北京市西城区-2017学年八年级上学期期末考试数学试题(1)

合集下载

2017-2018学年北京市顺义区八年级上学期期末数学试卷(WORD版含答案)

2017-2018学年北京市顺义区八年级上学期期末数学试卷(WORD版含答案)

顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个是符合题意的 . 1.若代数式11x x +- 有意义,则x 的取值范围是 A .1x >-且 1x ≠ B .1x ≥- C .1x ≠ D .x ≥-1且 1x ≠2.下列各式从左到右的变形正确的是A .y x y x -+-= -1B .y x =11++y xC .y x x +=y +11D .2)3(y x -=223yx3.在实数722,3-, 3π2,39,3.14中,无理数有 A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是 A .22B .19C .17D . 17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是 A .25 B .35 C .13 D .127. 下列事件中,属于必然事件的是A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B. 某班级11名学生中,至少有两名同学的生日在同一个月份C. 用长度分别为2cm ,3cm ,6cm 的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001⋅⋅⋅(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数 8.下列运算错误的是 A.236⨯= B. 623÷= C.235+= D.2(2)2-=9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE =2,AB=4, 则AC 长是A.9B. 8C. 7D. 6EDCBA10. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运算 21=222=423=8 (31)=332=933=27… 新运算log 22=1 log 24=2 log 28=3 …log 33=1 log 39=2 log 327=3…根据上表规律,某同学写出了三个式子: ①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是 A .①② B .①③ C .②③ D .①②③二、填空题 (共10个小题,每小题2分,共20分) 11.25的平方根是 .12.计算:2(32)-= .13.若实数x y ,满足350x y -+-=,则代数式2xy 的值是 . 14. 已知:ABC ∆中,AB AC =,30B A ∠-∠=︒,则A ∠= .15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 度.16.边长为10cm 的等边三角形的面积是 . 17.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的同样长为半径画弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连结CD .请回答:若CD =AC ,∠A =50°,则∠ACB 的度数为 .18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y 颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是14,则y 与x 之间的关系式是 .A DMN B C(第17题图)19.已知1132a b +=,则代数式254436a ab bab a b-+--的值为 . 20.已知: 如图,ABC △中,45ABC ∠=, H 是高AD 和BE 的交点,12AD =,17BC =,则线段BH 的长为 .三、解答题 (共12个小题,共60分) 21.(4分)15201025+-÷22.(5分)计算:5(515)(1523)(1523)-++-23.(4分)已知:1x y -= , 3(2)64x y += ,求代数式22x yx y++的值.24. (5分)先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.25.(5分).已知: 如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .HE CDBA26.(5分)解关于x的方程:32211xx x+=-+.27.(4分))在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是45,求m的值.28.(5分)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?29. (5分) 在ABC ∆中,AB ,BC ,AC 三边的长分别为5,32,17,求这个三角形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC ∆中,(即ABC ∆三个顶点都在小正方形的顶点处),如图1所示,这样不需要ABC ∆高,借用网格就能计算出它的面积.(1)△ABC 的面积为 ;(2)如果MNP ∆三边的长分别为10,25,26,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点MNP ∆,并直接写出MNP ∆的面积为 .30.(5分) 已知:如图,在ABC ∆中,90C ∠=︒.(1)求作:ABC ∆的角平分线AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若6AC =,8BC =,求CD 的长.ABC图2图1CB A31.(5分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是(填写序号即可); (2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b --=- 小强:22344=a a ab b b b -⨯-原式 ()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简.32.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是 边AC 上一点,且DE BC =. 求证:DEA C ∠=∠.ED C BA顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试题答案及评分参考一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 D A B ACBD C D B 二、填空题题号 111213 14 15 1617181920 答案5±526-1540︒752253cm105︒35y x =+12-13三、解答题21. 解:原式=5255+- ………………………………………3分(各1分)=25 …………………………………………4分22. 解:原式=553(1512)-+- ………………………………… 4分(前2分后2分)=853- …………………………………………5分23 解:∵1x y -= , 3(2)64x y += ,∴ 124x y x y -=⎧⎨+=⎩………………………………………………2分(各1分)解得21x y =⎧⎨=⎩ ……………………………………………4分(各1分)∴ 2222213215x y x y ++==++ ………………………………………5分24 解:原式= (2)(2)5323(2)x x x x x x +---⎛⎫÷⎪--⎝⎭………………………1分 =293(2)23x x x x x --⨯-- ……………………………………………2分 =(3)(3)3(2)23x x x x x x +--⨯-- ……………………………3分=239x x+……………………………………………4分∵2310x x +-=∴ 231x x +=∴ 原式=22393(3)313x x x x +=+=⨯= ……………………5分25.证明:∵BD AE =,∴BD AD AE AD -=-.即AB DE =. ……………………………………………………………… 1分 ∵BC ∥EF ,∴B E ∠=∠. ……………………………………………………………… 2分 又∵C F ∠=∠ ……………………………………………………………… 3分在ABC ∆和DEF ∆中,,,,B E C F AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ABC ∆≌DEF ∆. ………………………………………………………4分 ∴ AC DF =. …………………………………………………………… 5分26. 解:方程两边同乘以(1)(1)x x +-,……………………………………………1分3(1)2(1)2(1)(1)x x x x x ++-=+-. ……………………………………………2分 223+32222x x x x +-=-. ……………………………………………3分解这个整式方程,得5x =-. …………………………………………… 4分 检验:当5x =-时,(1)(1)0x x +-≠.…………………………………………5分5x ∴=-是原方程的解.27. 解:(1)事件A必然事件随机事件 m 的值43 , 2…………………………………………… 3分 (2)依题意,得64105m += …………………………………………… 4分解得 2m = …………………………………………… 5分所以m 的值为228. 解:设该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得105.130003000=-x x…………………………………3分 解这个方程得 100x = …………………………………………4分经检验,100x =是所列方程的根. ………………………………5分 答:该服装厂原计划每天加工100件服装.29. 解: (1)ABC ∆的面积为 4.5 …………………………………………2分正确画图………………………………………4分 (2)MNP ∆的面积为 7 ………………………………………… 5分30. 解:(1)如图 ………………1分 (2)过点D 作DE ⊥AB 于E . ………………2分∵DE ⊥AB ,∠C =90°∴由题意可知DE =DC , ∠DEB =90° 又∵DE =DC ,AD =AD ∴AD 2-ED 2=AD 2-DC 2 ∴AE =AC =6 ………………3分∵A B =10 ∴BE =AC -AE =4 ………………4分 设DE =DC =x ,则BD =8-x∴在Rt △BED 中 ()22168x x +=-∴x =3 ………………5分 ∴CD =3. 31. (1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分P N M 图2图1CBA E D ACB解:原式()222444a a aba b b -+=-()24ab a b b =-()4aa b b=-24a a b b =- ………………5分32.证明:过点D 作BC 的平行线交CA 的延长线于点F .……………… 1分∴C F ∠=∠.∵点A 是BD 的中点,∴AD=AB . …………………………… 2分 在△ADF 和△ABC 中,,,,C F DAF BAC AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△ABC .………………… 3分 ∴DF=BC .…………………………… 4分 ∵DE=BC , ∴DE=DF .∴F DEA ∠=∠. ………………………………………………………… 5分 又∵C F ∠=∠,∴C DEA ∠=∠. …………………………………………………………… 6分其它证法相应给分FEDA BCFEDA BC。

2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)

