第五章 并发性:互斥和同步
智慧树 计算机操作系统 网课章节测试答案

计算机操作系统在线学堂•得分:8••评语:••名称计算机操作系统•成绩类型百分制•截止时间2022-07-22 23:59•题目数5•总分数10说明第二次见面课课后测验提示:选择题选项顺序为随机排列•第1部分•总题数:51【单选题】 (2分)关于同步和互斥关系,以下叙述错误的是:A.并发进程推进过程中由于共享互斥资源可能形成互斥关系B.互斥表现的是一种竞争关系,互斥进程不能同时使用互斥资源C.并发进程推进过程中围绕共享资源可能形成合作关系D.同步表现的是进程之间的合作关系,同步进程可以同时使用临界资源2【单选题】 (2分)关于临界区和临界资源的说法,错误的是A.并发进程体中关于同一临界资源的临界区称为相关临界区B.临界区指的是进程体中使用临界资源的代码段C.一个进程体中只能有一块临界区D.临界资源指的是并发进程并发推进过程中需要共享但是不能同时共享的资源3【多选题】 (2分)PV操作可用来实现A.并发进程间的互斥B.进程间少量信息的传递C.并发进程间的同步D.进程间大量信息的传递4【判断题】 (2分)为了让用户进程互斥地进入临界区,可以把整个临界区实现成不可中断的过程,即让用户具有屏蔽所有中断的能力。
每当用户程序进入临界区的时候,屏蔽所有中断。
当出了临界区的时候,再开放所有中断A.对B.错5【判断题】 (2分)互斥是指不但不能同时用,谁先用谁后用也有严格约束A.错B.对总分8第1部分12345Copyright © 2003-现在Zhihuishu. All rights reserved.沪ICP备10007183号-5沪公网备31010402003974号电子营业执照计算机操作系统在线学堂•得分:10••评语:••名称计算机操作系统•成绩类型百分制•截止时间2022-07-22 23:59•题目数5•总分数10说明第一次见面课课后测验提示:选择题选项顺序为随机排列•第1部分•总题数:51【单选题】 (2分)以下关于进程的表述错误的是A.进程具有独立性,进程是分配资源和参与CPU调度的独立单位B.进程具有动态性,操作系统为了描述和管理程序动态的执行过程才引入了“进程”C.进程是一个程序的一次动态执行过程,进程由要执行的代码和要处理的数据组成D.进程具有并发性和异步性,每个进程的推进速度都是不可预知的2【单选题】 (2分)下列哪一种进程状态转换是不可能的A.阻塞态→运行态B.就绪态→运行态C.运行态→就绪态D.运行态→阻塞态3【判断题】 (2分)进程是按异步方式运行的,即,它的推进速度是不可预知的A.对B.错4【判断题】 (2分)一个进程由程序代码、数据集和进程控制块TCB组成。
操作系统 概念,问答

第一章操作系统概述1操作系统:是管理系统资源,控制程序执行,改善人机界面,提供各种服务,并合理组织计算机工作流程和为用户方便而有效地使用计算机提供良好运行环境的最基本的系统软件。
2操作系统功能:a处理器管理b存储管理c设备管理d文件管理e网络与通信管理f用户接口3操作系统的主要特性:并发性,共享性,异步性并发性:两个或两个以上的活动或时间在同一时间间隔内发生,其实质是对有限的物理资源强行复用,供多用户共享以提高效率并行性:两个或两个以上的活动或事件在同一时刻发生并发性和并行性的关系:并行活动一定是并发的,反之并发活动未必是并行的,并行性是并发性的特例,而并发性是并行性的扩展4多道程序设计基本思想多道程序设计是指允许多个作业同时进入计算机系统的主存并启动交替计算的方法,也就是说,主存中多个相互独立的程序处于开始和结束之间,从宏观上看是并行的,多道程序设计都处于运行过程中,