SAS Bayes判别分析

合集下载

SASdiscrim 距离判别和贝叶斯判别法

SASdiscrim 距离判别和贝叶斯判别法

距离判别和贝叶斯判别法SAS/STAT (DISCRIM )过程部分语句说明一、 D ISCRIM 过程语句SAS/STAT (DISCRIM )产生线性判别函数并进行分类,主要的语句如下:二、程序实例及解释例:某年为了研究某年全国各地农民家庭收支的分布情况,对全国28个地区进行了抽样调查。

食品1x ,衣着2x ,燃料3x ,住房4x ,生活用品及其他5x 和文化服务支出6x 。

data a;input type x1-x6;cards;数据行;run;data b;input x1-x6; cards;190.33 43.77 9.73 60.54 49.01 9.04 221.11 38.64 12.53 115.65 50.82 5.89 182.55 20.52 18.32 42.40 36.97 11.68 ;PROC DISCRIM DATA=a TESTDATA=b out=c crossvalidate method=normal TESTLIST testout=d; priors proportional; CLASS TYPE; VAR x3 x5 x6; proc print data=d; RUN;PROC DISCRIM DATA=a 指定对数据集a 中的数据进行判别分析; TESTDATA=b 指定欲分类观测的样品所在的数据集;crossvalidate 要求做交叉核实。

交叉核实的想法是,为了判断对观测i 的判别正确与否,用删除第method=normal 或npar 确定导出分类准则的方法,却上缺省值为method=normal 。

当指定method=normal 时,基于类内服从多员正态分布,并产生的判别函数是线性函数或二次判别函数; ALL 规定打印出所有的结果;TESTLIST 规定列出TESTDATA=b 中的全部的分类结果;testout=d 生成一个新的数据集,该数据集包括TESTDATA=b 中的所有数据,后验概率和每个样品被分的类。

实验报告Bayes判别

实验报告Bayes判别

实验十一Bayes判别实验目的和要求掌握Bayes判别分析的理论与方法、模型的建立与误差率估计;掌握利用判别分析的SAS过程解决有关实际问题.实验要求:编写程序,结果分析.实验内容:5.4 5.5 选一题data examp5_4。

input group $ x1-x7 @@。

cards。

G1 6.6 39 1.0 6.0 6 0.12 20G1 6.6 39 1.0 6.0 12 0.12 20G1 6.1 47 1.0 6.0 6 0.08 12G1 6.1 47 1.0 6.0 12 0.08 12G1 8.4 32 2.0 7.5 19 0.35 75G1 7.2 6 1.0 7.0 28 0.30 30G1 8.4 113 3.5 6.0 18 0.15 75G1 7.5 52 1.0 6.0 12 0.16 40G1 7.5 52 3.5 7.5 6 0.16 40G1 8.3 113 0.0 7.5 35 0.12 180G1 7.8 172 1.0 3.5 14 0.21 45G1 7.8 172 1.5 3.0 15 0.21 45G2 8.4 32 2.0 9.0 10 0.35 75 G2 8.4 32 2.5 4.0 10 0.35 75 G2 6.3 11 4.5 7.5 3 0.20 15 G2 7.0 8 4.5 4.5 9 0.25 30 G2 7.0 8 6.0 7.5 4 0.25 30 G2 7.0 8 1.5 6.0 1 0.25 30 G2 8.3 161 1.5 4.0 4 0.08 70 G2 8.3 161 0.5 2.5 1 0.08 70 G2 7.2 6 3.5 4.0 12 0.30 30 G2 7.2 6 1.0 3.0 3 0.30 30 G2 7.2 6 1.0 6.0 5 0.30 30 G2 5.5 6 2.5 3.0 7 0.18 18 G2 8.4 113 3.5 4.5 6 0.15 75 G2 8.4 113 3.5 4.5 8 0.15 75 G2 7.5 52 1.0 6.0 6 0.16 40 G2 7.5 52 1.0 7.5 8 0.16 40 G2 8.3 97 0.0 6.0 5 0.15 180 G2 8.3 97 2.5 6.0 5 0.15 180 G2 8.3 89 0.0 6.0 10 0.16 180 G2 8.3 56 1.5 6.0 13 0.25 180 G2 7.8 172 1.0 3.5 6 0.21 45run。

