用坐标系表示平移
合集下载
数学用坐标表示平移

函数图像的平移
函数图像的平移
在函数图像中,平移可以改变图 像的位置,但不会改变图像的形 状和大小。通过平移,我们可以 更好地理解函数的性质和变化趋
势。
函数图像的对称性
平移可以与函数的对称性相结合, 例如通过平移奇函数或偶函数的 图像,可以更好地理解函数的对
称性质。
函数图像的周期性
在周期函数中,平移可以用于研 究函数的周期性和振幅变化,帮 助我们更好地理解函数的周期性。
平移解释物理现象
在物理现象的解释中,平移可以用来解释物体的运动轨迹 和速度变化的原因,例如在流体动力学中,平移可以用来 解释流体运动的轨迹和速度。
总结与展望
06
平移在数学中的重要地位
基础概念
平移是几何学中的基本概念,是研究图形变换和运动的基础。通过 坐标表示平移,可以更精确地描述图形的位置和方向变化。
数学用坐标表示平移
目录
• 引言 • 平移在坐标系中的表示 • 平移的数学表示 • 平移的性质和定理 • 平移的应用 • 总结与展望
引言
01
平移的定义
01
平移是图形在平面内沿某一方向 移动一定的距离,而不发生旋转 或翻转。
02
平移不改变图形的形状、大小和 方向,只改变其位置。
坐标系简介
坐标系是用来确定点 在平面上的位置的一 组数轴。
物理学
在物理学中,平移可以用于描述物体的位置和速度,特别 是在经典力学和电磁学中,平移是研究物体运动规律和相 互作用的基础。
计算机图形学
在计算机图形学中,平移是计算机图形处理的基础技术之 一,可以用于实现图像的平移、缩放、旋转等变换操作。
经济学
在经济学中,平移可以用于描述经济现象的变化趋势,如 市场供需关系的变化、经济增长率的变动等。
坐标系的平移

4 将抛物线 y x 2 4 x 7 经过怎样的平移,可 以得到 y x2。
5 运用平移,将曲线 x 4 y 4x 8 y 8
2 2
的方程化为标准方程。
小结:
1 向量的平移、图形的平移;
2 点的平移公式。
强调:1. 知二求三; 2. 新旧顺序;
3. 一个平移就是一个向量。
P′(x′,y′)平移向量为P P′=(h,k)
x x h y y k
பைடு நூலகம்
向量表示:OP
+ P P′ = O P′
即(x,y)+(h,k)=(x ′,y ′)
理解:平移前点的坐标 + 平移向量的坐标= 平移后点的坐标
注意: 1. 知二求三; 2. 新旧顺序; 3. 一个平移就是一个向量。
3 基础练习:
(1)把点A(-2,1)按a=(3,2)平移,求对 ( x, y) A 的坐标 应点 . (2)点M(8,-10),按 a 平移后的对应点 M 的坐标为(-7,4)求 a
2 将函数y=2x 的图象 l 按a=(0,3)平移 到l ,求 l 的函数解析式.
3 已知函数y=x2图象F,平移向量a=(-2,3)到 F'的位置,求图象F'的函数表达式
1 平移的概念:
设F 是坐标平面内的一个图形,将F 上所有点按 照同一方向,移动同样长度,得到图形F ,这一过 程叫图形的平移.
2.设F 是坐标平面内的一个图形,将F 上所有点 按照同一方向,移动同样长度,得到图象 F 与F 之间的关系?
