数理统计——参数估计

合集下载

概率论与数理统计教案参数估计

概率论与数理统计教案参数估计

概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。

教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。

教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。

教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。

作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。

教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。

教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。

教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。

教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

数理统计: 参数估计方法

数理统计: 参数估计方法
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计数理统计是概率论、数学统计和实证研究的基础,它研究的是通过观测和实验来获取数据,从而对总体的特征进行推断和估计的方法和理论。

在数理统计中,参数估计和置信区间估计是两个重要的概念和方法,用于对总体参数进行推断和估计。

一、参数估计参数估计是指通过样本数据对总体参数进行估计的方法。

总体参数是指总体的某个特征或指标,如均值、方差等。

参数估计可以分为点估计和区间估计两种方法。

1. 点估计点估计是指使用样本数据来估计总体参数的一个具体值,这个估计值被称为点估计量。

常用的点估计量有样本均值、样本方差等。

点估计的目标是使得估计值尽量接近真实的总体参数,即具有无偏性和有效性。

无偏性是指估计值的期望等于真实参数,有效性是指估计值的方差最小。

无偏性是一个重要的性质,它保证了估计值在大样本下趋近于真实值。

有效性则是在无偏估计的前提下,使估计值的方差最小,从而提高估计的准确性。

2. 区间估计区间估计是指通过样本数据得到总体参数的一个范围,这个范围被称为置信区间。

置信区间表示了总体参数的估计精度和可信程度。

在构造置信区间时,需要指定置信水平,常用的置信水平有95%和99%等。

置信水平为95%表示在大量重复抽样中,有95%的置信区间会包含真实的总体参数。

构造置信区间的方法有很多,如正态分布的置信区间、t分布的置信区间等。

不同的方法适用于不同的总体分布和样本信息。

在实际应用中,要根据具体的问题和数据的特点选择合适的置信区间方法。

二、数理统计中的应用参数估计和置信区间估计在数理统计中有广泛的应用,可以用于推断和估计各种领域的问题。

1. 总体均值的估计当我们要估计总体的均值时,可以使用点估计和区间估计的方法。

点估计是通过样本均值来估计总体均值,区间估计则是给出总体均值的一个范围。

2. 总体比例的估计当我们要估计总体的比例时,例如某种特征在总体中出现的比例,也可以使用点估计和区间估计的方法。

点估计是通过样本比例来估计总体比例,区间估计则是给出总体比例的一个范围。

概率论与数理统计教材第六章习题

概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n

2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:

《概率论与数理统计》学习笔记十一

《概率论与数理统计》学习笔记十一

σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一

θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

研究生应用数理统计参数估计

研究生应用数理统计参数估计

为来自总体的样本,
n
试求:(1)的极大似然估计;
(2)P{X 2}的极大似然估计。
极大似然估计的优点: 利用了总体的分布函数所提供的信息; 不要求总体原点矩的存在(柯西分布) 极大似然估计的缺点: 求解似然方程困难
四、用顺序统计量估计参数
无论X服从何种分布,都可以样本中位数X作为总体均值 E(X)的估计量,以样本极差R作为总体标准差 DX的估计量。 这种估计比较粗超。
研究生应用数理统 计参数估计
一、参数估计的概念
定义:已知母体的分布,估计某个或几个未 知数字特征(参数)的问题,称为参数估 计。
二、参数估计的分类
分为点估计和区间估计;
点估计就是根据样本,估计参数为某个数 值;
区间估计就是根据样本,估计参数在一定 范围内,即一个区间;
总体分布类型已知的统计问题,称为参数 型统计问题;
定理 设X1, X 2, , X n是来自总体X ~ N (, 2 )的样本,X 是
样本中位数,则对任意x,有
lim
n
P
2n(2 X

