地下水对工程的影响及防治
地下水对地基基础工程的危害及事故预防

地下水对地基基础工程的危害及事故预防地下水是地表以下的水体,在地基基础工程中,地下水的存在可能对工程造成危害。
本文将阐述地下水对地基基础工程的危害以及相应的事故预防措施。
地下水的存在对地基基础工程可能造成以下几方面的危害:一、土体液化:在某些多孔隙、多粒径、颗粒饱满、含水量高、受振动或剪切力作用的土体中,由于地下水的存在,水分对土体颗粒之间的颗粒间摩擦力起到润滑作用,使土体失去原有的抗剪强度而发生液化。
这种现象在地震发生时尤为明显,能够引发土体塌陷、建筑物沉降等严重事故。
二、土体沉降:地下水的存在会导致土体中空隙的充水,土体颗粒间的摩擦力减小,进而导致土体沉降。
特别是在软土地区,地下水的存在会使土体孔隙水压升高,从而降低土体孔隙的有效应力,引发沉降事故。
土体沉降会导致地基下沉,从而影响建筑物的稳定性和安全性。
三、地面沉降:地下水位的下降会导致地下水补给减少,使地下水位下降,进而引发地面沉降。
地面沉降会使地表地面下陷,影响附近建筑物的稳定性,甚至导致建筑物倾斜、开裂等严重事故。
为预防地下水对地基基础工程的危害,可以采取以下措施:一、地下水位监测:对基坑或建筑物周围的地下水位进行定期监测,了解地下水位的变化情况,及时掌握地下水位的变化趋势,为工程设计和施工提供参考。
二、降低地下水位:通过排水井、抽水泵等措施,将地下水位降低到安全范围内。
特别是在软土地区,通过降低地下水位,减小地下水对土体的浸润作用,可以减轻土体沉降和地基沉降的风险。
三、加固地基基础:在地基基础工程中,采取加固措施,提高地基的承载能力和稳定性。
可以采用灌注桩、钢板桩等加固措施,增加地基的抗剪强度,减小地下水的影响。
四、断面苦土区合理利用:在地基设计和施工中,根据苦土情况合理利用断面苦土区的抗剪强度和稳定性。
对于苦土区,可以选择更深的基础埋设深度,提高地基的稳定性。
地下水的存在对地基基础工程可能造成土体液化、土体沉降和地面沉降等危害。
为预防这些危害,可以采取地下水位监测、降低地下水位、加固地基基础和合理利用断面苦土区等措施,保证地基基础工程的安全性和稳定性。
地下水对基础施工的影响及防治措施

地下水对基础施工的影响及防治措施
地下水是指地下埋藏的水体,它对基础施工会产生一定的影响。
以下是地下水对基础施工的影响及相应的防治措施:
1.地下水位变化:地下水位的变化可能对基础施工产生影响。
如果地下水位较高,可能导致施工现场积水,给施工带来困难。
如果地下水位变动较大,可能会影响基础的稳定性。
在这种情况下,可以采取降低地下水位的措施,如抽水排水、建设临时排水系统等。
2.水力压力:地下水的水力压力可能对基础施工产生影响。
当基础施工工程需要在地下水中进行时,水力压力可能会对土体稳定性产生影响。
在这种情况下,可以采取降低水力压力的措施,如增加基础底部的防渗层、增加基础底部的抗渗深度等。
3.地下水化学成分:地下水中的化学成分可能对基础施工材料产生腐蚀或溶解作用。
特别是对于一些水泥基材料,如混凝土,地下水中的化学成分可能会引起混凝土的侵蚀。
在这种情况下,可以采取防腐措施,如使用防水剂、采用抗腐蚀材料等。
4.地下水渗流:地下水的渗流可能会对基础施工产生冲刷或侵蚀作用。
地下水的渗流可能会导致土体流失,从而对基础稳定性产生威胁。
在这种情况下,可以采取防渗措施,
如增加基础的防渗层、采用防渗墙等。
地下水对土木工程施工的影响及应对措施

地下水对土木工程施工的影响及应对措施地下水是指地表以下储存在土壤和岩石孔隙中的水。
在土木工程施工中,地下水的存在常常会对工程造成一系列的影响。
本文将就地下水对土木工程施工的影响及应对措施展开探讨。
首先,地下水对土木工程施工的影响主要体现在两个方面:土体力学性能的变化和工程结构的稳定性。
地下水的存在会影响土体的力学性能。