y
O
x
2 点的平移公式:
设P (x,y)是图象F上任一点,平移后对应点为
人教版七年级数学下册7.2:用坐标表示平移优秀教学案例

人教版七年级数学下册7.2:用坐标表示平移优秀教学案例
一、案例背景
本节内容是“人教版七年级数学下册7.2:用坐标表示平移”,这是学生在掌握了坐标系的基础知识后,进一步学习坐标系中图形平移的规律和特点。通过本节课的学习,让学生能够理解平移的概念,掌握平移的性质,并能够利用坐标表示平移前后的图形。
在教学过程中,我以学生的生活实际为出发点,设计了一系列具有针对性和实用性的教学活动。首先,我通过引导学生观察生活中的平移现象,如电梯的上下移动、滑滑梯等,让学生对平移有直观的认识。然后,我利用多媒体演示平移的动画,让学生清晰地看到平移的过程,进一步理解平移的性质。接着,我设计了一系列的练习题,让学生运用坐标表示平移前后的图形,巩固所学知识。最后,我组织学生进行小组讨论和交流,让学生分享自己的学习心得,提高学生的合作能力和沟通能力。
4.结合学生的评价结果,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的平移现象,如滑滑梯、电梯等,引导学生关注平移现象,激发学生的学习兴趣。
2.提出问题:“你们观察过这些平移现象吗?它们有什么共同特点?我们如何用数学知识来表示这些平移呢?”引发学生的思考和讨论。
4.及时给予小组评价和反馈,激发学生的学习积极性和团队精神。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我认知能力。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习状况,培养学生的评价能力。
3.教师对学生的学习成果进行评价,关注学生的学科素养和发展潜能。
4.问题导向的教学策略:教师引导学生提出问题,激发学生的好奇心和求知欲。鼓励学生通过观察、实验、讨论等方法,自主探索平移的性质和规律。这种教学策略能够培养学生的探究能力和思维能力,使学生成为主动学习的参与者。
一、案例背景
本节内容是“人教版七年级数学下册7.2:用坐标表示平移”,这是学生在掌握了坐标系的基础知识后,进一步学习坐标系中图形平移的规律和特点。通过本节课的学习,让学生能够理解平移的概念,掌握平移的性质,并能够利用坐标表示平移前后的图形。
在教学过程中,我以学生的生活实际为出发点,设计了一系列具有针对性和实用性的教学活动。首先,我通过引导学生观察生活中的平移现象,如电梯的上下移动、滑滑梯等,让学生对平移有直观的认识。然后,我利用多媒体演示平移的动画,让学生清晰地看到平移的过程,进一步理解平移的性质。接着,我设计了一系列的练习题,让学生运用坐标表示平移前后的图形,巩固所学知识。最后,我组织学生进行小组讨论和交流,让学生分享自己的学习心得,提高学生的合作能力和沟通能力。
4.结合学生的评价结果,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的平移现象,如滑滑梯、电梯等,引导学生关注平移现象,激发学生的学习兴趣。
2.提出问题:“你们观察过这些平移现象吗?它们有什么共同特点?我们如何用数学知识来表示这些平移呢?”引发学生的思考和讨论。
4.及时给予小组评价和反馈,激发学生的学习积极性和团队精神。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高学生的自我认知能力。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习状况,培养学生的评价能力。
3.教师对学生的学习成果进行评价,关注学生的学科素养和发展潜能。
4.问题导向的教学策略:教师引导学生提出问题,激发学生的好奇心和求知欲。鼓励学生通过观察、实验、讨论等方法,自主探索平移的性质和规律。这种教学策略能够培养学生的探究能力和思维能力,使学生成为主动学习的参与者。
直角坐标系中的平移

1)什么叫平移?
课前检测
在平面内,把一个图形的整体沿某一直 线方向移动一定的距离,会得到一个新图形。
图形的这种移动叫做平移变换,简称平移。
2)图形平移的性质是什么?
新图形与原图形形状和大小完全相同。
对应点的连线平行且相等。
对应线段平行且相等。
对应角相等。
仔细观察,点A、 A1、 A2的位置与 坐标之间的关系,你发现了什么?
-5
-4
-3
-2
-1 0 -1-1
1
2 3 4x
不变,
-2-2
-3 -3
则有A1 (-2,3) ,B1 (-3,1) ,C1 (-5,2) 。 猜想: △ A1B1C1与△ABC的大小、 形状
和位置上有什么关系,为什么?