但尚未运行结束;从微观上看是串行的,各道程序轮流占用cpu交替地执行,引入多道程序设计技术,可以提高cpu的利用率,充分发挥计算机硬部件的并行性5内核及其属性内核是一组程序模块,作为可信软件来提供支持进程并发执行的基本功能和基本操作,通常驻留在内核空间,运行于核心态,具有访问硬件设备和所有主存空间的权限,是仅有的能够执行特权指令的程序内核的功能:资源抽象,资源分配,资源共享内核的属性:a内核是由中断驱动的b内核是不可抢占的c内核部分程序在屏蔽中断状态下执行d内核可使用特权指令6API,库函数和系统调用第二章处理器管理1特权指令和非特权指令,访管指令,原语特权指令:指仅供内核程序使用的指令,如启动设备,设置时钟,控制中断屏蔽位,清空主存,建立存储键,加载psw等敏感性操作内核能够执行全部指令,应用程序只能使用非特权指令访管指令包括操作码和访管参数两部分,前者表示此指令时访管指令,后者则表示具体的访管要求原语是在管态下执行,完成系统特定功能的过程,其特点是执行过程中不允许被中断。
互斥与同步

互斥与同步互斥与同步是计算机科学中两个重要的概念,它们是多线程编程中必须掌握的知识点。
本文将介绍互斥与同步的概念、原理、实现方式以及应用场景。
一、互斥1.1 概念互斥是指在多线程并发执行时,对于共享资源的访问需要保证线程之间的排他性,即在任意时刻只有一个线程能够访问共享资源。
1.2 原理互斥的实现基于锁机制,即在访问共享资源前获取锁,在使用完毕后释放锁。
这样可以保证在任意时刻只有一个线程能够获得锁,从而避免了多个线程同时访问共享资源造成的数据竞争问题。
1.3 实现方式常见的实现方式包括:(1)临界区:将对共享资源的访问限制在一个代码块内,在进入临界区前获取锁,在离开临界区后释放锁。
(2)信号量:通过计数器来控制同时进入临界区的线程数量,当计数器为0时表示当前没有进入临界区的线程,当计数器大于0时表示当前有进入临界区的线程。
(3)互斥量:是一种特殊的信号量,只能被一个线程获取,其他线程需要等待该线程释放互斥量后才能获取。
1.4 应用场景互斥常用于对共享资源的访问控制,例如多个线程同时访问同一个文件、数据库或网络连接等。
二、同步2.1 概念同步是指在多线程并发执行时,保证线程之间的协调和顺序性,使得程序按照预期的顺序执行。
2.2 原理同步的实现基于信号机制,即在某个条件满足时通知其他线程进行操作。
例如,在生产者-消费者模型中,当生产者生产了数据后需要通知消费者进行消费。
2.3 实现方式常见的实现方式包括:(1)条件变量:通过等待和唤醒操作来实现对某个条件的等待和通知。
(2)事件对象:是一种特殊的条件变量,可以通过事件对象来设置和清除事件状态,并在事件状态发生改变时通知其他线程进行操作。
(3)屏障:是一种同步原语,在多个线程到达屏障点时会被阻塞,直到所有线程都到达后才会继续执行。
2.4 应用场景同步常用于对线程之间的协调和顺序性控制,例如在多个线程之间进行任务分配、消息传递等。
三、互斥与同步的关系互斥和同步是两个相互依存的概念。
操作系统 题库 判断题

第一章计算机系统概论1.操作系统类似于计算机硬件和人类用户之间的接口。
答案:T。
2.处理器的一个主要功能是与内存交换数据。
答案:T。
3.一般用户对系统程序无障碍,对应用程序有障碍。
答案:F4.数据寄存器一般是通用的,但可能局限于像浮点数运算这样的特定任务。
T5.程序状态字(PSW)通常包含条件码等状态信息。
条件码是由程序员为操作结果设置的位。
答案:F6.一个单一的指令需要的处理称为执行周期。
答案:F(称为指令周期)7.取到的指令通常被存放在指令寄存器中(IR)。