水分的填充使得土体容重增大,从而导致土体的孔隙度降低以及土体的稠密度增加。
这会对土体的抗剪切强度造成影响,可能导致土体的稳定性降低。
此外,地下水的存在还会导致土体的强度参数发生变化,例如抗压强度和抗拉强度等。
这些变化可能会对土木工程施工中的挖掘、填土和基础施工等环节带来不利影响。
另一方面,地下水的存在还会对工程结构的稳定性造成威胁。
高含水量的土体在工程施工过程中容易失稳,从而对施工过程带来一定的困难和风险。
例如,地下水通常会增加土体的饱和度,使得土体的抗震性能下降,从而增加土木工程在地震作用下的破坏风险。
此外,地下水的压力也会对工程结构的荷载分布产生影响,增加结构的失稳风险。
为了应对地下水对土木工程施工的影响,需要采取一系列的应对措施。
首先,对于地下水的监测和调控非常重要。
在工程施工前,应进行地下水勘探和水文地质调查,了解地下水的分布和特性。
根据勘探结果,合理规划工程施工进程和方式,避免或减少地下水对工程的不利影响。
另外,采取有效的地下水排水措施也是关键。
例如,通过设置排水井、地下渗滤井等方式,将地下水有效地排除,减少对施工的干扰。
其次,选择适当的施工方法和技术也是减少地下水对土木工程影响的重要手段。
在挖掘和地基处理过程中,可采用抗渗、降渗和防渗等技术,避免水分进入土体,减少土体的饱和度。
此外,可以通过加固土体、应用排水技术和地下水抽取技术等手段,增加土体的稳定性,提高工程结构的承载能力和稳定性。
最后,对于已经发生或可能发生地下水引发的问题,需要进行及时的处理和修复。
对于土体力学性能发生变化的情况,可以通过改良土壤、加固基础等方式进行修复。
地下水对地基基础工程的危害及事故预防

地下水对地基基础工程的危害及事故预防
地下水是指土壤中填充的孔隙中所含有的水分。
在地基基础工程中,地下水会对其造
成一定的危害。
主要的危害包括地基基础的沉降、侧方不稳定、土壤液化等。
在地基基础
工程中需要有效地预防这些危害,以确保工程的稳定和安全。
地下水会导致地基基础的沉降。
地下水的存在会使土壤变得湿润,导致原本稳定的土
壤颗粒发生变形和位移,从而导致地基基础的沉降。
当地基基础沉降严重时,就会导致建
筑物的变形和破坏。
为了预防这种沉降,需要在地基基础工程中进行合理的排水设计和设
置排水系统,及时排除掉土壤中的地下水,保持土壤的干燥状态,从而减小地基的沉降风险。
地下水会导致地基基础的侧方不稳定。
当地下水位升高时,地表土壤的抗剪强度会降低,土体的侧向稳定性会变差,从而导致地基基础侧方滑动、倾覆等事故。
为了预防这种
侧方不稳定,可以采取一些措施,如设置足够的护岸、加固地基等,增加土壤的抗剪强度,提高地基的侧向稳定性。
地下水还会导致土壤液化。
土壤液化是指在地震或其他动力荷载作用下,饱和土壤失
去抗剪强度而失稳的行为。
当地下水位较高时,土壤中的孔隙水饱和程度增加,土壤颗粒
之间的接触力减小,容易发生液化现象。
土壤液化会导致地基基础的沉降、侧向滑动等事故。
为了预防土壤液化,可以采取加固地基、提高土壤的抗液化能力等措施。
地下水对地基基础工程的危害及事故预防

地下水对地基基础工程的危害及事故预防地下水是指自然界中存在于地面以下的水体,是地球上最为丰富的水资源之一。
在地基基础工程中,地下水可被视作一种双刃剑。
一方面,地下水能够稳定土壤,并在一定程度上减小地基的沉降;地下水也可能带来一系列的危害,如地基沉降、地基侧向移动、基础结构的损坏等。
在地下水对地基基础工程可能带来的危害时,我们需要采取相应的预防措施,确保地基基础工程的安全可靠。
本文将探讨地下水对地基基础工程的危害及事故预防方法。
1. 地基沉降地下水的渗透会改变土壤的物理性质,使得土壤的空隙度增加,颗粒分隔加大,土壤的孔隙水压增加,土壤的胶结力下降。
这些变化会导致土壤的承载力降低,引起地基沉降。