数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。

北京西城初二年级下学期期末考试数学试题 含答案

北京西城初二年级下学期期末考试数学试题 含答案

北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 函数11y x =+中,自变量x 的取值范围是( ).A. x ≠1-B. x ≠1C. x >1-D. x ≥1- 2. 一次函数+3y x =的图象不经过...的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,30OCB ∠=︒,如果OE =2,那么对角线BD 的长为( ).A. 4C. 8D. 105. 如果关于x 的方程220x x k --=有两个相等的实数根,那么以下结论正确的是( ).A. 1k =-B. 1k =C. k >1-D. k >16. 下列命题中,不正确...的是( ). A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分7. 北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是( ).A. 32 C. 308. 如图,在Rt△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于( ).A. 150°B. 90°C. 60°D. 30°9. 教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为万人,而2016年各类留学回国人员总数为万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. 36.48(1)=43.25xx++ B. 36.48(12)=43.25C. 2x36.48(1)=43.25-36.48(1)=43.25+ D. 2x路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是().二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 如果关于x的方程2320-++=有一个根为0,那么m的值等于 .x x m12. 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于2cm.13. 在平面直角坐标系xOy中,直线24=-+与x轴的交点坐标为,y x与y轴的交点坐标为,与坐标轴所围成的三角形的面积等于 .14.如图,在Y ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果1=70ADC∠∠,那么=∠°.ABC∠︒,=3215.如图,函数2=-的图象交于点P,那y kx=+与函数1y x b么点P的坐标为_______,关于x的不等式12->+的解集kx x b是.16. 写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,2)-的点. 你写出的解析式为 .17. 如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_______cm.18. 利用勾股定理可以在数轴上画出表示图,并保留画图痕迹:第一步:(计算)=,使其中a,b都为正整数.你取的正整数a=____,b= ;以第一步中你所取的正整数a,b为两条直第二步:∠︒,则斜边OFOEF=90请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)M,并描述第三步:第三步...的画图步骤:.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. 解方程:2610--=.x x20.如图,在四边形ABCD中,AD21.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为尺,线段DF的长为尺;(2)求户斜多长.22. 2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表 1 学农1班所抽取酸奶添加蔗糖克数统计表(单位:克)表 2 学农2班所抽取酸奶添加蔗糖克数统计表(单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示.表3 两班所抽取酸奶的统计数据表根据以上材料回答问题:(1)表3中,x=:(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体..口感较优?请说明理由.23. (1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点(1,2)A -向上平移3个单位后的对应点A '的坐标为 ,过点A '的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线2y x =-向右平移1个单位,平移后直线的解析式为 ,另外直接将直线2y x =-向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次..“斜平移”. 求将直线2y x =-进行两次..“斜平移”后得到的直线的解析式.(3)解:24.(1)画图-连线-写依据:先分别完成以下画图..(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线..,并写出判定依据(只将最后一步判定特殊平行..........四边形的依据......填在横线上).①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.(2)请从图1、图2的结论中选择一个进行证明.证明:25. 如图所示,在平面直角坐标系x O y中,B,C两点的坐标分别为(4,0)B,(4,4)C,CD⊥y轴于点D,直线l 经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出45∠=︒,从而证明结论.CFB思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.……请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为.(2)①补全图形.②直线BF与直线l的位置关系是.③证明:北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学 附 加 题试卷满分:20分一、填空题(本题6分)1. 如图,在平面直角坐标系xOy 中,点1(2,2)A 在直线y x =上,过点1A 作11A B ∥y 轴,交直线12y x =于点1B ,以1A 为直角顶点,11A B 为直角边,在11A B 的右侧作等腰直角三角形111A B C ;再过点1C 作22A B ∥y轴,分别交直线y x =和12y x =于2A ,2B 两点,以2A 为直角顶点,22A B 为直角边,在22A B 的右侧作等腰直角三角形222A B C ,…,按此规律进行下去,点1C 的横坐标为 ,点2C 的横坐标为 ,点 n C 的横坐标为 .(用含n 的式子表示,n 为正整数)二、操作题(本题6分)2.如图,在由边长都为1个单位长度的小正方形组成的66⨯正方形网格中,点A ,B ,P 都在格点上.请画出以AB 为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件: 条件1:点P 到四边形的两个顶点的距离相等; 条件2:点P 在四边形的内部或其边上; 条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个Y ABCD , 使点P 在所画四边形的内部; (2)在图②中画出符合条件的一个四边形ABCD ,使点P 在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.三、解答题(本题8分)3.如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.解:①②北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)题号12345678910答案A D B C A B A C C D二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分)14. 60. 15.(1,2)-(2分),x<1(1分).16. 答案不唯一,如2=-等.(只满足一个条件的y x得2分)17. 2.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步:如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M. ………………………………………………………4分第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M. ………………………………………………………………………………………… 5分说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. (本题5分) 解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分(6)6322--±±===所以原方程的根为13x =+,23x =-………………………………………… 5分20.(本题5分)解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8,∴222AC BC AB. ……………………… 1分+=∴△ABC是直角三角形,=90∠︒.……2分ACB(2)∵AD==90∠∠︒…………………………………………………………… 3分CAD ACB∵在Rt△ACD中,=90∠︒,AC=AD=8,CAD∴CD=…………………………………………………………… 4分=………… 5分21.(本题7分)解:(1)4,2.…………………………………………………………………………………2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,BC BE CE x=-=-,(x>4)4=-=-.(x>2)2CD CF DF x又在Rt△BCD中,=90∠︒,BCD由勾股定理得222BC CD BD.+=所以222(4)+(2)=x x x--.………………… 4分整理,得212200x x-+=.因式分解,得(10)(2)=0x x--.解得110x=,22x=.……………………………………………………………… 5分因为x> 4 且x>2,所以2x=舍去,10x=.…………………………………… 6分答:户斜为10尺.…………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分(2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.……………………5分23.(本题7分)解:(1)(1,1),y x=-+.…………………………………………………………………… 2分23(2)22=-+,上,2.(各1y x 分)…………………………………………………………5分(3)直线2=-上的点(1,2)A-进行一次“斜平移”后的对应点的坐标为y x(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2=-+.y x b 将(3,4)点的坐标代入,得234-⨯+=.b解得10b=.所以两次“斜平移”后得到的直线的解析式为210=-+.y x……………………… 7分说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形.∵ D 为矩形ABEN 对角线的交点,∴ AE=BN ,12DE AE =,12DN BN =.∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =.同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形.∵ 四边形ABFG 是菱形,∴ AF ⊥BG .∴90∠=︒.AHB∴118090∠=︒-∠=︒.AHB∴2180190∠=︒-∠=︒.∴平行四边形DEMN是矩形. ………………………………………………………7分25.(本题8分)解:(1)(0,4).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC DC OD∵CE⊥直线l,CM⊥CF,45∠=︒,ECF可得△CEF,△CEM 为等腰直角三角形,=45∠∠=︒,CMD CFECF=CM.①∵=90∠︒-∠,DCM DCFBCF DCF∠︒-∠,=90∴=∠∠.②BCF DCM又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴∠∠=︒.……………………………………………………7分CFB CMD=45∴=90∠∠+∠=︒.BFE CFB CFE∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC CD OD∵CE⊥直线l,BN⊥CE,∴90BNC CED∠=∠=︒.①∴1390∠+∠=︒.∠+∠=︒,2390∴12∠=∠.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵45∠=︒,ECF可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵180BNE NED∠+∠=︒,∴BN∥FE.∴四边形BFEN为平行四边形.又∵90CEF∠=︒,∴平行四边形BFEN为矩形.…………………………………………………7分∴=90BFE∠︒.∴BF⊥直线l.……………………………………………………………… 8分北京市西城区2016-2017学年度第二学期期末试卷八年级数学附加题参考答案及评分标准一、填空题(本题6分)1.解:3,92,322n⎛⎫⨯ ⎪⎝⎭.(各2分)二、操作题(本题6分)2. 解:(1)答案不唯一,如:或其他.(2)答案不唯一,如:或其他.(3)说明:每图2分,答案不唯一时,其他正确答案相应给分.三、解答题(本题8分)3.解:(1)如图 1.由△OFF≌1△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分(2)①设点M 的坐标为(,)M x y .∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,可得点M 的坐标为(,)22a a . …………………………………………………… 5分 ∴ ,2.2a x a y ⎧=⎪⎪⎨⎪=⎪⎩消去a ,得y x =.所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分 而12M M =∴ 点M 所经过的路径的长为……………………………………………8分。