答案:T8.中断是系统模块暂停处理器正常处理过程所采用的一种机制。
答案:T9.为适应中断产生的情况,必须在指令周期中增加一个额外的读取阶段。
F10.在处理器控制控制例行的中断处理器之前,需要储存的最少信息有程序状态字和当前指令地址。
答案:F11.多中断的一个处理方法是在处理一个中断时禁止再发生中断。
答案:T12.多道程序设计允许处理器使用长时间等待的中断处理的空闲时间。
答案:T13.在两级存取优先级中,命中率定义为对较慢存储器的访问次数与对所有存储器访问次数的比值。
答案:F14.高速缓冲存储器的开发利用了局部性原理,即在处理器与主存储器之间提供一个容量小而快速的存储器。
T15.在高速缓冲存储器的设计中,块大小与高速缓冲存储器和主存储器间的数据交换单位有关。
答案:T16.可编程I/O的一个主要问题是,处理器必须等到I/O模块准备完毕,并且在等待的过程中必须反复不停的检查I/O模块的状态。
答案:T第二章操作系统概述1.操作系统是控制应用程序执行的程序,并充当应用程序和计算机硬件之间的接口。
(对)2.在多用户系统中,操作系统管理那些用作重要目的的资源。
(对)3.操作系统通常在它的专用O/S处理器上并行应用程序。
(错)4.操作系统演化的动力之一就是基本硬件技术的进步。
(对)5. 早期的计算机中没有操作系统,用户直接与硬件打交道。
(对)6 在一个批处理系统,“control is passed to a job”意味着处理器正在取指令和执行用户程序。
详解进程同步与互斥机制

详解进程同步与互斥机制⽬录⼀、什么是进程同步⼆、什么是进程互斥三、常见的进程同步与互斥机制⼀、什么是进程同步在多道批处理系统中,多个进程是可以并发执⾏的,但由于系统的资源有限,进程的执⾏不是⼀贯到底的,⽽是⾛⾛停停,以不可预知的速度向前推进,这就是进程的异步性。
那么,进程的异步性会带来什么问题呢?举个例⼦,如果有 A、B 两个进程分别负责读和写数据的操作,这两个线程是相互合作、相互依赖的。
那么写数据应该发⽣在读数据之前。
⽽实际上,由于异步性的存在,可能会发⽣先读后写的情况,⽽此时由于缓冲区还没有被写⼊数据,读进程 A 没有数据可读,因此读进程 A 被阻塞。
进程同步(synchronization)就是⽤来解决这个问题的。
从上⾯的例⼦我们能看出,⼀个进程的执⾏可能影响到另⼀个进程的执⾏,所谓进程同步就是指协调这些完成某个共同任务的并发线程,在某些位置上指定线程的先后执⾏次序、传递信号或消息。
再举个⽣活中的进程同步的例⼦,你想要喝热⽔,于是你打了⼀壶⽔开始烧,在这壶⽔烧开之前,你只能⼀直等着,⽔烧开之后⽔壶⾃然会发⽣响声提醒你来喝⽔,于是你就可以喝⽔了。
就是说⽔烧开这个事情必须发⽣在你喝⽔之前。
注意不要把进程同步和进程调度搞混了:进程调度是为了最⼤程度的利⽤ CPU 资源,选⽤合适的算法调度就绪队列中的进程。
进程同步是为了协调⼀些进程以完成某个任务,⽐如读和写,你肯定先写后读,不能先读后写吧,这就是进程同步做的事情了,指定这些进程的先后执⾏次序使得某个任务能够顺利完成。
⼆、什么是进程互斥同样的,也是因为进程的并发性,并发执⾏的线程不可避免地需要共享⼀些系统资源,⽐如内存、打印机、摄像头等。
举个例⼦:我们去学校打印店打印论⽂,你按下了 WPS 的 “打印” 选项,于是打印机开始⼯作。
你的论⽂打印到⼀半时,另⼀位同学按下了 Word 的 “打印” 按钮,开始打印他⾃⼰的论⽂。
想象⼀下如果两个进程可以随意的、并发的共享打印机资源,会发⽣什么情况?显然,两个进程并发运⾏,导致打印机设备交替的收到 WPS 和 Word 两个进程发来的打印请求,结果两篇论⽂的内容混杂在⼀起了。