1.例题探索
如图, △ ABC三个顶点的坐标 A(4,3),B(3,1),C(1,2)
(4)将点A向左平移a(a>o)个单位长度得到点
An´,则 点An ´点的坐标是 (-2-a ,-3) ;
在坐标系中描出点A(-2,-3)并进行如下平移:
(1)将点A向上平移5个单位长度得到点A1,
则 点A1点的坐标是 (-2,2) ;
(2)将点A向上平移6个单位长度得到点A2,
则 点A2点的坐标是 (-2,3) ;
应点P的坐标应为(__4,__2_.2_)_;
y4
P
●
3
2
4y
3
P
●
2
1
1
O 12 34 5 -1
ⅹ
O 12 34 5 -1
ⅹ
-2
-2
-3
-3
图1
图2
8、在直角坐标系中描出以下各点:
课前检测
在平面内,把一个图形的整体沿某一直 线方向移动一定的距离,会得到一个新图形。
图形的这种移动叫做平移变换,简称平移。
2)图形平移的性质是什么?
新图形与原图形形状和大小完全相同。
对应点的连线平行且相等。
对应线段平行且相等。
对应角相等。
仔细观察,点A、 A1、 A2的位置与 坐标之间的关系,你发现了什么?
-5
-4
-3
-2
-1 0 -1-1
1
2 3 4x
不变,
-2-2
-3 -3
则有A1 (-2,3) ,B1 (-3,1) ,C1 (-5,2) 。 猜想: △ A1B1C1与△ABC的大小、 形状
和位置上有什么关系,为什么?
1.例题探索
如图, △ ABC三个顶点的坐标 A(4,3),B(3,1),C(1,2)
(4)将点A向左平移a(a>o)个单位长度得到点
An´,则 点An ´点的坐标是 (-2-a ,-3) ;
在坐标系中描出点A(-2,-3)并进行如下平移:
(1)将点A向上平移5个单位长度得到点A1,
则 点A1点的坐标是 (-2,2) ;
(2)将点A向上平移6个单位长度得到点A2,
则 点A2点的坐标是 (-2,3) ;
应点P的坐标应为(__4,__2_.2_)_;
y4
P
●
3
2
4y
3
P
●
2
1
1
O 12 34 5 -1
ⅹ
O 12 34 5 -1
ⅹ
-2
-2
-3
-3
图1
图2
8、在直角坐标系中描出以下各点:
用坐标表示平移(全)

5.点A′(6,3)是由点A(-2,3)经过_向__右_平 ___移__8个__单__位__长_度__得到的. 点B(4,3)向__上_平_ 移2个单位_长__度__得到B′(4,5)
6.把点M(1,2)平移后得到点N(1,-2) 则平移的过程是: 向下平移4个单位
7.把点M(-3,1)平移后得到点N(-1,4) 则平移的过程是: 向右平移2个单位,再向上平移3个单位
2.将点P(m+2,2m+4)向右平移1个单位得 到P’,且P’在y轴上,那么P’坐标是(B)
A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)
小结
(x,y+a) 上
上
向
加
上
下
平下
移
减
(x-a,y)
向左平移a a
点(x,y)
向右平移a
(x+a,y)
左右平平移
向 下
左减横右加纵不变
平
b >0
C(3,-1) (3,4-b)
想一想, 议一议
❖如果一个点的坐标可以表示为 P (x,y),把这点向右(向左)平移 a个单位,向上(向下)平移b个 单位,你能把上述坐标的变化规 律表示出来吗? 把你的结论和其 他同学进行交流。
总结规律:图形平移与点的坐标变化间的关系
(1)左、右平移: 原图形上的点(x,y) ,向右平移a个单位( x+a,y ) 原图形上的点(x,y) ,向左平移a个单位( x-a,y )
移后C点的坐标是(
)
(A)(5,-2)
y
(B)(1,-2) C
(C)(2,-1)
(D)(2,-2)
A O
B x
【解析】选B.点C(3,3)向下
