分解”。
能使二硫化钼热分解的温度很高,真空里为982~1093℃,惰性气体中为1350~1470℃。
低于该温度,二硫化钼是相当稳定的。
3.3 二硫化钼良好的真空润滑性与石墨相反,真空中的二硫化钼,其摩擦系数明显下降。
表一石墨与二硫化钼润滑特性对比表显然,真空里的二硫化钼不仅温度适应范围大,而且很稳定,低于800℃时,摩擦系数不随温度升高而提高,高于1000℃后,摩擦系数才开始随温度升高而举证,润滑开始劣于石墨。
Brewel测出在10-9Pa高真空里的二硫化钼摩擦涂膜润滑的滚动轴承,摩擦系数仅0.0016;而10-6Pa、3000r/min、2kg负荷下,二硫化钼溅射膜润滑的轴承,工作寿命已超过1500时。
3.4 二硫化钼真空润滑机理探讨二硫化钼的润滑与它显微变化一致:Flom在光学显微镜下观测到,二硫化钼在真空中的劈开面光滑,在大气中的劈开面不光滑,津合裕子用电镜发现,摩擦都会使二硫化钼晶体微观晶化,而真空中微晶化程度远比大气中低得多。
不难理解,真空中二硫化钼润滑比大气中时好得多。
再深入探讨,许多学者将这些现象又归结到湿度的影响,气压境地,二硫化钼表面水蒸气吸附层减少甚至消失,水蒸气对润滑干扰随之降低或消失,真空润滑效果自然会提高。
4.二硫化钼与环境温度环境温度对润滑剂稳定性和润滑效果影响很大。
真空中温度影响前已做了阐述,下边主要讲大气中温度的影响。
4.1 油脂对润滑温度的局限性太低的温度会使油脂冻结。
而高温下润滑油会因蒸发、氧化、极性变化而变质,润滑脂亦会因凝缩分油而变质。
事实上,在远高于冻结温度或远低于变质温度之前,温度已通过粘度变化干扰到油脂的润滑效果。
温度下降,油脂黏度上升而变得粘稠;温度上升,油脂黏度下降而变得稀薄。
当温度升高到稀薄的油脂无法保持完整的润滑膜;或者,当温度下降到粘稠的油脂无法形成连续的润滑膜时,都将使润滑失败。
常规里,润滑油允许使用的温度上限,应低于他闪点20-30℃,温度下限应高于它凝点约5-10℃。
实用中,用于-45℃(高级冷冻机油)到250℃(高级航空硅油)间。
润滑脂低温范围很严,更易凝固,温度上限应低于其滴点20-30℃。
实用中,钙基脂≤80℃、钡基脂≤120℃、锂基脂≤120℃。
在高于上限或低于下限的温度范围里,油脂将无法正常润滑。
4.2 二硫化钼良好的温度稳定性二硫化钼无汽水、黏度之虑。
温度对它的干扰仅体现在热分解与氧化上。
热分解温度比氧化温度高。
大气中,不待热分解已氧化完了。
所以,大气中以氧化为主,真空中也以热分解为主。
低温只能延缓二硫化钼的氧气,所以,它的低温稳定性很好。
即使-184℃仍润滑自如。
大气中,二硫化钼随温度上升,氧化加剧,它受温度和空气流量变化影响很大。
干燥空气中,二硫化钼在400℃以下是比较稳定的。
400℃开始氧化,540℃后氧化加剧。
对湿度、酸度较高的环境,起始氧化温度要低的多。
但是,轻微的氧化对二硫化钼润滑的影响并不大。
4.3 二硫化钼良好高温润滑作用大气中,二硫化钼的摩擦系数与温度,摩擦时间的关系。
显然,实践证明,加二硫化钼后的摩擦系数远比没润滑剂的干摩擦好得多。
当温度低于350℃时,二硫化钼的摩擦系数随温度升温而下降,或随摩擦时间延长而下降,润滑更有效。
当温度高于350℃后,摩擦系数随温升和时间延长而上升,润滑开始恶化;温度高于400℃,该变化明显;温度高于540℃后,变化显著,润滑明显恶化。
Lancaster也指出,二硫化钼与石墨不同,在温度不太高时,润滑几乎不随摩擦时间的延长而变化。
5、二硫化钼与速度在很低速度或设备启动时,润滑油脂出现“黏滑”与“冷焊”。
Stribeck曲线和相应方程看出:当滑动速度ω→0时,摩擦系数μ显著升高。
(k-轴承参数,n-黏度,p-载荷),轴承处于混合摩擦状态出现磨损。
速度ω过高,摩擦系数也开始上升,直至超出工作范围上限。
二硫化钼对超低或特别高速干扰不明显,适应性很强。
各种二硫化钼膜对应速度变化,摩擦系数互不同,但低速(ω→0)时的值不太高,而高速(30~40m/s)时值很低,使二硫化钼对速度适应范围大大拓展开来。
另外,已形成的二硫化钼膜,其磨损寿命很高,对低速和高速环境工作的可靠性良好。
这是油脂润滑无法比拟的。
6 二硫化钼与幅照幅照之下,润滑油脂会变质,粘度指数和酸值也将发生变化。
这与放射线使其不饱和键或极性键交联、氧化有关。
冈野测定了不同机油耐幅照能力。
使其黏度或酸值变化25%所需的放射量分别为:聚苯5000×106rad,矿油或甲苯硅油100×106rad,烷基双酯油50×106rad,烷基硅油或烯烃5×106rad。
他发现,随辐射量的增加,磨损也明显增加。
强幅照下,二硫化钼表现出远比润滑油高得多的稳定性。
在7×108R(1.8×105c/kg)照辐射前后,二硫化钼的摩擦与磨损并无明显变化。
表二幅照对MoS2润滑的影响甚至摩擦系数远比幅照前低。
对于照辐射状态的原子反应堆,要求维修周期长、润滑可靠。
因而常选用二硫化钼作润滑。
比如:英国“龙”高温气冷核反应堆的转动密闭在充氮干套管中,其轴承喷绘二硫化钼后,摩擦系数保持唉0.0013,磨损也很小,西德AVR高温球床核反应堆。
美国高温气核反应堆的转动机械也都采用二硫化钼对轴承进行可靠的润滑。
二硫化钼以其良好的润滑特性,从六十年代以来,发展迅猛,一直雄踞“固体润滑之王”而被普遍应用。