北京市西城区2020—2021学年初二上期末考试数学试题含答案

北京市西城区2020—2021学年初二上期末考试数学试题含答案

北京市西城区2020—2021学年初二上期末考试数学试题含答案八年级数学 2021.1试卷满分:100分,考试时刻:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.运算22-的结果是( ).A.14B.14- C.4 D.4- 2.下列剪纸作品中,不是..轴对称图形的是( ).3.在下列分解因式的过程中,分解因式正确的是( ). A.()xz yz z x y -+=-+ B. ()223232a b ab ab ab a b -+=- C. 232682(34)xy y y x y -=- D. 234(2)(x 2)3x x x x +-=+-+4.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 5.已知一次函数(2)3y m x =-+的图象通过第一、二、四象限,则m 的取值范畴是( ).A .0m <B .0m >C .2m <D .2m >6.分式11x--可变形为( ). A .11x + B .11x -+ C .11x -- D .11x - 7.若一个等腰三角形的两边长分别为2和4,则那个等腰三角形的周长是为( ).A. 8B. 10C. 8或10D.6或128.如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,若∠AEC =105°,则∠DAE 的度数等于( ).A. 30°B.40°C. 50°D.65°9.如图,在△ABC 中,BD 平分∠ABC ,与AC 交于点D ,DE ⊥AB于点E ,若BC =5,△BCD 的面积为5,则ED 的长为( ).A. 12B. 1C.2D.510.如图,直线y =﹣x +m 与直线y =nx +5n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +5n >0的整数解为( ).A.﹣5 ,﹣4,﹣3B. ﹣4,﹣3C.﹣4 ,﹣3,﹣2D. ﹣3,﹣2二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.若分式11-x 在实数范畴内有意义,则x 的取值范畴是 . 12.分解因式224x y -= .13.在平面直角坐标系xOy 中,点P (-2,3)关于y 轴的对称点的坐标是 .14.如图,点B 在线段AD 上,∠ABC =∠D , AB ED =.要使△ABC ≌△EDB ,则需要再添加的一个条件是(只需填一个条件即可).15.如图,在△ABC 中,∠ABC =∠ACB , AB 的垂直平分线交AC 于点M ,交AB 于点N .连接MB ,若AB=8,△MBC 的周长是14 ,则BC 的长为 .16.关于一次函数21y x =-+,当-2≤x ≤3时,函数值y 的取值范畴是 .17.如图,要测量一条小河的宽度AB 的长,能够在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC =CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长确实是AB 的长,其中用到的数学原理是:_ .S (米)412048010a 018.甲、乙两人都从光明学校动身,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚动身4min .设甲行走的时刻为t (单位:min),甲、乙两人相距 y (单位:m),表示y 与t 的函数关系的图象如图所示,依照图中提供的信息,下列说法: ①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲③甲、乙两人的最远距离是480m ④甲从光明学校到篮球馆走了30min正确的是__ _(填写正确结论的序号).练习题改编,识图能力,如何提取信息,数形结合思想三、解答题(本题共50分,第19,20题每小题6分;第21题~25题每小题5分; 第26题6分,第27题7分)19.分解因式:(1)2()3()a b a b -+- (2)221218ax ax a -+解: 解:20.运算:(1)42223248515a b a b c c ÷ (2)24()212x x x x x x -⋅+++ 解: 解:21.已知2a b-=,求222()2ab aaa ba ab b÷---+的值.解:22.解分式方程2242111x x xxx-+=+-解:23.已知:如图,A,O,B三点在同一条直线上,∠A=∠C,∠1=∠2,OD=OB.求证:AD=CB.证明:24.列方程解应用题中国地大物博,过去由于交通不便,一些地区的经济进展受到了制约,自从“高铁网络”在全国连续延伸以后,许多地区的经济和旅行发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅行,从北京到该地普快列车行驶的路程约为1352km,高铁列车比普快列车行驶的路程少52km,高铁列车比普快列车行驶的时刻少8h.已知高铁列车的平均时速是普快列车平均时速的 2.5倍,求高铁列车的平均时速.解:25.在平面直角坐标系xOy 中,将正比例函数2y x =-的图象沿y 轴向上平移4个单位长度后与y 轴交于点B ,与x 轴交于点C . (1)画正比例函数2y x =-的图象,并直截了当写出直线BC 的解析式; (2)假如一条直线通过点C 且与正比例函数2y x =-的图象交于点P (m ,2),求m 的值及直线CP 的解析式.解:(1)直线BC 的解析式: ;(2)26.阅读下列材料:利用完全平方公式,能够将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把如此的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++- =(8)(3)x x ++ 依照以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始显现错误的地点,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.(1)解:(2)正确的解答过程是:(3)证明:解: 2340x x -- =22233340x x -+-- =2(3)49x -- =(37)(37)x x -+-- =(4)(10)x x +-27.已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判定BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.图1 备用图(1)BF与CF的数量关系为:.证明:(2)解:北京市西城区2020— 2021学年度第一学期期末试卷八年级数学附加题2021.1试卷满分:20分一、填空题(本题6分)1.(1)已知32a ba+=,则ba= ;(2)已知115a b-=,则3533a ab ba ab b----= .二、解答题(本题共14分,每小题7分)2.观看下列各等式:(8.1)(9)(8.1)(9)---=-÷-,11()(1)()(1)22---=-÷-,4242-=÷,993322-=÷,┅┅依照上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)填空:-4=÷4;(3)请你再写两个实数,使它们具有上述等式的特点:-=÷;(4)假如用y表示等式左边第一个实数,用x表示等式左边第二个实数(x≠0 且x≠1),①x与y之间的关系能够表示为:(用x的式子表示y);②若x>1,当x时,y有最值(填“大”或“小”),那个最值为.3.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.(1)依题意补全图1;(2)线段OA,AC,OD之间的数量关系为:_____________________________;证明:(3)解:附加题答案1、(1)13(2)522、(1)差商(2)16 3(3)25255544-=÷;36366655-=÷(4)①21xyx=-②2 小43、(1)(2)作BE⊥OD四边形AOEB是正方形△ABC≌△BED∴OA+AC=OD(3)∵△ABC≌△BED ∴BC=BD∵BH⊥CD∴A、C、H、B四点共圆∴∠BAH=∠BCH=45°。