2. 地基侧向移动地下水的渗透可能导致土壤的变形和位移,从而使地基发生侧向移动,导致地基结构的不稳定性。
3. 基础结构损坏地下水的松动作用会导致基础结构的流动和变形,从而损坏地基基础工程的结构,降低其使用寿命。
事故预防方法1. 地下水勘测在进行地基基础工程前,需要进行全面的地下水勘测,了解地下水的分布、渗透性和对土壤的影响。
根据勘测结果,确定合理的地基基础设计方案,采取相应的预防措施。
2. 地下水降渗采取地下水降渗措施,通过降低地下水位或加固土壤,减小地下水对地基基础工程的影响。
常用的地下水降渗方法包括井点降水、管井降水等。
3. 地基基础处理在地下水丰富的地区,需要进行特殊的地基基础处理措施,如地基加固、排水设施安装等。
通过加强地基基础结构的稳定性,减小地下水的影响。
4. 特殊材料使用在地下水丰富的地区,选择耐水性能好的特殊材料,如防水混凝土、防水涂料、防水材料等,以增加地基基础结构的防水能力。
5. 定期监测对地基基础工程进行定期监测,了解地下水对结构的影响程度,及时调整防范措施,确保地基基础工程的安全稳定。
结语地下水对地基基础工程的影响是一个复杂而多样的过程,需要进行全面精细的分析和控制。
在实际工程中,需要根据地下水的情况,采取相应的勘测和控制措施,确保地基基础工程的安全可靠。
地下水对建筑工程的影响

地下水对建筑工程的影响地下水是指位于地表以下的水体,它是地球上丰富的水资源之一。
然而,地下水在建筑工程中可能带来一些负面的影响。
本文将讨论地下水对建筑工程的影响,包括地基沉降、建筑物变形、地基稳定性等问题,并提出相应的解决方案。
1. 地基沉降地下水位的变动可能导致地基沉降。
当地下水位下降时,地基中的土壤会变得干燥,引起土壤收缩,从而导致地基沉降。
相反,当地下水位上升时,土壤会变得湿润,容易变软,同样会引起地基沉降。
地基沉降可能会损害建筑物的结构稳定性,甚至导致建筑物倾斜、倒塌。
解决方案:为了应对地基沉降问题,可以采取以下措施。
首先,在地基设计阶段,需要对地下水位的变化进行充分的考虑,并确保地基能够承受不同地下水位条件下的沉降。
其次,可以采用加固地基的方法,例如灌注桩、钢筋混凝土地基板等,以增强地基的稳定性。
2. 建筑物变形地下水的存在对建筑物的变形产生影响。
当地下水位上升时,建筑物周围的土壤会变得松动,造成土壤沉降,进而导致建筑物的沉降和变形。
建筑物的长期沉降和变形可能导致墙体开裂、地板变形等问题。
解决方案:要解决建筑物变形的问题,可以采取以下策略。
首先,在建筑设计阶段,需要充分考虑地下水对建筑物的影响,并合理选择结构材料和施工方法。
其次,可以在建筑物周围设置排水系统,及时排除地下水,减少土壤的吸湿沉降。
3. 地基稳定性地下水对地基的稳定性也有一定影响。
当地下水位下降时,地基中的土壤可能会干燥收缩,导致地基的稳定性降低。
相反,当地下水位上升时,土壤会变得湿润,对地基的稳定性产生不利影响。
解决方案:为确保地基的稳定性,可以考虑以下对策。
首先,通过合理的排水系统控制地下水位的变化。
其次,可以采取加固地基的方法,如增加地基的承载力、采用加固材料等,以提高地基的稳定性。
总结:地下水对建筑工程有一定的影响。
地基沉降、建筑物变形和地基稳定性是地下水带来的主要问题。
通过在设计和施工中充分考虑地下水的变化,并采取相应的解决方案,可以减少地下水对建筑工程造成的影响。
地下水对工程建设的不利影响及防治措施

研究展望与建议
未来需要进一步加强地下水对工程建设影响的研究,包括完善理论基础、加强数 值模拟和实验研究等。同时,也需要研究更加高效、环保的防治措施和技术,以 提高工程建设的可靠性和安全性。
设的影响。
合理安排施工顺序
在施工过程中,合理安排施工 顺序,尽量避免在地下水流动 较大的情况下进行关键工序的 施工,以减小地下水流动对工
程建设的影响。
04
工程实例分析