同步与互斥实现方法

同步与互斥实现方法一、同步与互斥的概念同步是指多个线程或进程之间按照一定的顺序执行,以达到其中一种约定或要求。
在同步的过程中,程序等待其他线程或进程完成一些操作后再继续执行。
互斥是指多个线程或进程之间访问共享资源时,要互相排斥,避免冲突和竞争。
互斥的目的是保证多个线程或进程对共享资源的操作是互斥的,即同一时刻只有一个线程或进程可以访问共享资源。
二、实现同步的方法1. 互斥锁(Mutex)互斥锁是一种最常用的同步机制,通过对一些代码块或函数的访问加上互斥锁的操作,可以保证只有一个线程能够执行该代码块或函数。
当一些线程获得互斥锁时,其他线程在获得该锁之前会被阻塞。
2. 信号量(Semaphore)信号量是一种更为复杂的同步机制,用于实现一些资源的访问控制。
一个信号量有一个整型值和两个原子操作:P和V。
P操作(也称为wait或down)会使信号量的值减1,如果值小于0,当前线程或进程就会被阻塞。
V操作(也称为signal或up)会使信号量的值加1,如果值小于等于0,就会唤醒等待的线程或进程。
信号量可以用于解决生产者-消费者问题、读者-写者问题等并发编程中的资源竞争问题。
3. 条件变量(Condition Variable)条件变量是一种同步机制,用于在多个线程或进程之间同步共享资源的状态。
条件变量对应一个条件,并提供了等待和通知的机制。
等待操作可以使一个线程或进程等待一些条件成立,直到其他线程或进程通知条件变量,使得等待的线程或进程被唤醒。
通知操作可以使等待中的线程或进程被唤醒,继续执行。
条件变量常和互斥锁一起使用,互斥锁用于保护共享资源,条件变量用于同步共享资源的状态。
三、实现互斥的方法1. Peterson算法Peterson算法是一种经典的软件方法,用于解决两个进程之间的互斥访问问题。
该算法使用了两个布尔型变量flag和turn,通过交替使用这两个变量,实现了两个进程之间的互斥。
2. 印章(Semaphores)信号量也可以用于实现互斥操作。
操作系统 题库 判断题

第一章计算机系统概论1.操作系统类似于计算机硬件和人类用户之间的接口。
答案:T。
2.处理器的一个主要功能是与内存交换数据。
答案:T。
3.一般用户对系统程序无障碍,对应用程序有障碍。
答案:F4.数据寄存器一般是通用的,但可能局限于像浮点数运算这样的特定任务。
T5.程序状态字(PSW)通常包含条件码等状态信息。
条件码是由程序员为操作结果设置的位。
答案:F6.一个单一的指令需要的处理称为执行周期。
答案:F(称为指令周期)7.取到的指令通常被存放在指令寄存器中(IR)。
答案:T8.中断是系统模块暂停处理器正常处理过程所采用的一种机制。
答案:T9.为适应中断产生的情况,必须在指令周期中增加一个额外的读取阶段。
F10.在处理器控制控制例行的中断处理器之前,需要储存的最少信息有程序状态字和当前指令地址。
答案:F11.多中断的一个处理方法是在处理一个中断时禁止再发生中断。
答案:T12.多道程序设计允许处理器使用长时间等待的中断处理的空闲时间。
答案:T13.在两级存取优先级中,命中率定义为对较慢存储器的访问次数与对所有存储器访问次数的比值。
答案:F14.高速缓冲存储器的开发利用了局部性原理,即在处理器与主存储器之间提供一个容量小而快速的存储器。
T15.在高速缓冲存储器的设计中,块大小与高速缓冲存储器和主存储器间的数据交换单位有关。
答案:T16.可编程I/O的一个主要问题是,处理器必须等到I/O模块准备完毕,并且在等待的过程中必须反复不停的检查I/O模块的状态。
