数理统计——参数估计

合集下载

概率论与数理统计教案参数估计

概率论与数理统计教案参数估计

概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。

教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。

教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。

教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。

作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。

教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。

教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。

教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。

教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。

教学准备:1. 教学PPT;2. 相关案例资料。

教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

数理统计: 参数估计方法

数理统计: 参数估计方法
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计数理统计是概率论、数学统计和实证研究的基础,它研究的是通过观测和实验来获取数据,从而对总体的特征进行推断和估计的方法和理论。

在数理统计中,参数估计和置信区间估计是两个重要的概念和方法,用于对总体参数进行推断和估计。

一、参数估计参数估计是指通过样本数据对总体参数进行估计的方法。

总体参数是指总体的某个特征或指标,如均值、方差等。

参数估计可以分为点估计和区间估计两种方法。

1. 点估计点估计是指使用样本数据来估计总体参数的一个具体值,这个估计值被称为点估计量。

常用的点估计量有样本均值、样本方差等。

点估计的目标是使得估计值尽量接近真实的总体参数,即具有无偏性和有效性。

无偏性是指估计值的期望等于真实参数,有效性是指估计值的方差最小。

无偏性是一个重要的性质,它保证了估计值在大样本下趋近于真实值。

有效性则是在无偏估计的前提下,使估计值的方差最小,从而提高估计的准确性。

2. 区间估计区间估计是指通过样本数据得到总体参数的一个范围,这个范围被称为置信区间。

置信区间表示了总体参数的估计精度和可信程度。

在构造置信区间时,需要指定置信水平,常用的置信水平有95%和99%等。

置信水平为95%表示在大量重复抽样中,有95%的置信区间会包含真实的总体参数。

构造置信区间的方法有很多,如正态分布的置信区间、t分布的置信区间等。

不同的方法适用于不同的总体分布和样本信息。

在实际应用中,要根据具体的问题和数据的特点选择合适的置信区间方法。

二、数理统计中的应用参数估计和置信区间估计在数理统计中有广泛的应用,可以用于推断和估计各种领域的问题。

1. 总体均值的估计当我们要估计总体的均值时,可以使用点估计和区间估计的方法。

点估计是通过样本均值来估计总体均值,区间估计则是给出总体均值的一个范围。

2. 总体比例的估计当我们要估计总体的比例时,例如某种特征在总体中出现的比例,也可以使用点估计和区间估计的方法。

点估计是通过样本比例来估计总体比例,区间估计则是给出总体比例的一个范围。

概率论与数理统计教材第六章习题

概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n

2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:

《概率论与数理统计》学习笔记十一

《概率论与数理统计》学习笔记十一

σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一

θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

研究生应用数理统计参数估计

研究生应用数理统计参数估计

为来自总体的样本,
n
试求:(1)的极大似然估计;
(2)P{X 2}的极大似然估计。
极大似然估计的优点: 利用了总体的分布函数所提供的信息; 不要求总体原点矩的存在(柯西分布) 极大似然估计的缺点: 求解似然方程困难
四、用顺序统计量估计参数
无论X服从何种分布,都可以样本中位数X作为总体均值 E(X)的估计量,以样本极差R作为总体标准差 DX的估计量。 这种估计比较粗超。
研究生应用数理统 计参数估计
一、参数估计的概念
定义:已知母体的分布,估计某个或几个未 知数字特征(参数)的问题,称为参数估 计。
二、参数估计的分类
分为点估计和区间估计;
点估计就是根据样本,估计参数为某个数 值;
区间估计就是根据样本,估计参数在一定 范围内,即一个区间;
总体分布类型已知的统计问题,称为参数 型统计问题;
定理 设X1, X 2, , X n是来自总体X ~ N (, 2 )的样本,X 是
样本中位数,则对任意x,有
lim
n
P
2n(2 X