SAS判别分析

SAS判别分析
在科学研究和日常生活中,我们经常会遇到对观测到的样品数据进行判别分类的问题。 例如,在经济学中,可根据各国的人均国民收入、人均工农业产值和人均消费水平等多种指 标来判定一个国家经济发展程度的所属类型;在人口学中,可根据平均预期寿命、经济水平 和婴儿死亡率等因素来判定这个地区人口死亡水平的所属类型; 在医学上, 经常要根据患者 的不同症状和化验结果等多项指标来诊断其患病类型; 在气象学中, 要根据最近的一些气象 资料来判断明天是否会下雨; 等等。 所有这些问题一般都可以应用统计学中的判别分析方法 予以解决。 由于判定一个样品的归属一般需要依据样品的多项指标, 其统计推断及分析也是 按这些指标来进行的, 所以将判别分析放在多元分析中讨论是合适的。 判别分析要解决的问 题是在已知历史上用某些方法已把研究对象分成若干组的情况下, 来判定新的观测样品应归 属的组别。
备注:
1 W ( x) - D 2 2 ~ N (0,1) D
备注完毕。 同理
e2 = P(W ( x) ³ 0 | x Î p 2 )
若 p 1 和 p 2 皆为正态组,则当 x Î p 2 ,即 x ~ N p ( m 2 , S) 时
E (W ( x ) ) = E a¢( x - m ) = a¢( m2 - m )
从而有
(因为 a = S -1 ( m1 - m 2 ) )
[
]
æ1 ö W ( x) = a ¢( x - m ) ~ N ç D2 , D2 ÷ è2 ø
所以
4
1 2 æ ö ç W ( x) - 2 D D÷ P(W ( x) < 0) = P ç <- ÷ D 2÷ ç è ø D = F (- ) 2 = e1
(5.2.1)

SAS判别分析

SAS判别分析

课程:SAS判别分析部门:创新业务部-徐宝莲时间:2015/1/16内容概要:1、判别分析的简单介绍2、一般判别分析——PROC DISCRIM3、典型判别分析——PROC CANDISC4、逐步判别分析——PROC STEPDISC1、判别分析的简单介绍判别分析是一种应用性很强的统计方法。

它通常是根据已有的数据资料,来建立一种判别方法,然后再来判断一个新的样品归属哪一类。

判别分析的SAS过程所处理的数据集要求具有一个分类变量和若干个数值型变量。

SAS 中进行判别分析的具体目标可以分为以下三条:建立判别函数,以便用来判别某一新的观测值的所属类别;寻找一组数值型变量的线性组合,使得其能够很好地反映各类别之间的差别;筛选出某些能反映类别间差别的变量。

2、一般判别分析——PROC DISCRIM2.1距离判别法距离判别法是通过计算距离函数来进行判别,即样品与哪个总体之间的距离最近,则判断它属于哪个总体。

如何衡量样品与总体间的这种抽象的距离?我们一般利用马氏距离来描述。

对于两总体的情形,设G1和G2是两个P维总体,样品X到G1的距离为d2(X,G1),样品X 到G2的距离为d2(X,G2),则我们按照下面的准则对样本X进行判别归类:1)若d2(X,G1)<d2(X,G2),则判定X属于G1;2)若d2(X,G1)>d2(X,G2),则判定X属于G2;3)若d2(X,G1)=d2(X,G2),则X有待于进一步判定。

2.2Bayes判别法Bayes判别法是基于Bayes统计的思想,即假定事先对所研究的对象有一定的了解,并通过先验概率分布来进行描述,当抽取样本后,用样本来修正先验概率分布,并得到后验概率分布,然后根据后验概率分布进行各种统计推断。

Bayes判别法首先计算给定样品属于各个总体的条件概率,然后比较这些概率值的大小,将样品判归于条件概率最大的总体。

PROC DISCRIM DATA=数据集名<选项>;CLASS变量名列表;PRIORS概率值;BY 分组变量名;RUN;语句说明:1)PROC DISCRIM 语句用来调用DISCRIM 过程。

SAS软件应用之判别分析

SAS软件应用之判别分析
SAS软件应用之判别分析
判别函数中判别能力检验
• 一个判别函数判别样本归类的功能强弱很大程度 上取决与指标的选取。如果判别函数中特异性强 的指标越多,则判别函数的判别功能也就越强。 相反,不重要的指标越多,判别函数就越不稳定, 其判别效果非但得不到改善,甚至会适得其反。 因此,要建立一个有效的判别函数,指标的选取 很重要,过多过少都不一定合适。一方面要根据 专业知识和经验来筛选指标,另一方面要借助统 计分析方法检验指标的性能。
SAS软件应用之判别分析
判别分析
• 判别分析是一种根据观测变量判断研究样本如何 分类的多变量统计方法,它对于需要根据对样本 中每个个案的观测来建立一个分组预测模式的情 况是非常适用的。分析过程基于对预测变量的线 性组合产生一系列判别函数,但是这些预测变量 应该能够充分地体现各个类别之间的差异。判别 函数是从一个每个个案所属的类别已经确定的样 本中拟合出来的,并且生成的函数能够运用于同 样进行了预测变量观测的新的样本点,以判断其 类别归属。
SAS软件应用之判别分析
FISHER判别分析法
• 根据FISHER判别分析法的基本原理,就是 要选择一组适当的系数,使得类间差异最 大且类内差异最小,即使得下式的Q值达
到最大。Q Q (c1,c2, ,ck)y( (a a) ) y( (b b ) )
• 使得Q值达到最大就是Q的一阶偏导函数等 于0的方程组的解,由
Q0,Q0, ,Q0
c1
c2
ck
SAS软件应用之判别分析
FISHER判别分析法
• 可以得到:
f11c1 f1tct f1kck d1 fs1c1 fstct fskck ds
fk1c1 fktct fkkck dk
• 其中,