答案:T第二章操作系统概述1.操作系统是控制应用程序执行的程序,并充当应用程序和计算机硬件之间的接口。
(对)2.在多用户系统中,操作系统管理那些用作重要目的的资源。
(对)3.操作系统通常在它的专用O/S处理器上并行应用程序。
(错)4.操作系统演化的动力之一就是基本硬件技术的进步。
(对)5. 早期的计算机中没有操作系统,用户直接与硬件打交道。
(对)6 在一个批处理系统,“control is passed to a job”意味着处理器正在取指令和执行用户程序。
中山大学《操作系统原理》

中山大学信息科学与技术学院计算机科学系 中山大学信息科学与技术学院计算机科学系课程教学大纲《操作系统原理》课程教学大纲课程名称:操作系统原理类别:专业必修课授课对象:本科生总学时:72学时适用专业:计算机科学与技术/信息安全开课学期:第五学期编写人员:丘静玉审核人员:印鉴编写日期:2006年4月一、教学目的操作系统是配置在计算机硬件上的第一层软件,其他所有的系统软件和应用软件都必须依赖于操作系统的支持。
《操作系统原理》是计算机学科各相关专业的重要的必修课程之一,它在计算机知识结构中有着极其重要的地位和作用,可为学生较全面地建立起关于计算机系统的概念。
学生通过学习本课程应该达到以下目标:1.掌握操作系统的基本概念、原理、技术和方法,深入了解操作系统在计算机系统中的地位及作用,以及它与硬件和其它软件之间的关系,进而了解操作系统控制整个计算机系统执行的全过程,具有操作系统的整体概念。
2.能用程序设计语言编写、调试和运行操作系统的主要算法和功能模块。
3.了解一个以上主流操作系统的实现技术,熟练掌握应用。
4.获取知识的同时,掌握学科的基本规律及研究方法,初步培养自我拓展知识和运用知识的能力。
总之,本课程要求学生全面地了解和掌握操作系统的目标、作用和模型,从资源管理的角度领会操作系统的功能和实现过程,使学生系统科学地受到分析问题和解决问题的训练,提高运用理论知识解决实际问题的能力,鼓励并初步培养学生的研究精神和能力。
二、教材选择1. 教学内容概述《操作系统原理》讲述操作系统的基本概念、原理和方法,其课程内容应包含《中国计算机科学与技术学科课程2002》(简称CCC2002)里列举的知识体系:CS-OS1至8。
从资源管理的角度来说,课程内容主要围绕操作系统的几个基本功能展开:(1) 操作系统概述:介绍操作系统的基本概念、目标、功能、发展历史和类型、操作系统的主要成就以及现代操作系统的特点等。
(2) 处理器管理:在进程概念的基础上讨论进程描述、进程控制、进程同步和互斥、死锁、饿死、线程、处理器调度等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻塞在信 号量lock
对于同步,“一类资源”配一信号量s,初
始值为可用资源数量
如:s表示缓冲区的空闲状态;
问题描述
有一组生产者生产数据,放在缓冲区(同步)
设一信号量empty, 初始值为缓冲区大小
有一组消费者取数据,每次取一项(同步)
设一信号量full,初始值为0
任何时候只有一个主体可以访问缓冲区(互斥)
消费者 consumer: while (true) { semWait(full); semWait(s); w = b[out]; semSignal(s); semSignal(empty); out++; /* consume item w */ }
e=e-1 s=s-1 n=n+1
n=n-1 e=e+1
并发是指两个或多个事件在同一时间间隔内发生。在多道 程序环境下, 并发性是指在一段时间内宏观上有多个程序 在同时运行,但在单处理机系统中,每一时刻却仅能有一