x
1
2
x t2
e 2 dt
§2点估计的优良性
一、无偏性
定义1 设 ( X1, , X n )是参数的估计量。 若E ,则称是的无偏估计量;
若E ,则称(E )是估计量的偏差;
例2.1.1 设总体服从泊松分布P(),
试求的矩估计量.
解1 因为E(X)=,所以的矩估计量为X .
解2 因为D(X)=,所以的矩估计量也为
1 n
X
i
2
X .
例2.1.1 设总体服从泊松分布P(),
试求的矩估计量.
解1 因为E(X)=,所以的矩估计量为X .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ˆ θ j = θ j (a1,⋯, ak ),
其中
1 n xj aj = ∑ i n i=1
j = 1,⋯, k ,
第2章 参数估计
第22页 22页
例2.1.5 设总体服从指数分布,由于EX=1/λ, 即λ =1/ EX,故λ 的矩法估计为 另外,由于Var(X)=1/λ ,其反函数为 λ = 1/ Var( X ) 因此,从替换原理来看,λ的矩法估计也可取为 s 为样本标准差。这说明矩估计可能是不唯一的, 这是矩法估计的一个缺点,此时通常应该尽量采 用低阶矩给出未知参数的估计。
第2章 参数估计
2
第10页 10页
将 lnL(µ,σ ) 分别关于两个分量求偏导并令 其为0, 即得到似然方程组
∂ ln L(µ,σ 2 ) 1 n = 2 ∑ ( xi − µ ) = 0 ∂µ σ i =1 ∂ln L(µ,σ 2 ) 1 n n 2 = 4 ∑(xi − µ) − 2 = 0 2 ∂σ 2σ i=1 2σ
第2章 参数估计
第1页
第2章 参数估计
2.1 2.2 2.3 2.4 参数估计的几种方法 估计的评价标准 最小方差无偏估计 区间估计
第2章 参数估计
第2页
• 一般常用θ 表示参数,参数θ 所有可能取值
组成的集合称为参数空间,常用Θ表示。参 数估计问题就是根据样本对上述各种未知参 数作出估计。
• 参数估计的形式有两种:点估计与区间估计。
第2章 参数估计
第17页 17页
矩估计法
它是基于一种简单的“替换” 它是基于一种简单的“替换” 思想建立起来的一种估计方法 . 是英国统计学家K.皮尔逊最早提出的 是英国统计学家 皮尔逊最早提出的 . 其基本思想是用样本矩估计总体矩 .
第2章 参数估计
第18页 18页
设X1, X 2 , …, Xn是来自总体X的样本
L(µ,σ 2 ) = ∏
i =1 n
( xi − µ )2 1 exp − 2 2σ 2πσ
2 −n / 2
1 n 2 = (2πσ ) exp − 2 ∑ ( xi − µ ) 2σ i=1 1 n n n 2 2 2 ln L(µ,σ ) = − 2 ∑ ( xi − µ ) − ln σ − ln(2π) 2σ i =1 2 2
第25页 25页
2.2 点估计的评价标准
从前一节可以看到, 对于同一个参数, 从前一节可以看到 对于同一个参数 用不 同的估计方法求出的估计量可能不相同,那么那 同的估计方法求出的估计量可能不相同 那么那 一个估计量好?好坏的标准是什么? 一个估计量好?好坏的标准是什么 下面介绍几个常用标准. 下面介绍几个常用标准
ˆ 标准差σ 的MLE是 σ = s * ; MLE
第2章 参数估计
第16页 16页
3− µ 的MLE是 Φ 3 − x ; 概率 P( X < 3) =Φ s* σ
总体0.90分位数 x0.90= µ +σ u0.90 的MLE 是 x + s * ⋅u0.90 ,其中u0.90为标准正态分布的 0.90分位数。
则称 θˆ 是θ 的极(最)大似然估计,简记为MLE (Maximum Likelihood Estimate)。 人们通常更习惯于由对数似然函数lnL(θ )出发寻 找θ 的极大似然估计。 当L(θ )是可微函数时,求导是求极大似然估计最 常用的方法,对lnL(θ )求导更加简单些。
第2章 参数估计
记总体k阶矩为 记总体 阶矩为 样本k阶矩为 样本 阶矩为
α k = E( X )
k
1 n k Ak = ∑ X i , k = 1, 2, ⋯ ; n i =1
用样本矩来估计总体矩,用样本矩的连续函数 用样本矩来估计总体矩 用样本矩的连续函数 来估计总体矩的连续函数,从而得出参数估计 从而得出参数估计, 来估计总体矩的连续函数 从而得出参数估计, 这种估计法称为矩估计法. 这种估计法称为矩估计法
第2章 参数估计
第12页 12页
虽然求导函数是求极大似然估计最常用的方 法,但并不是在所有场合求导都是有效的。
例2.1.3 设 x1, x2 , …, xn 是来自均匀总体 U(0, θ )的样本,试求θ 的极大似然估计。
第2章 参数估计
第13页 13页
解 似然函数
L(θ ) = 1
θ
n
∏I
i =1
无偏性、 无偏性、有效性 、相合性
第2章 参数估计第26页 2 Nhomakorabea页2.2 点估计的评价标准