实验报告八-SAS聚类分析与判别分析

实验报告八-SAS聚类分析与判别分析

实验报告实验项目名称聚类分析与判别分析所属课程名称统计分析及SAS实现实验类型验证性实验实验日期2016-12-19班级数学与应用数学学号姓名成绩图8.1 聚类谱系图图8.1为proc cluster过程不得出的谱系图,为更方便直观,我们利用proc tree过程步得出图8.2。

②利用proc tree过程步得出聚类谱系图。

过程步:proc tree data=Lmf.tree1 horizontal;id region;run;结果:The TREE ProcedureWard's Minimum Variance Cluster Analysis图8.2 聚类谱系图由表8.2、图8.2得出,分为三类较合适,第一类为北京、天津、上海,第二类为河北、山东、河南、内蒙、江苏、浙江、山西、湖北、四川、福建、江西、湖南、海南、广东、新疆、广西、吉林、黑龙江、辽宁、陕西,第三类为安徽、宁夏、贵州、云南、甘肃、青海、西藏。

【练习8-2】有6个铅弹头,用“中子活化”方法测得7种微量元素含量数据。

表 7种微量元素含量数据Num Ag Al Cu Ca Sb Bi Sn10.05798 5.515347.121.918586174261.6920.08441 3.97347.219.7179472000244030.07217 1.15354.85 3.05238601445949740.1501 1.702307.515.0312290146163805 5.744 2.854229.69.657809912661252060.2130.7058240.313.91898028204135①试用多种系统聚类分析方法对6个铅弹头和7种微量元素进行分类,并进行分类结果。