6.把点M(1,2)平移后得到点N(1,-2) 则平移的过程是: 向下平移4个单位
7.把点M(-3,1)平移后得到点N(-1,4) 则平移的过程是: 向右平移2个单位,再向上平移3个单位
2.将点P(m+2,2m+4)向右平移1个单位得 到P’,且P’在y轴上,那么P’坐标是(B)
A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)
小结
(x,y+a) 上
上
向
加
上
下
平下
移
减
(x-a,y)
向左平移a a
点(x,y)
向右平移a
(x+a,y)
左右平平移
向 下
左减横右加纵不变
平
b >0
C(3,-1) (3,4-b)
想一想, 议一议
❖如果一个点的坐标可以表示为 P (x,y),把这点向右(向左)平移 a个单位,向上(向下)平移b个 单位,你能把上述坐标的变化规 律表示出来吗? 把你的结论和其 他同学进行交流。
总结规律:图形平移与点的坐标变化间的关系
(1)左、右平移: 原图形上的点(x,y) ,向右平移a个单位( x+a,y ) 原图形上的点(x,y) ,向左平移a个单位( x-a,y )
移后C点的坐标是(
)
(A)(5,-2)
y
(B)(1,-2) C
(C)(2,-1)
(D)(2,-2)
A O
B x
【解析】选B.点C(3,3)向下
用坐标表示平移课件人教版数学七年级下册2

变化规律,反过来,这节课我们将探讨图形上点的坐标的 人教版 · 数学· 七年级(下)
(2)M(a-6,b-3).
(x+a , y+b)
先向左平移 5 个单位长度,再向下平移 2 个单位长度.
某种变化引起的图形平移. 例 如图,三角形 ABC 三个顶点的坐标分别是 A(4,3),
(2)将平行四边形ABCD向下平移3个单位长度,得到平行四边形A1B1C1D1,画出相应图形,并写出各点坐标;
别是什么?并画出相应的三角形
A2B2C2 . A2(4,-2),B2(3,-4),C2(1,-3)
-2 -3 C2 -4 -5 -6
A2 B2
例 如图,三角形 ABC 三个顶点的坐标分别是 A(4,3),
B(3,1),C(1,2).
y 65Βιβλιοθήκη (2)三角形 A2B2C2与三角形ABC 的大 小、形状和位置有什么关系?
B.向左平移 1 个单位长度
C.向上平移 3 个单位长度
D.向下平移 1 个单位长度
横坐标
(1,1)
减3 (-2,1)
3.在平面直角坐标系中,三角形 ABC 的三个顶点的位置如图所示,
点 A' 的坐标是(-2,2),现将三角形 ABC 平移,使点 A 变换为点
A' ,点 B' , C' 分别是 B,C 的对应点.
A.(-5,2) B.(3,2)
C.(-1,6) D.(-1,-2)
2.在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度后
得到点B,则点B关于x轴的对称点B′的坐标为( )
B
A.(-3,-2) B.(2,2)
C.(-2,2) D.(2,-2)
(2)M(a-6,b-3).
(x+a , y+b)
先向左平移 5 个单位长度,再向下平移 2 个单位长度.
某种变化引起的图形平移. 例 如图,三角形 ABC 三个顶点的坐标分别是 A(4,3),
(2)将平行四边形ABCD向下平移3个单位长度,得到平行四边形A1B1C1D1,画出相应图形,并写出各点坐标;
别是什么?并画出相应的三角形
A2B2C2 . A2(4,-2),B2(3,-4),C2(1,-3)
-2 -3 C2 -4 -5 -6
A2 B2
例 如图,三角形 ABC 三个顶点的坐标分别是 A(4,3),
B(3,1),C(1,2).
y 65Βιβλιοθήκη (2)三角形 A2B2C2与三角形ABC 的大 小、形状和位置有什么关系?