2.2.1 相合性
我们知道,点估计是一个统计量,因此它是一个随 机变量,在样本量一定的条件下,我们不可能要求 它完全等同于参数的真实取值。但如果我们有足够 的观测值,根据格里纹科定理,随着样本量的不断 增大,经验分布函数逼近真实分布函数,因此完全 可以要求估计量随着样本量的不断增大而逼近参数 真值,这就是相合性,严格定义如下。
ˆ λ = 1/ x
2
ˆ λ1 = 1/ s
第2章 参数估计
第23页 23页
例2.1.6 x1, x2, …, xn 是来自(a,b)上的均匀分布 U(a,b)的样本,a与b均是未知参数,这里k=2, 由于
a+b EX = , 2 (b − a ) 2 Var( X ) = , 12
不难推出
a = EX − 3Var( X ), b = EX + 3Var( X ),
第2章 参数估计
第20页 20页
例2.1.1 对某型号的20辆汽车记录其每加仑汽油 的行驶里程(km),观测数据如下:
29.8 27.9 29.1 27.6 28.7 29.8 28.3 28.4 29.6 27.9 27.2 26.9 30.1 29.5 28.7 28.5 29.9 28.0 28.0 30.0
第7页
例2.1.1 设一个试验有三种可能结果,其发生概率 2 2 分别为 p1 = θ , p 2 = 2θ (1 − θ ), p3 = (1 − θ ) 现做了n次试验,观测到三种结果发生的次数分 别为 n1 , n2 , n3 (n1+ n2+ n3 = n),则似然函数为
L (θ ) = (θ ) [2θ (1 − θ )] [(1 − θ ) ]
经计算有
x = 28.695,
2 sn = 0.9185,
m0.5 = 28.6
由此给出总体均值、方差和中位数的估计分别 为: 28.695, 0.9185 和 28.6。 矩法估计的实质是用经验分布函数去替换总体 分布,其理论基础是格里纹科定理。
第2章 参数估计
第21页 21页
二、概率函数P 二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体具有已知的概率函数 P(x, θ1, …, θk), x1, x2 , …, xn 是样本,假定总体的k阶原点矩µk 存在,若θ1, …, θk 能够表示成 µ1, …, µk 的函数 θj = θj(µ1, …,µk),则可给出诸θj 的矩法估计为
第2章 参数估计
第19页 19页
点估计的几种方法
矩法估计
一、替换原理和矩法估计 替换原理是指用样本矩及其函数去替换相应的 总体矩及其函数,譬如: ˆ • 用样本均值估计总体均值E(X),即 E ( X ) = x ; 2 ˆ • 用样本方差估计总体方差Var(X),即 Var( X ) = sn • 用样本的 p 分位数估计总体的 p 分位数, • 用样本中位数估计总体中位数。
第2章 参数估计
第4页
点估计的几种方法
最大似然法和矩估计法
第2章 参数估计
第5页
极(最)大似然估计
当我们用样本的函数值估计总体参数时, 当我们用样本的函数值估计总体参数时,应使的当参数 取这些值时, 取这些值时,所观测到的样本出现的概率为最大 定义2.1.1 设总体的概率函数为p(x;θ ),Θ是参数θ 可能 取值的参数空间,x1, x2 , …, xn 是样本,将样本的联合 概率函数看成θ 的函数,用L(θ ; x1, x2, …, xn) 表示,简 记为L(θ ),
第28页 28页
相合性被认为是对估计的一个最基本要求, 如果一个估计量, 在样本量不断增大时,它 都不能把被估参数估计到任意指定的精度, 那么这个估计是很值得怀疑的。 通常, 不 满足相合性要求的估计一般不予考虑。证明 估计的相合性一般可应用大数定律或直接由 定义来证.
第2章 参数估计
第2章 参数估计
第3页
• 设 x1, x2,…, xn 是来自总体 X 的一个样本,
我们用一个统计量 θˆ = θˆ ( x1 , ⋯ , x n )的取值作 为θ 的估计值, ˆ 称为θ 的点估计(量),简 θ 称估计。在这里如何构造统计量 θˆ 并没有明 确的规定,只要它满足一定的合理性即可。 这就涉及到两个问题: 其一 是如何给出估计,即估计的方法问题; 其二 是如何对不同的估计进行评价,即估 计的好坏判断标准。
解之,得
θˆ =
θ

2 n3 + n 2 1−θ
=0
2n1 + n2 2( n1 + n2 + n3 )
=−
=
2n1 + n2 2n
2n3 + n2 (1 − θ )
2
由于
∂θ
∂ 2 ln L(θ )
2
2n1 + n2
θ
2

<0
ˆ 所以 θ 是极大值点。
第2章 参数估计
第9页
例2.1.2 对正态总体N(µ,σ 2),θ=(µ,σ 2)是二维 参数,设有样本 x1, x2 , …, xn,则似然函数及 其对数分别为
由此即可得到a, b的矩估计:
相关文档
最新文档