②试用VARCLUS过程对7中微量元素进行分类。

【解答】①通过比较⑴⑵⑶三种系统聚类的方法类平均法、ward离差平方和法、最长距离法,对6个铅弹头进行分类。

实验十一 Bayes判别

实验十一  Bayes判别

实验十一 Bayes 判别实验目的和要求掌握Bayes 判别分析的理论与方法、模型的建立与误差率估计;掌握利用判别分析的SAS 过程解决有关实际问题.实验要求:编写程序,结果分析.实验内容:1、2题必做,第2-4题可选一题1. 写出两总体Bayes 判别的划分、准则,误判率估计;两总体的Bayes 判别准则为⎩⎨⎧<=∈∈≥=∈∈)}()2|1()()1|2(:{,)}()2|1()()1|2(:{,221122221111x x x x x x x x x x f p c f p c R G f p c f p c R G 如如误判概率的频率估计---回代法和交叉确认法*p ),2|1(),1|2(21R R P p P p +=212112221212112211*ˆn n n n n n n n n n n n n n p++=⋅++⋅+=≈ 回代法估计 21*21*12*ˆn n n n pp c++=≈* 交叉确认法估计2.写出两总体正态分布的Bayes 判别准则,给出样品;两个正态总体的Bayes 判别212221212||)2()},(21exp{)}()(21exp{||)2(1)(j p j j j T j j p j G d f Σx μx Σμx Σx ππ-=---=- )}()(21||ln )2ln(2)(ln 1j j j j j p f μx Σμx Σx -----=-π =)(2x j d )()(1j j T j μx Σμx ---)|(ln 2-ln 2-||ln j i c p j j Σ+---广义平方距离2,1,)(2exp()(2exp()(21exp()|(22212=-+--=j d d d G P j j x x x x ----后验概率最优划分 ⎩⎨⎧>=≤=)}()(:{)}()(:{2221222211x x x x x x d d R d d R两正态总体一般判别准则⎩⎨⎧><∈≤≥∈)()()|()|(,)()()|()|(,22212122221211x x x x x x x x x x d d G P G P G d d G P G P G 或当或当3.书上5.4、5.5选一题 5.4 (1) 结果如下:data examp5_4;input group $ x1-x7 @@; cards ;G1 6.6 39 1.0 6.0 6 0.12 20 G1 6.6 39 1.0 6.0 12 0.12 20 G1 6.1 47 1.0 6.0 6 0.08 12 G1 6.1 47 1.0 6.0 12 0.08 12 G1 8.4 32 2.0 7.5 19 0.35 75 G1 7.2 6 1.0 7.0 28 0.30 30 G1 8.4 113 3.5 6.0 18 0.15 75 G1 7.5 52 1.0 6.0 12 0.16 40 G1 7.5 52 3.5 7.5 6 0.16 40 G1 8.3 113 0.0 7.5 35 0.12 180 G1 7.8 172 1.0 3.5 14 0.21 45 G1 7.8 172 1.5 3.0 15 0.21 45 G2 8.4 32 1.0 5.0 4 0.35 75 G2 8.4 32 2.0 9.0 10 0.35 75 G2 8.4 32 2.5 4.0 10 0.35 75 G2 6.3 11 4.5 7.5 3 0.20 15 G2 7.0 8 4.5 4.5 9 0.25 30 G2 7.0 8 6.0 7.5 4 0.25 30 G2 7.0 8 1.5 6.0 1 0.25 30 G2 8.3 161 1.5 4.0 4 0.08 70 G2 8.3 161 0.5 2.5 1 0.08 70 G2 7.2 6 3.5 4.0 12 0.30 30 G2 7.2 6 1.0 3.0 3 0.30 30 G2 7.2 6 1.0 6.0 5 0.30 30 G2 5.5 6 2.5 3.0 7 0.18 18 G2 8.4 113 3.5 4.5 6 0.15 75 G2 8.4 113 3.5 4.5 8 0.15 75 G2 7.5 52 1.0 6.0 6 0.16 40 G2 7.5 52 1.0 7.5 8 0.16 40G2 8.3 97 0.0 6.0 5 0.15 180G2 8.3 97 2.5 6.0 5 0.15 180G2 8.3 89 0.0 6.0 10 0.16 180G2 8.3 56 1.5 6.0 13 0.25 180G2 7.8 172 1.0 3.5 6 0.21 45G2 7.8 233 1.0 4.5 6 0.18 45;run;proc discrim data=examp5_4 wcov outstat=aa method=normal pool=no list crosslist;class group;priors proportional; /* 总体的先验概率与各总体的训练样本容量成比例 */ run;proc print data=aa; /* 数据集aa中有各总体的均值向量、标准差、相关系数等*/ run;结果如下:计算广义平方距离函数和后验概率2,1,))(ˆ5.0exp(/))(ˆ5.0exp()|(ˆ2122=--=∑=j d d G P k kj j x x x由此可见,误判率的回代估计为0ˆ* r p .误判率的交叉确认法估计交叉确认法的广义平方距离函数及后验概率计算公式2,1,ln 2||ln (()(~)()()1()()(2=-+--=-j p d j x j x x j x j jj S )x x )S x x x2,1,))(ˆ5.0exp(/))(ˆ5.0exp()|(ˆ2122=--=∑=j d d G P k kj j x x x交叉确认法分类小结4.针对波士顿房价问题(1) 利用Bayes 判别对住房状况做判别分析,并给出5、100、400号样品判别结果。

试验设计与统计分析SAS实践教程课件:判别分析

试验设计与统计分析SAS实践教程课件:判别分析

C c1, c2 ,
T
cp
X X1, X 2 ,
T
Xp
其中,Y为判别函数,C为判别系数,X为属性变量集。
判别分析和聚类分析虽均为数值分类方法,但两者的分 类方法显著不同。聚类分析事先并不知道样本中的样品分成 几类,完全是根据属性变量的观测和判别准则把样品分成主 观的几类,而判别分析至少有一个已明确知道其分类的“训 练样本”,通过由它建立的判别函数依据判别准则将每个未 知样品判归已知的一个类。
判别分析可划分为多种类型。按照判别函数的内涵,可 划分为Bayes判别分析、Fisher判别分析、欧氏距离判别分析 和逐步判别分析。按照属性变量的概率分布,可划分为多元 正态型和非参数型。按照先验概率的分布类型,可划分为等 概率型(样品的先验概率均相等)、比率型(先验概率与样本中 样品的频率相等)和离散概率型(任意指定样品的先验概率)。
(2) 认为频率较高的卫星遥感观测其数值稳定性和发生 的概率亦较高,故用训练样品在样本中出现的比率(频率)作 为各个类的先验概率估计。SAS在discrim过程中设置选项 priors proportional或priors prop实现这项功能。
(3) 采用discrim过程实现Bayes判别分析。过程选项 data=指定调用训练样本sasuser.xunlian01。过程选项testdata= 指定调用检测样本sasuser.jiance01。语句class指定训练样本 中SamCrop为分类变量。语句priors proportional指定先验概 率与样品的比率成正比,缺省则指定先验概率均相等,也可 以指定一个先验概率的任意离散序列。语句var指定X1~X4 为参与计算的属性变量。缺省则为所有的数值变量。语句id 指定训练样本中Obs为标识观测的变量。语句testclass指定检 测样本中TestCrop为分类变量。语句testid指定检测样本中 TestObs为标识观测的变量。SAS程序如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档