北京市西城区2021-2022学年八年级上学期期末数学试题含答案

北京市西城区2021-2022学年八年级上学期期末数学试题含答案

北京市西城区2021-2022学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图案中,可以看成轴对称图形的是( ) A .B .C .D .2.下列运算中,结果正确的是( ) A .()325a a =B .()2236a a =C .623a a a ÷=D .235a a a ⋅=3.在ABC 中,作出AC 边上的高,正确的是( )A .①B .①C .①D .①4.如图是一个平分角的仪器,其中AB AD =,BC DC =.将点A 放在一个角的顶点,AB 和AD 沿着这个角的两边放下,利用全等三角形的性质就能说明射线AC 是这个角的平分线,这里判定ABC 和ADC 是全等三角形的依据是( )A .SSSB .ASAC .SASD .AAS5.下列分式中,从左到右变形错误的是( ) A .144c c = B .111a b a b+=+C .11a b b a =--- D .2242442a a a a a --=+++ 6.已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( ) A .10B .8C .7D .47.某校八年级一班计划安排一次以“迎冬奥”为主题的知识竞赛,班主任王老师打算到某文具店购买一些笔记本作为竞赛用的奖品.目前该文具店正在搞优惠酬宾活动:购买同样的笔记本,当花费超过20元时,每本便宜1元.已知王老师花费24元比花费20元多买了2本笔记本,求他花费24元买了多少本笔记本,设他花费24元买了x 本笔记本,根据题意可列方程( ) A .242012x x -=- B .242012x x -=- C .202412x x-=- D .202412x x-=+ 8.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(0m >).若ABC 是等腰直角三角形,且AB BC =,当01a <<时,点C 的横坐标m 的取值范围是( ) A .02m << B .23m << C .3m < D .3m >二、填空题9.计算:(1)12-=________;(2)0(1)π-=________. 10.若分式12x -有意义,则x 的取值范围是_____. 11.已知一个多边形的内角和为540°,则这个多边形是______边形.12.计算:()2235ab a b -=________.13.若29a ka ++是一个完全平方式,则k 的值是________.14.如图1,将一个长为2a ,宽为2b 的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2),设图2中的大正方形面积为1S ,小正方形面积为2S ,则12S S -的结果是________(用含a ,b 的式子表示).15.如图,在平面直角坐标系xOy 中,点A (2,0),B (4,2),若点P 在x 轴下方,且以O ,A ,P 为顶点的三角形与OAB 全等,则满足条件的P 点的坐标是________.16.如图,Rt ABC △中,90ACB ∠=︒,30B ∠=︒,2AC =,D 为BC 上一动点,EF 垂直平分AD 分别交AC 于E 、交AB 于F ,则BF 的最大值为____.三、解答题 17.分解因式: (1)22363a ab b -+;(2)()()2222x m y m -+-.18.(1)计算:()8(x y x y -+);(2)先化简,再求值:22341121a a a a a -⎛⎫+-÷ ⎪--+⎝⎭,其中3a =-.19.解方程:212111x x x --=+-.20.如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅.(2)若40A ∠=︒,145ECD ∠=︒,求①F 的度数.21.如图,812⨯的长方形网格中,网格线的交点叫做格点.点A ,B ,C 都是格点.请按要求解答下列问题:平面直角坐标系xOy 中,点A ,B 的坐标分别是(-3,1),(-1,4), (1)①请在图中画出平面直角坐标系xOy ;①点C 的坐标是 ,点C 关于x 轴的对称点1C 的坐标是 ; (2)设l 是过点C 且平行于y 轴的直线,①点A 关于直线l 的对称点1A 的坐标是 ;①在直线l 上找一点P ,使PA PB +最小,在图中标出此时点P 的位置;①若Q (m ,n )为网格中任一格点,直接写出点Q 关于直线l 的对称点1Q 的坐标(用含m ,n 的式子表示).22.已知:如图1,线段a,b(a b>).(1)求作:等腰ABC,使得它的底边长为b,底边上的高的长为a.=.作法:①作线段AB b①作线段AB的垂直平分线MN,与AB相交于点D.=.①在MN上取一点C,使DC a①连接AC,BC,则ABC就是所求作的等腰三角形.用直尺和圆规在图2中补全图形(要求:保留作图痕迹);(2)求作:等腰PEF,使得它的腰长为线段a,b中一条线段的长,底边上的高的长为线段a,b中另一条线段的长.作法:①作直线l,在直线l上取一点G.①过点G作直线l的垂线GH.①在GH上取一点P,使PG=.①以P为圆心,以的长为半径画弧,与直线l分别相交于点E,F.①连接PE,PF,则PEF就是所求作的等腰三角形.请补全作法,并用直尺和圆规在图3中补全图形(要求:保留作图痕迹).23.(1)如果()()232x x x mx n -+=++,那么m 的值是 ,n 的值是 ;(2)如果()()2122x a x b x x ++=-+,①求()()22a b --的值; ①求22111a b ++的值.24.在ABC 中,120BAC ∠=︒,AB AC =,AD 为ABC 的中线,点E 是射线AD 上一动点,连接CE ,作60CEM ∠=︒,射线EM 与射线BA 交于点F . (1)如图1,当点E 与点D 重合时,求证:2AB AF =; (2)如图2,当点E 在线段AD 上,且与点A ,D 不重合时, ①依题意,补全图形;①用等式表示线段AB ,AF ,AE 之间的数量关系,并证明.(3)当点E 在线段AD 的延长线上,且ED AD ≠时,直接写出用等式表示的线段AB ,AF ,AE 之间的数量关系.25.观察下列等式: ①1111212--=-⨯; ①111123434--=-⨯; ①111135656--=-⨯; ①111147878--=-⨯; ……根据上述规律回答下列问题: (1)第①个等式是 ;(2)第n 个等式是 (用含n 的式子表示,n 为正整数).26.对于面积为S 的三角形和直线l ,将该三角形沿直线l 折叠,重合部分的图形面积记为0S ,定义S S S -为该三角形关于直线l 的对称度.如图,将面积为S 的ABC 沿直线l 折叠,重合部分的图形为C DE ',将C DE '的面积记为0S ,则称0S S S -为ABC 关于直线l 的对称度.在平面直角坐标系xOy 中,点A (0,3),B (-3,0),C (3,0). (1)过点M (m ,0)作垂直于x 轴的直线1l ,①当1m =时,ABC 关于直线1l 的对称度的值是 : ①若ABC 关于直线1l 的对称度为1,则m 的值是 .(2)过点N (0,n )作垂直于y 轴的直线2l ,求①ABC 关于直线2l 的对称度的最大值. (3)点P (-4,0)满足5AP =,点Q 的坐标为(t ,0),若存在直线,使得APQ 关于该直线的对称度为1,写出所有满足题意的整数t 的值.参考答案:1.B 【解析】 【分析】根据轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,来对各选项分析判断即可得解. 【详解】A 、不是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意. 故选:B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.D 【解析】 【分析】根据幂的乘方,积的乘方运算法则,同底数幂的乘除法逐项分析判断即可 【详解】解:A. ()326a a =,故该选项不正确,不符合题意;B. ()2239a a =,故该选项不正确,不符合题意; C. 624a a a ÷=,故该选项不正确,不符合题意; D. 235a a a ⋅=,故该选项正确,符合题意; 故选D 【点睛】本题考查了幂的乘方,积的乘方运算法则,同底数幂的乘除法,掌握以上运算法则是解题的关键. 3.D【解析】【分析】根据三角形的高的定义对各个图形观察后解答即可.【详解】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,①、①、①都不符合高线的定义,①符合高线的定义.故选:D.【点睛】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键.4.A【解析】【分析】原来已经有两条边相等,垂下的射线是两个三角形的公共边,故三边分别对应相等.【详解】在①ADC和①ABC中①AD AB DC BC AC AC=⎧⎪=⎨⎪=⎩所以①ADC①①ABC(SSS)故选A.【点睛】本题考查全等三角形的判定,理解并掌握三角形全等的判定定理是解决本题关键.5.B【解析】【分析】根据分式的约分、异分母分式相加、提负号原则即可判断出答案.【详解】A.144cc=,所以此选项变形正确;B.111b aa b ab ab ba ba ab+=+=≠++,所以此选项变形错误;C.111()a b b a b a==-----,所以此选项变形正确;D.2224(2)(2)244(2)2a a a aa a a a-+--==++++,所以此选项变形正确.故选:B.【点睛】本题考查分式的变形,掌握约分,异分母分式相加减原则是解题的关键.6.C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则4444m-<<+,即08m<<又m为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.7.C【解析】【分析】先求出花费20元买了(2)x-本笔记本,再根据“当花费超过20元时,每本便宜1元”建立方程即可得.【详解】解:由题意得:王老师花费20元买了(2)x-本笔记本,则可列方程为202412x x-=-,故选:C.本题考查了列分式方程,正确找出等量关系是解题关键.8.B【解析】【分析】过点C 作CD x ⊥轴于D ,由“AAS ”可证AOB BDC ∆≅∆,可得2AO BD ==,BO CD n a ===,即可求解.【详解】解:如图,过点C 作CD x ⊥轴于D ,点(0,2)A ,2AO ∴=,ABC ∆是等腰直角三角形,且AB BC =,90ABC AOB BDC ∴∠=︒=∠=∠,90ABO CBD ABO BAO ∴∠+∠=︒=∠+∠,BAO CBD ∴∠=∠,在AOB ∆和BDC ∆中,AOB BDC BAO CBD AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOB BDC AAS ∴∆≅∆,2AO BD ∴==,BO CD n a ===,01a ∴<<,2OD OB BD a m =+=+=,23m ∴<<,【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.9. 12##0.5 1【解析】【分析】(1)由负整数指数幂的运算法则计算即可.(2)由零指数幂的运算法则计算即可.【详解】(1)1122-= (2)0(1)1π-= 故答案为:12,1.【点睛】本题考查了负整数指数幂以及零指数幂的运算法则,01(0)a a =≠,即任何不等于0的数的0次幂都等于1;1n n a a-=是由m n m n a a a +⋅=在0a ≠,m n <时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式.10.x≠2【解析】【详解】试题分析:由题意,得x ﹣2≠0.解得x≠2考点:分式有意义的条件.11.5.【解析】【详解】设这个多边形是n 边形,由题意得,(n-2) ×180°=540°,解之得,n =5.12.32610a b ab -##23106ab a b -+【分析】根据单项式乘多项式的运算法则、单项式乘单项式运算法则求解即可.【详解】解:()2235ab a b -=22325ab a ab b ⋅-⋅=32610a b ab -, 故答案为:32610a b ab -.【点睛】本题考查单项式乘多项式、单项式乘单项式,算熟练掌握运算法则是解答的关键. 13.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】 解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的 2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.14.4ab【解析】【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.【详解】①1S 为图2大正方形的面积;2S 为小正方形面积,①12S S -为图1长方形面积①12S S -=2a ×2b =4ab故答案为:4ab【点睛】本题考查列代数式在求正方形面积中的应用,找到两者之差是图1长方形面积是关键. 15.()4,2-或()2,2--##()2,2--或()4,2-【解析】【分析】根据题意,这两个三角形中OA 为公共边,故分OAP OAB ≌,OAP AOB ≌两种情况讨论,根据题意作出图形,进而求得点P 的坐标【详解】解:如图,①作B 关于x 的对称的点1P ,连接11,OP AP11,OB OP AB AP ∴==OA OA =∴OAP OAB ≌B (4,2),则1(4,2)P -①作1P 关于l (1x =)对称的点2P ,连接22,OP AP ,则1212,AP AP OP AP ==又OA OA =12OAP OAP ∴≌∴2OAP AOB ≌则点2(2,2)P --故答案为:()4,2-或()2,2--【点睛】本题考查了坐标与图形,全等三角形的性质与判定,轴对称的性质,掌握轴对称的性质是解题的关键.16.83. 