道程序执行,故微观上这些程序只能是分时地交替执行。
并行是指两个或者多个事件在同一时刻发生。
多处理机系统中,可以并发执行的程序便可被分配到多个
传递消息时,进程间未共享资源,则不需互斥,
但可能会死锁或饥饿,通信成为临界资源
必须强制实施互斥:一次只允许一个进程进入临界区 一个在非临界区停止的进程不能干涉其他进程 有限等待:决不允许出现需要访问临界区的进程被无限
延迟的情况,即不会死锁或饥饿
有空让进: 临界区空闲时,请求进程可进 对相关进程的执行速度和处理器的数目没有任何要求和 限制 一个进程驻留在临界区中的时间必须是有限的
处理机上,实现并行执行。
并发的相关问题
进程间的通信
资源共享与竞争
多个进程活动的同步
分配给进程的处理器时间
并发出现的环境
多应用程序:共享处理器时间
结构化应用程序:设计成一组并发进程
操作系统结构:上一点用于操作系统
临界资源:一次仅允许一个进程使用的共享资源; 如:打印机、变量、数组
方法
软件方法:由并发执行的进程担负这个责任
机器指令:减少开销,但不通用
在操作系统或程序设计语言中提供支持
中断禁用
单处理器中并发进程不能重叠只能交替 一个进程一直运行到调用系统服务或被中断 保证互斥只需保证一个进程不被中断
缺点
长时间关中断效率明显降低
不能用于多处理器结构中
实现互斥和同步
竞争关系
进程间相互不知对方存在 竞争:CPU、设备、内存等 影响:进程的结果与其他进程无关;会影响状态; 可能引发的问题:互斥
死锁 饥饿
互斥产生的额外控制问题
死锁
进程之间互有对方必需的资源而不释放 例:R1 P2,R2 P1
饥饿
两个进程轮流访问临界资源,其他进程被无限地拒 绝访问资源,处于饥饿状态
用于同步:s>=0
s>=0, 可用资源的个数
s<0, |s|个进程等待资源
信号量的三个操作
2、semWait(s) 进程请求分配一个资源,操作使信号 量减1,若为负,进程阻塞,否则继续执行
3、semSignal(s)进程释放一个资源,操作使信号量加 1,若小于或等于0,则阻塞的进程被解除阻塞
也称P(s)操作,wait(s) 也称V(s)操作,signal(s)
信号量的三个操作
1、一个信号量s可以初始化成非负数
用于互斥:s=1, 取值 -(n-1)~1;
s=1时,有一个临界资源可用,一个进程可进入临界区 s=0时,临界资源已分配, 正有进程在临界区内 s<0时,|s|个进程等待进入临界区
专用机器指令
用于保证访问的原子性 1、比较和交换指令(compare and swap)、2、Exchange指令
机器指令方法的特点
适用于在单处理器或共享内存的多处理器上的任何数目的进程 非常简单且易于证明
可用于支持多个临界区,可以用自己的变量定义
缺点
忙等待:进程等待进入临界区,仍会继续消耗CPU 时间 可能饥饿:当需要选择等待进程进入时,某些可能被无限拒绝 可能死锁:低优先级的进程占有高优先级的进程所需资源
读者优先(重点掌握)
读者优先: 只要有读者,写者就得等待 写进程访问共享数据区,其他写进程和读进程就都
不能访问它
没有读进程在读,第一个试图读的进程需要等待, 至少已经有一个读进程在读时,其他读进程无需等 待
写者优先(不作详解 )
只要有写者声明要写,不再允许新读者进入,只待 旧读者读完即可。
两人拣围棋问题:P1拣白子,P2 拣黑子(先),
两人交替进行,一次进允许一人拣
解:w: 可拣白子,w=0;b:可拣黑子,b=1
桌上一空盘,可向其中放一水果。爸爸可放一苹果或一桔
子,儿子只吃桔子,女儿只吃苹果。如何实现爸爸、儿子、 女儿三个进程的同步。 解:设信号量S:表示盘子,S=1;So:桔子数,So=0; Sa:苹果数,Sa=0