某工程因地下水影响产生的问题
基础沉降
由于地下水的存在,土体被软化,导致基 础沉降。
隧道崩塌
在开挖隧道时,地下水的突然涌入会导致 崩塌。
在实际工作中,需要重视地下水对工程建设的影响,加强地质勘察和监测工作。 同时,也需要加强与相关领域的合作和交流,共同推进地下水防治工作的进展和 发展。
感谢您的观看
THANKS
影响设施的正常功能。
地下水流动对工程的影响
地下水流动可能导致地基蚀空
在某些情况下,地下水的流动可能导致地基材料流失,进一步引发地基蚀空,影响建筑物 的稳定性。
地下水流动可能破坏设施
对于一些地下设施,如排水管道、隧道等,地下水的流动可能破坏设施的结构,影响其正 常使用。
地下水流动可能引发地质灾害
在某些情况下,地下水的流动可能导致地质灾害的发生,如地面沉降、地裂缝等,对工程 建设产生不利影响。
设备寿命延长
通过防腐措施,延长了设备的使用 寿命。
05
研究结论与展望
地下水对工程建设的不利影响及防治措施

详细描述
在北京地铁施工过程中,隧道穿越含水层时 经常遇到涌水现象,影响施工进度和安全。 同时,在地铁运营过程中,地下水的活动也 可能导致隧道结构发生变形,甚至引发塌陷 等事故。为了应对这些问题,北京地铁建设 采取了多种措施,如加强地质勘查、合理设
计隧道结构、采用合适的施工方法等。
上海某大型建筑工程中的地下水问题及处理措施
广州某高层建筑基础工程中的地下水问题及处理措施
要点一
总结词
要点二
详细描述
广州某高层建筑基础工程中,地下水问题表现为对基础承 载力和稳定性要求的影响。
在广州地区,由于地质条件复杂,高层建筑基础工程经常 面临地下水的挑战。为了确保高层建筑的稳定性和安全性 ,必须采取有效的处理措施应对地下水问题。常见的处理 措施包括桩基、止水帷幕、排水降水等。这些措施能够有 效地提高基础承载力和稳定性,确保高层建筑的安全使用 。
02
地下水对工程建设的具体影响
施工难度增加
土壤液化
地下水位的波动会使土壤变得疏松,导致土壤液化,影响地基稳定性,进而增加 施工难度。
地下管线干扰
在施工过程中,地下水可能与其他地下管线产生冲突,需要额外的时间和资源进 行管线迁移或保护。
施工进度受阻
降水需求
为了降低地下水位,需要进行降水作 业,这会延长施工周期。
土壤侵蚀
土壤侵蚀
地下水的流动和压力可能导致土壤侵蚀,影响工程安全和稳 定性。
预防措施
在施工前进行详细的地质勘察和评估,了解土壤结构和地下 水情况,采取适当的工程措施,如土壤加固、排水降水等。
地下管线腐蚀
地下管线腐蚀
地下水可能对地下管线造成腐蚀,影响管线使用寿命和安全性。
预防措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水侵蚀对工程的影响及防治
引言:腐蚀性地下水会影响基础混凝土结构的耐久性、可靠性, 为深入了解混凝土结构的腐蚀原理,以便采取相应措施,本文主要从影响混凝土结构的腐蚀原理、腐蚀评价以及预防措施等方面进行了阐述。
affecting and handling of underground water to constuction introduction: corruptive underground water can affect durable and reliable of basic concrete structure, for horough understanding concrete structur theory of corrison, easying to takemeasures,The article sets forth theory of corrison ,evaluation and preventive measures from main affecting concrete structure.