【解析】【分析】以F 为圆心,AF 为半径作一个圆F ,当AF 逐渐增大时,到F 与BC 相切时,即为AF 最小值,即BF 最大值,计算即可.【详解】如图所示:本题实际上相当于,以F 为圆心,AF 为半径作一个圆F ,当F 与CD 相切或相交时,使AF=DF=半径,据题意,当AF 逐渐增大时,到F 与BC 相切时,即为AF 最小值,即BF 最大值,此时,FD BC ⊥, 2FD FB =,①:1:2AF BF =,①90ACB ∠=︒,30B ∠=︒, 2AC =,①24AB AC ==, ①2284333BF AB ==⨯=, 故答案为:83. 【点睛】本题主要考查了在直角三角形的基础上,作出以点F 为圆心,圆的综合题目,读懂题意是解题的关键.17.(1)23()a b -;(2)()()()2m x y x y -+-【解析】【分析】(1)先提公因数3,再利用完全平方公式公式分解因式即可;(2)先提公因式(m -2),再利用平方差公式分解因式即可.【详解】解:(1)22363a ab b -+=223(2)a ab b -+=23()a b -;(2)()()2222x m y m -+-=()()222m x y --=()()()2m x y x y -+-.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,熟练掌握因式分解的方法是解答的关键.18.(1)2278x xy y --;(2)1a -,4-【解析】【分析】(1)根据多项式乘多项式,展开合并同类项;(2)先把括号内通分,再把除法运算化为乘法运算,约分得到原式1a =-,然后把a 的值代入计算即可.【详解】解:(1)原式2288x xy xy y =+--,2278x xy y =--;(2)22341121a a a a a -⎛⎫+-÷ ⎪--+⎝⎭, 22244121a a a a a --=÷--+,22242114a a a a a --+=⋅--, 2224(1)14a a a a --=⋅--, 1a =-,当3a =-时,原式314=--=-.【点睛】本题考查了分式的化简求值,多项式乘多项式,解题的关键是先把分式化简后,再把分式中未知数对应的值代入求出分式的值.19.0x =【解析】【分析】先给方程两边乘以(x +1)(x -1),将分式方程化为整式方程,然后解方程即可解答.【详解】解:给方程两边乘以(x +1)(x -1),得:22(1)21x x --=-,222121x x x -+-=-,20x -=,解得:0x =,经检验,0x =是原方程的解.【点睛】本题考查解分式方程,熟练掌握解分式方程的解法步骤是解答的关键,注意结果要检验. 20.(1)见解析;(2)105︒【解析】【分析】(1)根据平行线的性质可得A D ∠=∠,根据线段的和差关系可得AC DB =,进而根据SAS 即证明AEC DFB ≅;(2)根据三角形内角和定理以及补角的意义求得①E ,进而根据(1)的结论即可求得①F.【详解】(1)证明:AE DF ∥∴A D ∠=∠,AB CD =∴AB BC BC CD +=+即AC BD = 又AE DF =,∴AEC DFB ≅(2)解:40A ∠=︒,145ECD ∠=︒,18035ECA ECD ∴∠=︒-∠=︒180105E A ECA ∴∠=︒-∠-∠=︒AEC DFB ≅F E ∴∠=∠105=︒【点睛】本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.21.(1)作图见解析,(1,2),(1,-2);(2)①(5,1);①P 点位置见解析;①(2-m ,n )【解析】【分析】(1)由A 、B 点坐标即可知x 轴和y 轴的位置,即可从图像中得知C 点坐标,而1C 的横坐标不变,纵坐标为C 点纵坐标的相反数.(2)由C 点坐标(1,2)可知直线l 为x =1①点1A 是点A 关于直线l 的对称点,由1A 横坐标和点A 横坐标之和为2,纵坐标不变,即可求得1A 坐标为(5,1).①由①可得点A 关于直线l 的对称点1A ,连接1A B 交l 于点P ,由两点之间线段最短即可知点P 为所求点.①设点Q (m ,n )关于l 的对称点1Q 为(x ,y ),则有(m +x )÷2=1,y =n ,即可求得对称点1Q (2-m ,n )【详解】(1)平面直角坐标系xOy如图所示由图象可知C点坐标为(1,2)点1C是C点关于x轴对称得来的则1C的横坐标不变,纵坐标为C点纵坐标的相反数即1C点坐标为(1,-2).(2)如图所示,由C点坐标(1,2)可知直线l为x=1①A点坐标为(-3,1),关于直线x=1对称的1A坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变则为1A坐标为(5,1)①连接①所得1A B ,1A B 交直线x =1于点P由两点之间线段最短可知1PA PB +为1A B 时最小又①点1A 是点A 关于直线l 的对称点①1PA PA =①PA PB +为1A B 时最小故P 即为所求点.①设任意格点Q (m ,n )关于直线x =1的对称点1Q 为(x ,y )有(m +x )÷2=1,y =n即x =2-m ,y =n则纵坐标不变,横坐标为原来横坐标相反数加2即对称点1Q 坐标为(2-m ,n ).【点睛】本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键.22.(1)见解析;(2)a ,b ,见解析【解析】【分析】(1)根据所给的作法和线段垂直平分线的作图方法画出对应的图形即可;(2)根据所给的作法和作垂线的方法画出对应的图形即可.【详解】解:(1)如图,ABC 就是所求作的等腰三角形;(2)作法:①作直线l,在直线l上取一点G.①过点G作直线l的垂线GH.①在GH上取一点P,使PG=a.①以P为圆心,以b的长为半径画弧,与直线l分别相交于点E,F.①连接PE,PF,则PEF就是所求作的等腰三角形.如图,PEF就是所求作的等腰三角形.故答案为:a,b.【点睛】本题考查尺规作图-作线段、作垂线、作等腰三角形,熟练掌握基本尺规作图的方法步骤是解答的关键.23.(1)-1,-6;(2)①172;①13【解析】【分析】(1)把左边利用多项式与多形式的乘法法则化简后,与右边比较即可求出m 和n 的值; (2)把左边利用多项式与多形式的乘法法则化简后,与右边比较求出a +b =-2,ab =12; ①利用多项式与多形式的乘法法则化简后,把a +b =-2,ab =12代入计算; ①先通分,再根据完全平方公式把分子变形,然后把a +b =-2,ab =12代入计算; 【详解】解:(1)①()()232x x x mx n -+=++, ①22236x x x x mx n +--=++,①226x x x mx n --=++,①m =-1,n =-6,故答案为:-1, -6;(2)①()()2122x a x b x x ++=-+, ①22122x ax bx ab x x +++=-+, ①()22122x a b x ab x x +++=-+, ①a +b =-2,ab =12; ①()()22a b --=ab -2a -2b +4=ab -2(a +b )+4 =12-2×(-2)+4 =172; ①22111a b ++ =22221+a b a b+ =()()221+2a a b b ab -+=()22-2121212+⎛⎫ ⎪⎭-⎝⨯ =41114-+=13.【点睛】本题考查了多项式与多项式的乘法计算,完全平方公式的变形求值,分式的加减,熟练掌握完全平方公式和分式的加减运算法则是解答本题的关键.24.(1)见解析;(2)AB AF AE =+,证明见解析;(3)当AD ED >时,AB AF AE =+,当AD ED <时,AB AE AF =-【解析】【分析】(1)根据等腰三角形三线合一的性质得60BAD CAD ∠=∠=︒,90ADC ∠=︒,从而可得在Rt ADB 中,30B ∠=︒,进而即可求解;(2)画出图形,在线段AB 上取点G ,使EG EA =,再证明()BGE FAE ASA ≅,进而即可得到结论;(3)分两种情况:当AD ED >时,当AD ED <时,分别画出图形,证明()BHE FAE ASA ≅或()NEF AEC ASA ≅,进而即可得到结论.【详解】(1)①AB AC =,①ABC 是等腰三角形,①120BAC ∠=︒,①30B C ∠=∠=︒,18012060FAC ∠=︒-︒=︒,①AD 为ABC 的中线,①60BAD CAD ∠=∠=︒,90ADC ∠=︒,①6060120DAF CAD FAC ∠=∠+∠=︒+︒=︒,①60CEM ∠=︒,①906030ADF ∠=︒-︒=︒,①180(12030)30AFD ∠=︒-︒+︒=︒,①AD AF =,在Rt ADB 中,30B ∠=︒,①22AB AD AF ==;(2)AB AF AE =+,证明如下:如图2,在线段AB 上取点G ,使EG EA =,①60BAC ∠=︒,①AEG △是等边三角形,①60AEG ∠=︒,120BGE FAE ∠=∠=︒,①ABC 是等腰三角形,AD 为ABC 的中线,①EB EC =,BED CED ∠=∠,①AEB AEC ∠=∠,即AEG GEB CEF AEF ∠+∠=∠+∠,①60CEF AEG ∠=∠=︒,①GEB AEF ∠=∠,在BGE △与FAE 中,GEB AEF EG EABGE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①()BGE FAE ASA ≅,①GB AF =,①AB GB AG AF AE =+=+;(3)当AD ED >时,如图3所示:与(2)同理:在线段AB 上取点H ,使EH EA =,①60BAD ∠=︒,①AEH △是等边三角形,①120BHE FAE ∠=∠=︒,60AEH ∠=︒,①ABC 是等腰三角形,AD 为ABC 的中线,①BED CED ∠=∠,①60CEF AEH ∠=∠=︒,①HEB AEF ∠=∠,①()BHE FAE ASA ≅,①HB AF =,①AB HB AH AF AE =+=+,当AD ED <时,如图4所示:在线段AB 的延长线上取点N ,使EN EA =,①60BAD ∠=︒,①AEN △是等边三角形,①60AEN FNE ∠=∠=︒,①60CEF AEN ∠=∠=︒①NEF AEC ∠=∠,在NEF 与AEC △中,60FNE CAE EN EA NEF AEC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ①()NEF AEC ASA ≅,①NF AC AB ==,①BN AF =,①AB AN BN AE AF =-=-,①AB AE AF =-.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.25.(1)11115910910--=-⨯;(2)11112122(21)n n n n n --=--- 【解析】【分析】(1)根据已知的等式即可写出第①个等式;(2)发现规律即可得到第n 个等式.【详解】(1)第5个等式为:11115910910--=-⨯; (2)第n 个等式为:11112122(21)n n n n n --=---. 【点睛】此题主要考查分式运算的应用,解题的关键是根据已知的等式找到规律.26.(1)①27;①0;(2)13;(3)4或1 【解析】【分析】(1)①作图,求出'2C DE S =,再根据定义求值即可;①通过数形结合的思想即可得到0m =;(2)根据求①ABC 关于直线2l 的对称度的最大值,即是求'C DE S 最大值即可;(3)存在直线,使得APQ 关于该直线的对称度为1,即转变为APQ 是等腰三角形,需要分类进行讨论,分AP AQ =;5AP PQ ==;AQ PQ =,同时需要满足t 的值为整数.【详解】解:(1)①当1m =时,根据题意作图如下:3OA OC ==,Rt AOC ∴为等腰直角三角形,2CE DE ∴==,12222Rt DEC S ∴=⨯⨯=, 根据折叠的性质,'2C DE S ∴=,16392ABC S =⨯⨯=, ABC ∴关于直线1l 的对称度的值是:22927=-, 故答案是:27;①如图:根据等腰三角形的性质,当0m =时,有'12C DE ABC S S =,ABC 关于直线1l 的对称度为1,故答案是:0;(2)过点N (0,n )作垂直于y 轴的直线2l ,要使得①ABC 关于直线2l 的对称度的最大值, 则需要使得'C DE S 最大,如下图:当32n =时,'C DE S取到最大, 根据32y =,可得,E D 为ABC 的中位线, 132ED BC ∴==, '1393224C DE S ∴=⨯⨯=, ∴①ABC 关于直线2l 的对称度的最大值为:9149394=-; (3)若存在直线,使得APQ 关于该直线的对称度为1,即APQ 为等腰三角形即可,①当AP AQ =时,APQ 为等腰三角形,如下图:4PO QO ∴==,4t ∴=;①当5AP PQ ==时,APQ 为等腰三角形,如下图:45PQ QO OQ t =+=+=,1t ∴=;①当AQ PQ =时,APQ 为等腰三角形,如下图:设OQ x =,则4PQ x =-,根据勾股定理:PQ AQ ==22(4)9x x ∴-=+, 解得:78x =, 78t ∴=-(不是整数,舍去), 综上:满足题意的整数t 的值为:4或1.【点睛】 本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.试卷第24页,共24页。