x
1
2
x t2
e 2 dt
§2点估计的优良性
一、无偏性
定义1 设 ( X1, , X n )是参数的估计量。 若E ,则称是的无偏估计量;
若E ,则称(E )是估计量的偏差;
例2.1.1 设总体服从泊松分布P(),
试求的矩估计量.
解1 因为E(X)=,所以的矩估计量为X .
解2 因为D(X)=,所以的矩估计量也为
1 n
X
i
2
X .
例2.1.1 设总体服从泊松分布P(),
试求的矩估计量.
解1 因为E(X)=,所以的矩估计量为X .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计的基本理论可归纳为三个问题: 一是如何由样本为总体参数制定估计量,即估计量的制定; 二是判定制定的估计量是否良好,即估计量优良性判定; 三是研究估计方法,寻找出估计的误差限和可靠性。
§6.1 点估计(Point Estimation)
样本 X1, X 2, , X n 出发对总体参数 1,2, ,k 或总
MLE要求总体的分布已知,其应用范围相对矩估计窄。
下面分别介绍离散型总体和连续型总体参数的极大似然 估计法的概念和步骤。
1.离散型的似然函数: 若总体 X 的概率函数
P{X x} p(x;) 形式已知, 为待估参数, 是 的
取值范围, X1, X 2, , X n 为来自总体的 i.i.d ,x1, x2, , xn
设总体的分布函数为F (x ; ), 为未知参数,X1, X2, , Xn
为总体的样本,x1, x2, , xn 为样本的一次实现。参数估计就
是不论总体 X 的分布函数 F(x; )已知还是未知,由样本
对总体参数 或总体的某些数字特征作出估计的方法和过程。
参数估计依据做结论的方式不同分为点估计和区间估计。
Def 以样本矩作为相应总体矩的估计量,以样本矩的连 续函数作为相应总体矩的连续函数的估计量。这种估计量称
为矩估计量,也称矩估计,矩估计量的样本实现称为矩估计 值
2.矩估计的一般步骤 (1)建立待估参数与总体矩的关系式; (2)用矩估计法建立矩估计方程,解矩估计方程; (3)写出参数的矩估计量及矩估计值。
第六章 参数估计
§6.1 参数的点估计 §6.2 区间估计 §6.3 一个总体均值的估计 §6.4 一个总体方差与频率的估计
数理统计的一类基本问题就是依据样本提供的信息,对总 体的分布或总体分布的数字特征作出统计推断。统计推断涉 及两类基本问题,一是估计问题,二是假设检验问题,本章 介绍估计问题中参数估计的理论与方法。
解:因为
E(X )
1
(
1)x 1dx
1
0
2
所以 1 2 ,故 的矩估计量为
1 EX
ˆ 1 2
1 X
例6.3 设总体X在[a , b]上服从均匀分布,其中a , b未知, 是来自X1X,K的,样Xn本 , 试求a , b的矩估计量。
解:由题设条件
μ1
E
X
ab 2
μ2 E X 2 D( X ) [E( X )]2
为样本的一个实现,则样本的联合概率函数为
n
L(x1, x2, , xn; ) p(xi ; ), i 1
L(x1, x2, , xn; ) 为样本取到样本实现 x1, x2, , xn 的概
率其为
函数。
的函数,称函数
L(x1, x2,
, xn; )
为样本似然
2.连续型的似然函数:
矩估计的思想得益于独立同分布R.V.序列的大数定律。
设总体 X 的k 阶矩 E( X k )存在,X
体的 i.i.d ,则由大数定律知
1
,
X
2
,
, Xn
是抽自总
X
1 n
n i 1
Xi
P
E(X )
1
Ak
1 n
n i 1
X
k i
P
E(X k )
k (k
1,2,
, n)
g( A1, A2, , Ak ) g(1, 2, , k )
为 ˆ X , ˆ B2 。
矩估计的优点:简单易行,不需事先知道总体的分布。
矩估计的缺点:若总体分布已知,没有充分利用信息, 浪费许多信息;一般场合下,矩估计量不具有唯一性。其主 要原因是建立矩估计方程时,选用哪些总体矩用相应的样本 矩去估计具有一定的随机性。
二、极大似然估计法(MLE)
极大似然估计法的思想来源于极大似然原理。 什么是极大似然原理呢?通过例子给出:某同学和一位 猎人一起外出打猎,只听一声枪响,野兔应声倒下。要你推 测,你觉得是谁打中的?我们会想, 只用了一发子弹便 打 中,猎人命中的概率一般大于该同学命中的概率,看来这一 枪应该是猎人打中的。
(b a)2 (a b)2
12
4
即有
a b
b a
ห้องสมุดไป่ตู้
2
μ1 12(
μ2
μ12
)
a μ1 3( μ2 μ12 ) b μ1 3( μ2 μ12 )
于是a , b的矩估计量为
a$ X
3 n
n i 1
(Xi
X )2
b$ X
3 n
n i 1
(Xi
X )2
例6.4 总体 X ~ P(),则 的矩估计量
体参数 的估计值。由于这种估计只获得 的一个近似
值,称之为点估计或定值估计。因此点估计的关键是为总体
参数 制定一个合适的估计量 ˆ(X1, X2 , , Xn ) 。
制定估计量的方法很多,仅介绍矩估计法和极大似然估计法。
一、矩估计法(ME)
1.矩估计法的思想 由样本矩或样本矩的连续函数作为相 应总体矩或总体矩的连续函数的估计量。
体 X的某些数字特征作出估计,首先要将样本中有关总体
的信息加工提取出来,建立用于估计的统计量,把用于估计
总简体记参为数ˆ,制的定统合计适量的统ˆ(计X1量, X后2,,若 得, X到n )样称本为的一的个估实计现量,
x1, x2, , xn ,则可用ˆ的实现 ˆ(x1, x2, , xn) 作为总
极大似然原理:如果一个随机试验 E 的所有可能结果
为 A, B, C, A ,在一次试验中,结果 出现,则 随机试
验 E的条件对 结果 A出现更为有利,即认为 A出现的概率
最大。
MLE的基本思想:选取 pˆ作为 p的估计值,使当 p 时pˆ,
样本实现出现可能性最大,这种估计值称为极大似然估计值, 相应的估计量称为极大似然估计量。
例6.1 设
X1,
X 2 ,
,
X
是抽自正态总体
n
N(, 2)

i.i.d ,求参数和 2的矩估计量。
解:总体 X ~ N (, 2 ) ,则
E( X ) 1, 2 D( X ) 2 12
所以 和 2 的矩估计量为
ˆ
A1
1 n
n i 1
Xi
X
ˆ 2
A2
A12
1 n
n i1
X
2 i
(X )2
1 n
n i1
(Xi
X )2
B2
不论总体服从什么分布,只要 E(X ) , D(X ) 2 存
在,则它们的矩估计量分别为
ˆ
1 n
n i 1
Xi
X
ˆ 2
1 n
n i 1
(Xi
X )2
B2
例6.2 设总体X 的密度函数为
( 1)x 0 x 1
f (x) 0
其他
求 的矩估计量。
相关文档
最新文档