B.向左平移 1 个单位长度
C.向上平移 3 个单位长度
D.向下平移 1 个单位长度
横坐标
(1,1)
减3 (-2,1)
3.在平面直角坐标系中,三角形 ABC 的三个顶点的位置如图所示,
点 A' 的坐标是(-2,2),现将三角形 ABC 平移,使点 A 变换为点
A' ,点 B' , C' 分别是 B,C 的对应点.
A.(-5,2) B.(3,2)
C.(-1,6) D.(-1,-2)
2.在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度后
得到点B,则点B关于x轴的对称点B′的坐标为( )
B
A.(-3,-2) B.(2,2)
C.(-2,2) D.(2,-2)
1用坐标表示平移

第七章 平面直角坐标系
7.2.2 用坐标表示平移
-
教学新知
点平移与坐标变化规律: 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得 到对应点的坐标是(x+a ,y) 或(x-a ,y);将点(x,y)向上(或下) 平移b个单位长度,可以得到对应点的坐标是(x,y+b)或(x,y-b).
知识梳理
答案:解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移 后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4) 平移后点的坐标为:(-1,1);(5)平移后点的坐标为:(3,-4).
中考在线 考点:坐标与图形变化——平移。
【例1】(2015•大连)在平面直角坐标系中,将点P(3,2) 向右平移2个单位,所得的点的坐标是( D ).
【例2】(2015•济南)如图7-2-51,在平面直角坐标系中, △ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个 单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的 对应点A1的坐标为( D ).
A.(4,3) B.(2,4) C.(3,1) D.(2,5)
知识梳理
图7-2-51
课堂练习
6.点P(a,b)向左平移1个单位长度,再向上平移1个单位长度, 得到点(3,-4),则a=__4__,b=___-_5__.
讲评:本题考查了图形的平移变换.根据点的坐标的平移规律可得a-1=3, b+1=-4,再解可得a、b的值.
课堂练习
图7-2-54
课堂练习
讲评:考查了坐标与图形性质,坐标与图形变化-平移.(1)根据长方形 形状求出BC到y轴的距离,CD到x轴的距离,然后写出点B、C、D的坐标即 可;(2)根据图形写出平移方法即可.
7.2.2 用坐标表示平移
-
教学新知
点平移与坐标变化规律: 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得 到对应点的坐标是(x+a ,y) 或(x-a ,y);将点(x,y)向上(或下) 平移b个单位长度,可以得到对应点的坐标是(x,y+b)或(x,y-b).
知识梳理
答案:解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移 后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4) 平移后点的坐标为:(-1,1);(5)平移后点的坐标为:(3,-4).
中考在线 考点:坐标与图形变化——平移。
【例1】(2015•大连)在平面直角坐标系中,将点P(3,2) 向右平移2个单位,所得的点的坐标是( D ).
【例2】(2015•济南)如图7-2-51,在平面直角坐标系中, △ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个 单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的 对应点A1的坐标为( D ).
A.(4,3) B.(2,4) C.(3,1) D.(2,5)
知识梳理
图7-2-51
课堂练习
6.点P(a,b)向左平移1个单位长度,再向上平移1个单位长度, 得到点(3,-4),则a=__4__,b=___-_5__.
讲评:本题考查了图形的平移变换.根据点的坐标的平移规律可得a-1=3, b+1=-4,再解可得a、b的值.
课堂练习
图7-2-54
课堂练习
讲评:考查了坐标与图形性质,坐标与图形变化-平移.(1)根据长方形 形状求出BC到y轴的距离,CD到x轴的距离,然后写出点B、C、D的坐标即 可;(2)根据图形写出平移方法即可.