北京市西城区2011-2012(南区)八年级上学期期末考试 (数学)word

北京市西城区2011-2012(南区)八年级上学期期末考试 (数学)word

北京市西城区(南区)2011-2012学年第一学期期末考试(八年级)一、选择题(每题4分)1.实数-5,-0.1,√3,21中为无理数的是( )A.21 B.-0.1 C.√3 D.-5 2.下列二次根式中,最简二次根式是( )A.5 B. 5.0 C. 51 D.50 3.计算111---a a a 的结果是( )A. 11-+a a B. 1--a a C. -1 D.a - 4.下列事件中,为必然事件的是( )A. 购买一张彩票,中奖B. 打开电视,正在播放广告C. 抛掷一枚硬币,正面朝上D.一个袋中只装有5个黑球,从中摸出一个球是黑球5.如图,已知21∠=∠,则不一定能使ACD ABD ∆≅∆的条件是( )A. BD=CDB. AB=ACC. C B ∠=∠D.CDA BDA ∠=∠6.如图,在0030390=∠==∠∆B AC C ABC ,,中,,点P 是BC 边上的动点,则AP 长不可能是( )A. 3.5B. 4.2C. 5.8D.77.如图,在ABC ∆中,AD 平分外角EAC ∠,且BC AD //,则ABC ∆一定是( )A. 任意三角形B.等边三角形C. 等腰三角形D.直角三角形8.下列命题的逆命题正确的是( )A. 全等三角形的面积相等B.全等三角形的对应角相等C. 直角三角形D.等边三角形的三个角都等于0609.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若0150=∠+∠BCF AFC 则BCD AFE ∠+∠的大小是( )A. 0150B. 0300C. 0210D.033010.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于AB 21的长为半径画弧,两弧相交于点M,N ,作直线MN ,交BC 于点D ,连接AD ,若AD C ∆的周长为10,AB=7,则ABC ∆的周长为( )A. 7 B. 14 C. 17 D.2011.实数a 在数轴上的位置如图所示,则22)11()4(-+-a a 化简后为( )A.7 B 。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

北京市西城区2021-2022学年八年级下学期期末数学试题(试题+答案)