OS难对资源进行最优化分配-----死锁
难以定位程序设计错误
一个简单例子
void echo() ---多道程序设计系统中的共享函数
{
chin = getchar(); 全局共享变量
chout = chin;
putchar(chout);
}
P1 ——chin=getchar() 中断 P2——chin= getchar()
临界区:进程访问临界资源的那段程序代码;
互斥:当一个进程在临界区访问临界资源时,其他进程不能进
入临界区。 同步:合作的并发进程需要按先后次序执行
死锁:多个进程等待其他进程的资源,形成循环等待链;
饥饿:一个进程呈可执行状态,被调度器忽视而不能调度执行。
并发的困难
共享全局资源,引发数据安全问题
1972年图灵奖,“ 结构化程序设计之父”
不要求忙等的同步互斥工具
一个信号量表示一个资源或一个同步条件
当资源不可用时,进程将等待,直到释放资源
的另一个进程发来信号时才唤醒 由若干个机器指令构
成的完成某种特定功 能的一段程序,具有 不可分割性
两个原语访问
semWait(s) semSignal(s)
ห้องสมุดไป่ตู้
共享合作关系
进程间接知道彼此的存在 进程间通过共享某些资源(如:变量、文件)进行 合作,但不确切知道对方
多个进程可以同时读一个数据项,但是必须互斥写 操作
多个进程读写共享数据时,必须保持数据一致性
通信合作关系
进程直接知道对方的存在
进程间通过发送消息和接受消息来进行通信,
实现同步和协调各种活动;
需要一个特殊变量(整数型):称为信号量
荷兰 计算机科学家
1 提出“goto有害论”; 2 提出信号量和PV原语(1965); 3 解决了“哲学家聚餐”问题; 4 最短路径算法(SPF)和银行家算法的创造者;
5 第一个Algol 60编译器的设计者和实现者;
6 THE操作系统的设计者和开发者;
P1优先级低,进入临界区中断;P2优先级高,抢占CPU,需要访问同一临界资
源,等待;P1 无法再次得到CPU ,资源无法释放,进入死锁。
解决并发进程问题基本原理:
两个或多个进程可以通过简单的信号进行合作,
一个进程可以被迫在某一位置停止,直到它接到
一个特定的信号
复杂的合作需求都可以通过适当的信号结构完成
设一信号量s,初始值为1
缓冲区满,生产者不能再加数据;缓冲区空,消费 者不能再取数据
生产者 producer:
while (true) {
/* 生产数据*/
b[in] = v;
in++; }
消费者 consumer: while (true) { while (in <= out) /*do nothing */; w = b[out]; out++; /* consume item w */ }
例:
n=5, 共享变量;
①②③:输出6,n=0 ②③①:输出5,n=1
②①③:输出5,n=0
×
OS必须能够跟踪不同的进程,依靠PCB OS必须为每个活跃的进程分配和释放各种资源
处理器时间
存储器
文件 I/O设备
OS必须保护每个进程的数据和物理资源 进程的功能和输出结果必须与执行速度无关
putchar(chout);
解决办法:控制访问该变量的代码
规定一次仅允许一个进程进入echo,并只在
echo运行结束后,才对另一个进程可用
如何实施?
竞争条件:发生在多个进程或者线程读写数据时, 最终结果依赖于多个进程的指令执行顺序
P1: …… ① L1: n++ ……. Go to L1; P2: …… ② L2: printf(n); ③ n=0; ……. Go to L2;