完整版用坐标系表示平移 图文

度,所得坐标为(__1_,__5_)_ 。
1、如果A,B的坐标分别为 A(-4,5), B(-4,2),将点A向_下__平移_3__个单位长 度得到点 B;将点B向_上__平移_3__个单位 长度得到点 A 。
2、如果P、Q的坐标分别为 P(-3,-5),Q (2,-5),,将点P向_右__平移__5_个单位长 度得到点 Q;将点Q向左___平移5___个单位长 度得到点 P。
作业
教材p.581,; p.592,3,4 题 作业本
)且 PQ ∥ x轴,则 b的值为( 6)
3.点(m,- 1)和点(2,n)关
于 x轴对称,则 mn等于【 B 】 (A)- 2 (B)2
(C)1 (D)- 1
想一想?
这节课你有哪些收获 ? 在平面直角坐标系中 ,将点(x,y)向右 (或向左)
平移a个单位长度,可以得到对应点 (x+a,y) (或(x-a,y)) ,将点(x,y)向上 (或向下) 平移b个单位长度 ,可 以得到对应点 (x,y+b) (或(x,y-b))
在平面直角坐标系内,如果把一个 图形上的各个点的坐标的 横坐标都加 (或减去) 一个正数 a,相应的新图形 就是把原图形向右(或向左) 平移a个 长度单位;如果把各点的 纵坐标都加 (或减去) 一个正数 a,相应的图形就 是把原图形向上(或向下) 平移a个单 位长度.
例:将图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),
y
? △ABC的面积是__12___.
A(1,4)
? 4.将△ABC向左平移三个单位
后,点A、B、C的坐标分别变为 __(-_2_,4_) _,_(_-7_,_0)__, _(-_1,0_) _ .
1、如果A,B的坐标分别为 A(-4,5), B(-4,2),将点A向_下__平移_3__个单位长 度得到点 B;将点B向_上__平移_3__个单位 长度得到点 A 。
2、如果P、Q的坐标分别为 P(-3,-5),Q (2,-5),,将点P向_右__平移__5_个单位长 度得到点 Q;将点Q向左___平移5___个单位长 度得到点 P。
作业
教材p.581,; p.592,3,4 题 作业本
)且 PQ ∥ x轴,则 b的值为( 6)
3.点(m,- 1)和点(2,n)关
于 x轴对称,则 mn等于【 B 】 (A)- 2 (B)2
(C)1 (D)- 1
想一想?
这节课你有哪些收获 ? 在平面直角坐标系中 ,将点(x,y)向右 (或向左)
平移a个单位长度,可以得到对应点 (x+a,y) (或(x-a,y)) ,将点(x,y)向上 (或向下) 平移b个单位长度 ,可 以得到对应点 (x,y+b) (或(x,y-b))
在平面直角坐标系内,如果把一个 图形上的各个点的坐标的 横坐标都加 (或减去) 一个正数 a,相应的新图形 就是把原图形向右(或向左) 平移a个 长度单位;如果把各点的 纵坐标都加 (或减去) 一个正数 a,相应的图形就 是把原图形向上(或向下) 平移a个单 位长度.
例:将图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),
y
? △ABC的面积是__12___.
A(1,4)
? 4.将△ABC向左平移三个单位
后,点A、B、C的坐标分别变为 __(-_2_,4_) _,_(_-7_,_0)__, _(-_1,0_) _ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.2《用坐标表示平移》教案
安陆市解放路初级中学陈定亮
设计思路:
一、教学内容的说明
学生在第五章《相交线与平行线》中已经学习了图形的平移(从
形的角度理解平移),在本章学习平面直角坐标系的基础知识后,本
节课学习用坐标来表示平移(即从数的角度刻画平移). 这节课不仅探究了平移所引起坐标变化的规律,也探究了坐标变化引起位置变化的规律。
通过本课的学习,让学生初步体会平面直角坐标系架起了数与形之间的“桥梁”,为今后在平面直角坐标系中研究其它几种图形
变换奠定基础.
二、设计思路说明
我从12999数学网下载了有关《用坐标表示平移》的课件,通过修改完善,与五步教学法的教案配套,并在课堂中与教案结合使用。
课堂教学过程流程图:
根据我校实际,我把这节课分为五个环节:。