学年度第二学期期末试卷八年级数学第一部分选择题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.下列各式中是最简二次根式的是()A.B.C.D.2.如图,BD 是ABCD 的对角线,如果80ABC ∠=︒,25ADB ∠=︒,则BDC ∠等于()A.65°B.55°C.45°D.25°3.下列计算,正确的是()A.2=- B.= C.3-= D.1=4.下列命题中,正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.两组邻边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形5.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差6.在△ABC 中,A ∠,B Ð,C ∠的对边分别记为a ,b ,c ,下列条件中,能判定△ABC 是直角三角形的是()A.()()2a cbc b =-+ B.1a =,2b =,3c =C.A C∠=∠ D.::3:4:5A B C ∠∠∠=11223 ⎪⎝⎭,则关于x,y的方程组22y k x b⎨=+⎩,的解为()A.2,32xy⎧=⎪⎨⎪=-⎩B.2,23xy=-⎧⎪⎨=⎪⎩C.2,32xy⎧=⎪⎨⎪=⎩D.2,23xy=-⎧⎪⎨=-⎪⎩8.点P从某四边形的一个顶点A出发,沿着该四边形的边逆时针匀速运动一周.设点P运动的时间为x,点P与该四边形对角线交点的距离为y,表示y与x的函数关系的大致图象如图所示,则该四边形可能是()A. B. C. D.第二部分非选择题二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则x的取值范围是______.10.如图,在Rt ABC中,∠ACB=90°,点D是AB的中点,AC=6,BC=8,则CD=______________.11.将函数2y x=的图象沿y轴向下平移3个单位长度后,所得图象对应的函数表达式为______.12.如图,在△ABC中,90C∠=︒,30A∠=︒,点M,N分别为AC,BC的中点,连接MN.若2BC=,则MN的长度是______.13.在平面直角坐标系xOy 中,菱形ABCD 的四个顶点都在坐标轴上.若()4,0A -,()0,3B -,则菱形ABCD的面积是______.14.射击运动员小东10次射击的成绩(单位:环):7.5,8,7.5,8.5,9,7,7,10,8.5,8.这10次成绩的平均数是8.1,方差是0.79,如果小东再射击一次,成绩为10环,则小东这11次成绩的方差______0.79.(填“大于”、“等于”或“小于”)15.关于函数121y x =-和函数()20y x m m =-+>,有以下结论:①当01x <<时,1y 的取值范围是111y -<<②2y 随x 的增大而增大③函数1y 的图像与函数2y 的图像的交点一定在第一象限④若点(),2a -在函数1y 的图像上,点1,2b ⎛⎫⎪⎝⎭在函数2y 的图像上,则a b <其中所有正确结论的序号是______.16.小明与小亮两人约定周六去博物馆参观学习.两人同时出发,小明乘车从甲地途径乙地到博物馆,小亮骑自行车从乙地到博物馆.已知甲地、乙地和博物馆在一条直线上,右图是两人分别与乙地的距离S (单位:km )与时间t (单位:min )的函数图像,在小明到达博物馆前,当两人相距1km 时,t 的值是______.三、解答题(本题共68分)17.计算:(12463;(2))313118+-+18.已知:如图,在Rt ABC 中,90ACB ∠=︒.求作:矩形ABCD .作法:①作线段AB 的垂直平分线交AB 于点O .②作射线CO .③以点O 为圆心,线段CO 长为半径画弧,交射线CO 于点D .④连接AD ,BD ,则四边形ACBD 即为所求作的矩形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵OA OB =,①OD=∴四边形ACBD 是平行四边形.(②)(填推理的依据)∵90ACB ∠=︒,∴四边形ACBD 是矩形.(③)(填推理的依据)19.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图像经过点()3,0和()3,2--.(1)求该一次函数的解析式;(2)在所给的坐标系中画出该一次函数图像,并求它的图像与坐标轴围成的三角形的面积.20.如图,矩形ABCD 的对角线交于点O ,且DE AC ∥,CE BD ∥.(1)求证:四边形OCED 是菱形;(2)连接BE .若2AB =,60BAC ∠=︒,求BE 的长.21.在平面直角坐标系xOy 中,一次函数22y x =-+图像与x 轴、y 轴分别相交于点A 和点B .(1)求A ,B 两点的坐标;(2)点C 在x 轴上,若△ABC 是以边AB 为腰的等腰三角形,求点C 的横坐标.某校为了解该校七年级和八年级学生线上数学学习的情况,从这两个年级的学生中,各随机抽取了名学生进行有关测试,获得了他们的成绩(百分制,且成绩均为整数),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a .该校抽取的八年级学生测试成绩的数据的频数分布直方图如下(数据分为4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):b .该校抽取的八年级学生测试成绩在7080x ≤<这一组的数据是:70707474757575767778c .该校抽取的七、八年级学生测试成绩的数据的平均数、中位数、众数如下:平均数中位数众数七年级7879.579八年级79m75根据以上信息,回答下列问题:(1)写出表中m 的值;(2)此次测试成绩80分及80分以上为优秀.①记该校抽取的七年级学生中成绩优秀的人数是1n ,抽取的八年级学生中成绩优秀的人数为2n ,比较1n ,2n 的大小,并说明理由;②若该校七年级有200名学生,八年级有180名学生,假设该校七、八年级学生全部参加此次测试,估计该校七年级和八年级学生中成绩优秀的人数共有多少人.23.对于函数y x b =+,小明探究了它的图像及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是______;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是______,n 的值是______;x…3-2-1-0123...y x =...3210123 (1)y x =+…4m21234…2y x =-…1n2-1-01…(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图像:(4)结合函数y x =,1y x =+,2y x =-的图像,写出函数y x b =+的一条性质:______;(5)点()11,x y 和点()22,x y 都在函数y x b =+的图像上,当120x x >时,若总有12y y <,结合函数图像,直接写出1x 和2x 的大小关系.24.如图,在正方形ABCD 中,P 为边BC 上一点(点P 不与点B ,C 重合),连接DP ,作点A 关于直线DP 的对称点E ,连接AE 分别交DP ,DC 于点G ,H .过点C 作CF AE ⊥于点F ,连接DE .(1)依题意补全图形;(2)求证:CF EF =;(3)连接FB ,FD ,用等式表示线段FA ,FB ,FD 之间的数量关系,并证明.25.在平面直角坐标系xOy 中,直线():40l y kx k =+≠与y 轴交于点A ,点B 和点C 的坐标分别是()1,m y 和()22,m y +.(1)当120y y ==时,△ABC 的面积是______;(2)若点B 和点C 都在直线l 上,当BC ≤时,k 的取值范围是______.26.对于定点P 和图形W ,给出如下定义:若图形W 上存在两个不同的点M ,N ,使得四边形PMQN 是平行四边形,则称点Q 是点P 关于图形W 的衍生点.特别地,当平行四边形PMQN 的面积最大时,称点Q 是点P 关于图形W 的最佳衍生点.在平面直角坐标系xOy 中,点()0,1A ,()1,1B ,()0,2C ,()0,3D ,3,22E ⎛⎫ ⎪⎝⎭.(1)点C ,D ,E 中,点O 关于线段AB 的衍生点是______;(2)将点O 关于线段AB 的最佳衍生点记为T ,①直接写出点T 的坐标;②若直线y x b =-+上存在点O 关于四边形ABTC 的衍生点,求b 的取值范围.学年度第二学期期末试卷八年级数学第一部分选择题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.【1题答案】【答案】D 【2题答案】【答案】B 【3题答案】【答案】D 【4题答案】【答案】C 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】A 【8题答案】【答案】B第二部分非选择题二、填空题(本题共16分,每小题2分)【9题答案】【答案】1x ≥-【10题答案】【答案】5【11题答案】【答案】23y x =-【12题答案】【13题答案】【答案】24【14题答案】【答案】大于【15题答案】【答案】①④【16题答案】【答案】12或18三、解答题(本题共68分)【17题答案】【答案】(1)(2)2+【18题答案】【答案】(1)见解析(2)①OC②对角线互相平分的四边形是平行四边形③有一个角是直角的平行四边形是矩形【19题答案】【答案】(1)113y x =-(2)画图见解析;32【20题答案】【答案】(1)证明见解析;(2)【21题答案】【答案】(1)()1,0;()0,2(2)1-或11【22题答案】【答案】(1)76.5(2)①12n n >;理由见解析②172人【答案】(1)全体实数(2)3,1-(3)补全图像见解析(4)图像关于y 轴对称;当0x >时,y 随x 的增大而增大(5)当1>0x 且20x >时,12x x <;当10x <且20x <时,12x x >【24题答案】【答案】(1)见解析;(2)证明见解析;(3FB FD =+;证明见解析.四、选做题(满分10分)【25题答案】【答案】(1)4(2)1122k -≤≤且0k ≠【26题答案】【答案】(1)E(2)①()1,2②26b <<更多咨询,扫码了解。

北京市海淀区2017-2018学年八年级上学期期末考试数学试题(解析版)