随着城市建设的高速发展, 特别是高层建筑的大量兴建, 地下水的水质不仅对基础工程有影响,对地下防空设施、地下室、地下广场等地下建筑物的影响也日渐突出。
腐蚀性地下水对混凝土结构耐久性的影响已不可回避。
那么,为了尽量减少这种现象的发生,我们应该深入了解地下水腐蚀混凝土的机理,腐蚀因素,从而更好的防治地下水对建筑物的腐蚀。
一:地下水腐蚀的原理
腐蚀其实就是材料与环境间物理化学作用而引起材料本身性质的变化。
(1)当地下水中的某些化学成分含量过高时,水对混凝土、可溶性石材、管道及钢铁构件及器材都有腐蚀作用。
地下水中氯离子、硫酸根离子含量高,被埋入混凝土的钢筋表面产生一层钝化保护层,这一保护层在水泥开始水化反应后很快自行生成。
然而氯离子能够破
坏这层氧化膜,钢筋在水和氧的存在下发生锈蚀。
钢筋锈蚀有两种后果:①锈蚀物的体积增加几倍,以至于它们的生成导致了混凝土的破裂、剥落和分层,这就使腐蚀剂更容易进入到钢筋表面,必然加速钢筋的锈蚀;②阳极上的锈蚀过程减小了钢筋的横截面积,也就减小了它的荷载能力。
氯盐的作用,引起钢筋的锈蚀,是使钢筋混凝土破坏的主要原因。
(2)地下水或潮湿的土中的某些盐类,通过毛隙水上升,浸入混凝土的毛细孔中,经过干湿交替作用,盐溶液在毛细孔中被浓缩至饱和状态,当温度下降时,析出盐的结晶,晶体膨胀使混凝土遭受腐蚀破坏。
温度回升,水汽增加时,结晶会潮解,当温度再次下降时,再次结晶,腐蚀进一步加深。
这种环境气候条件加快了混凝土在腐蚀介质(水、土)中的腐蚀速度,缩短了建筑物的使用寿命。
因而,根据地下水的腐蚀性指标,及其对混凝土的腐蚀特征,分为以下三类。
(1)结晶性腐蚀,地下水中的硫酸盐类与混凝土中的固态游离石灰质或水泥结石起化合作用,产生含水结晶体,由于结晶体的形成使混凝土体积增大,产生膨胀压力,导致混凝土胀裂破坏。
(2)分解性腐蚀,地下水中的氢离子、侵蚀性二氧化碳和游离碳酸超过一定储量时,导致水泥结石水解,引起混凝土强度降低。
(3)结晶分解复合性腐蚀,地下水中的阳离子(Mg2++NH4+)产生分解性腐蚀;阴离子( C 1 -+SO42-+N03-)产生结晶性腐蚀,将此类复合性腐蚀作用归为结晶分解复合性腐蚀。
二:地下水腐蚀评价。
根据岩土工程勘测规范(GB-50021-2001)
2.1水对混凝土结构的腐蚀性评价
根据场地环境类型和地层渗透性评价的腐蚀性等级按规范进行综合评价。
如下表2-1
2.2 水对钢筋混凝土结构中钢筋的腐蚀性评价
水对钢筋混凝土结构中钢筋的腐蚀性评价方法和步骤主要是首先判断钢筋混凝土结构是否处于地下水( 包括地表水) 的干湿交替作用中或是处于长期浸水状态, 然后再根据水中的Cl-( mg/L) 含量按规范进行腐蚀性评价。
如下表2-2
2.3 水对钢结构的腐蚀性评价。
水对钢结构的腐蚀性评价可直接根据环境水( 包括地下水和地表水) 的pH 值和水中( Cl-+SO2-4 )含量( mg/L) 按规范进行腐蚀性评价。
如下表2-3
表2-1、2-2、2-3
由以上评价标准可以得出:地下水的腐蚀作用, 主要反应在它对混凝
土与金属材料和设备的破坏上。
当地下水中含有某些成分时, 对建筑材料中的混凝土, 金属等有侵蚀性和腐蚀性, 它破坏混凝土基础, 危害建筑物和构筑物的稳定性, 当建筑物的混凝土基础及其它混凝土构件经常处于地下水的作用时, 在工程地质勘察中, 必须采取水样,进行水化学腐蚀性分析, 评价地下水的侵蚀性, 为工程设计提供依据。
因此,地下水腐蚀性的强弱主要与水的特殊化学组份有关外, 还与建筑场地的自然地理环境和水文地质条件密切相关, 这些在评价时都应考虑。
然而,近些年来, 随着工农业的迅猛发展, 人为因素的影响已到了不可忽视的地步, 是地下水腐蚀性评价中值得重视的一个方面。
例如长春市地下水pH =6.5, 一般对混凝土没有腐蚀性, 因此, 水质评价问题不突出。
但随着工农业发展, 尤其工业废渣的堆放和废液的排放, 局部形成腐蚀性十分严重, 1992 年扩建一汽厂时, 场地为粉煤灰堆积厚0.5~5.0 m , 并为废硫酸排放区, 地下水中SO 2-4 含量超过允许值100 倍, 并占场地2/3 均为强烈腐蚀性区域。
如不研究地下水水质的腐蚀性, 采用相应措施, 其后果将不堪设想。
目前, 在我国各大中城市, 大规模开采地下水, 造成地下水位大幅度下降的现象非常普遍,使地下水赋存的环境发生变化, 破坏了原来的水文地质条件, 导致水化学成分有很大的变化,有可能使地下水从无腐蚀性变为有腐蚀性。
此种情况, 在评价地下水的腐蚀性中, 应予以充分注意。
三:预防腐蚀的措施
1、原材料的选择:
(1)水泥:混凝土的强度和性能,主要起决于水泥,一旦遭受腐蚀,强度及性能将不复存在。
由于各种水泥的矿物组份不同,因而对各种腐蚀性介质的耐蚀性就有差异,正确选用水泥品种,对保证工程的耐久性有重要意义。
:
(2)粗、细集料的耐蚀性和表面性能对混凝土的耐蚀性能具有很大影响。
混凝土中所采用粗细集料,应保证致密,同时控制材料的吸水率以及其它杂质的含量,确保材质状况。
(3)搅拌及养护用水:考虑其对混凝土及砂浆强度的耐久性影响,应正
确选择混凝土搅拌及养护用水,检查其杂质情况,目前主要采用自来水,严禁采用海水和井水.
(4)外加剂:在拌制混凝土过程中掺入外加剂,可以改善混凝土性质,如提高混凝土密实性或对钢筋的阻锈能力,从而提高混凝土结构的耐久性,如阻锈剂、密实剂、早强剂等。
由于外加剂的化学组成中的氯盐可能使混凝土结构中的钢筋脱钝,给结构物带来隐患。
在选择外加剂时需对其中氯盐的含量进行检测,并做相关实验。
2、混凝土配合比的设计:提高混凝土自身的防腐性能,主要提高其密实性和抗中性化能力,一般混凝土的强度等级宜≥C25,对于预应力混凝土结构,其强度等级≥C35。
为合理减少水泥和混凝土中碱的含量,应尽量采用低碱水泥。
同时合理使用粉煤灰、矿渣等矿物掺和料,这也是提高混凝土抗裂和耐久性能的重要途径。
3、加大混凝土保护层的厚度。
4、对基础、基础梁的表面采取防护措施:例如:对处在强、中等腐蚀
性环境中的基础,应设碎石灌沥青或沥青混凝土的耐腐蚀垫层。
基础梁的表面贴环氧沥青玻璃布两层或贴沥青玻璃布两层或涂环氧沥青厚浆型涂料两遍。
5、加强混凝土养护,控制混凝土表面裂缝,确保施工质量,对防腐蚀也起到一种加强作用。
此外,防止、降低地下水污染也是降低地下水腐蚀的一个重要方面。
对于个别严重腐蚀的区域采用桩基础时,除了对桩身采用防腐蚀措施,如表面用沥青类、高分子树脂等涂膜防护外,也可可采用场地降水、排水换土等。
我认为随着人类对于坏境的改变,对地下水腐蚀的防治应该将越来越趋向于环保,高效的科学方式,改善水环境,减少水污染应该受到更多的重视。
对本课的理解、体会及建议:
我认为这门课主要是介绍与土木工程专业有关的工程地质学基
本理论与基本知识,从而让我们了解工程地质对工程实践方面的影响和作用。
其主要任务是(1)研究与评价区域稳定性,即内力地质作用所引起的断裂活动,地震等对建设工程地区的稳定性影响;(2)研究与评价地基的稳定性,即研究分析地基的强度与沉降等;(3)评价环境影响,即人类活动对环境造成的影响。
在对这门课程的学习当中我学习到了一些土木工程中常遇到的典型问题以及其解决方案,例如:地基稳定性问题、边坡稳定性问题及其防治灾害的措施方法。
这门课对我们以后的工作实践具有指导意义,可以说这是建设的基础,老师对这门课的讲解生动有趣又结合工程实例,从而使我们更容易理解。
希望这门课增加一些别的形式,例如结合视频时事等,我相信会更加提高同学们的学习兴趣的。