海淀区八年级第一学期期末练习数学一、选择题(本大题共30分,每小题3分)1. 低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.【答案】A【解析】A是轴对称图形,故符合题意;B不是轴对称图形,故不符合题意;C不是轴对称图形,故不符合题意;D不是轴对称图形,故不符合题意,故选A.2. 下列计算正确的是()A. B. C. D.【答案】B【解析】A. 不是同类项,不能合并,故错误;B. ,正确;C. ,故错误;D.,故错误,故选B.3. 叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A. B. C. D.【答案】C..... ......................0.00005=,故选C.4. 若分式的值等于0,则的值为()A. B. 1 C. D. 2【答案】A【解析】由题意得:a+1=0且a≠0,解得:a=-1,故选A.5. 如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不.一定成立的是()A. AC=CDB. BE=CDC. ∠ADE=∠AEDD. ∠BAE=∠CAD【答案】A【解析】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,故不符合题意;无法证明AC=CD,故A符合题意,故选A.6. 等腰三角形的一个角是70°,它的底角的大小为()A. 70°B. 40°C. 70°或40°D. 70°或55°【答案】D【解析】若70°为顶角,则此等腰三角形的底角是(180°-70°)÷2=55°;若70°为底角,则此等腰三角形的底角为70°,综上,此等腰三角形的底角为70°或55°,故选D.7. 已知可以写成一个完全平方式,则可为()A. 4B. 8C. 16D.【答案】C【解析】∵可以写成一个完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.8. 在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A. B. C. D.【答案】D【解析】根据题意可知OP是第二象限坐标轴夹角的平分线,所以a=-b,故选D.9. 若,则的值为()A. 3B. 6C. 9D. 12【答案】C【解析】∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9,故选C.10. 某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为;方案二如图乙所示,绿化带面积为.设,下列选项中正确的是()甲乙A. B. C. D.【答案】B【解析】∵S甲=ab+ab-b2=2ab-b2,S乙=ab+ab=2ab,∴=,∵a>b>0,∴,即,故选B.【点睛】本题考查了列代数式表示面积,能正确地识图,准确地表示出所求面积是解题的关键.二、填空题(本大题共24分,每小题3分)11. 如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为__________.【答案】230°【解析】∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∠A=90°,∠D=40°,∴∠B+∠C=360°-90°-40°=230°,故答案为:230°.【点睛】本题考查了四边形的内角和,熟记四边形的内角和是360度是解题的关键.12. 点M 关于y轴的对称点的坐标为__________.【答案】(-3,-1)【解析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,点M (3,-1)关于y轴的对称点的坐标为(-3,-1),故答案为:(-3,-1).13. 已知分式满足条件“只含有字母x,且当x=1时无意义”,请写出一个这样的分式:_____.【答案】【解析】由分式满足条件“只含有字母x,且当x=1时无意义”,可知分式的分母中含有因式x-1,所以这样的分式可以是(答案不唯一),故答案为:.14. 已知△ABC中,AB=2,∠C=40°,请你添加一个适当的条件,使△ABC的形状和大小都是确定的.你添加的条件是________________.【答案】∠A=60°(答案不唯一)【解析】已知一边和这条边的对角,要想确定唯一的三角形,可以再添加一个角,根据AAS或ASA即可唯一确定三角形,如添加:∠A=60°,故答案为:答案不唯一,如:∠A=60°.15. 某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O 处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是_______________.【答案】“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”【解析】∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB,故答案为:“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”.16. 如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:____________.【答案】答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度【解析】将△ABC关于y轴对称,再将三角形向上平移3个单位长度得到△DEF;或:将△ABC向上平移3个单位长度,再关于y轴对称得到△DEF,故答案为:答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度得到△DEF.17. 如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB 于M点,交AC于N点,则△AMN的周长为__________.【答案】10【解析】∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN//BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴MO=MB,ON=NC,∴AM+MN+AN=AM+MO+NO+AN=AB+AC=4+6=10,故答案为:10.18. 已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.【答案】72【解析】由题意得:∠ABC=2∠CBD,2∠BDC+∠ADE=180°,∵AB=AC,∴∠ABC=∠C,∵∠ADE=∠A,∠A+∠ABC+∠C=180°,∴∠BDC=∠C=∠ABC,∵∠CBD+∠C+∠BDC=180°,∴∠CBD=∠A,∴∠ABC=∠C=2∠A,又∠A+∠ABC+∠C=180°,∴∠A=36°,∴∠ABC=72°,故答案为:72.【点睛】本题考查了等腰三角形的性质,三角形内角和定理、折叠的性质等,正确的读图是解题的关键.三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分)19. 计算:(1);(2).【答案】(1)(2)3x-2y【解析】试题分析:(1)先分别计算绝对值、算术平方根、负指数幂、0次幂,然后再按运算顺序进行计算即可;(2)先将被除式因式分解,再将除式利用除法法则进行颠倒,然后再相乘即可.试题解析:(1)原式==;(2)原式===.20. 如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE = CF.【答案】证明见解析【解析】试题分析:由AC=BD,AE∥DF可得AB=DC,∠A=∠D,再根据∠1=∠2利用ASA证明△ABE≌△DCF 即可得.试题解析:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.21. 解方程:.【答案】x=【解析】试题分析:方程两边乘x(x-2)化为整式方程,解整式方程后进行检验即可得.试题解析:方程两边乘,得,解得,检验:当时,,∴原分式方程的解为.四、解答题(本大题共15分,每小题5分)22. 先化简,再求值:,其中.【答案】15【解析】试题分析:括号内先通分进行加减运算,然后再进行除法运算,最后代入数值进行计算即可.试题解析:原式====,当时,原式=15.23. 如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.【答案】30°【解析】试题分析:连接DE,由A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B可证明得到△CDE 为等边三角形,再利用直角三角形两锐角互余即可得.试题解析:连接DE,∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形,∴∠C=60°,∴∠AEC=90°∠C=30°.24. 列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【答案】每套《水浒传》连环画的价格为120元【解析】试题分析:设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元,根据等量关系“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列方程进行求解即可得.试题解析:设每套《水浒传》连环画的价格为元,则每套《三国演义》连环画的价格为元,由题意,得,解得,经检验,是原方程的解,且符合题意,答:每套《水浒传》连环画的价格为120元.【点睛】本题考查了分式方程的应用,找到题中的等量关系是解题的关键,注意解完方程后要进行检验.五、解答题(本大题共14分,第25、26题各7分)25. 阅读材料小明遇到这样一个问题:求计算所得多项式的一次项系数.小明想通过计算所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找所得多项式中的一次项系数.通过观察发现:也就是说,只需用中的一次项系数1乘以中的常数项3,再用中的常数项2乘以中的一次项系数2,两个积相加,即可得到一次项系数.延续上面的方法,求计算所得多项式的一次项系数.可以先用的一次项系数1,的常数项3,的常数项4,相乘得到12;再用的一次项系数2,的常数项2,的常数项4,相乘得到16;然后用的一次项系数3,的常数项2,的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算所得多项式的一次项系数为.(2)计算所得多项式的一次项系数为.(3)若计算所得多项式的一次项系数为0,则=_________.(4)若是的一个因式,则的值为.【答案】(1)7(2)-7(3)-3(4)-15【解析】试题分析:(1)用2x+1中的一次项系数2乘以3x+2中的常数项2得4,用2x+1中的常数项1乘以3x+2中的一次项系数3得3,4+3=7即为积中一次项的系数;(2)用x+1中的一次项系数1,3x+2中的常数项2,4x-3中的常数项-3相乘得-6,用x+1中的常数项1,3x+2中的一次项系数3,4x-3中的常数项-3相乘得-9,用x+1中的常数项1,3x+2中的常数项2,4x-3中的一次项系数4相乘得8,-6-9+8=-7即为积中一次项系数;(3)用每一个因式中的一次项系数与另两个因式中的常数项相乘,再把所得的积相加,列方程、解方程即可得;(4)设可以分成()(x2+kx+2),根据小明的算法则有k-3=0,a=-3k+2+1,b=-3×2+k,解方程即可得.试题解析:(1)2×2+1×3=7,故答案为:7;(2)1×2×(-3)+3×1×(-3)+4×1×2=-7,故答案为:-7;(3)由题意得:1×a×(-1)+(-3)×1×(-1)+2×1×a=0,解得:a=-3,故答案为:-3;(4)设可以分成()(x2+kx+2),则有k-3=0,a=-3k+2+1,b=-3×2+k,解得:k=3,a=-6,b=-3,所以2a+b=-15,故答案为:-15.b=3-6=-326. 如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若,求的大小(用含的式子表示);(3)用等式表示线段,与之间的数量关系,并证明.【答案】(1)图形见解析(2)∠BDC=60°-α(3)PB=PC+2PE【解析】试题分析:(1)按题意补全图形即可;(2)由点A与点D关于CN对称可得CA=CD,再由∠ACN=α得到∠ACD=2α,由等边△ABC可推得∠BCD=∠ACB+∠ACD=60°+2α,从而可得;(3)PB=PC+2PE.在PB上截取PF使PF=PC,连接CF,通过推导可证明△BFC≌△DPC,再利用全等三角形的对应边相等即可得.试题解析:(1)如图所示;(2)∵点A与点D关于CN对称,∴CN是AD的垂直平分线,∴CA=CD,∵,∴∠ACD=2,∵等边△ABC,∴CA=CB=CD,∠ACB=60°,∴∠BCD=∠ACB+∠ACD=60°+,∴∠BDC=∠DBC=(180°∠BCD)=60°;(3)结论:PB=PC+2PE.本题证法不唯一,如:在PB上截取PF使PF=PC,连接CF.∵CA=CD,∠ACD=∴∠CDA=∠CAD=90°.∵∠BDC=60°,∴∠PDE=∠CDA∠BDC=30°∴PD=2PE.∵∠CPF=∠DPE=90°∠PDE=60°.∴△CPF是等边三角形.∴∠CPF=∠CFP=60°.∴∠BFC=∠DPC=120°.∴在△BFC和△DPC中,,∴△BFC≌△DPC.∴BF=PD=2PE.∴PB= PF+BF=PC+2PE.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27. 对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数、、,有,所以为和的一个中间分数,在表中还可以找到和的中间分数,,,.把这个表一直写下去,可以找到和更多的中间分数.(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是;(2)写出分数和(a、b、c、d均为正整数,,)的一个..中间分数(用含a、b、c、d的式子表示),并证明;(3)若与(m、n、s、t均为正整数)都是和的中间分数,则的最小值为.【答案】(1)①;②(2)证明见解析(3)1504【解析】试题分析:(1)①观察每一行的规律可得括号位于第⑦行,按表格中的规律可知是;②观察表格可知第一个出现的和的中间分数在第⑧行,是;(2)答案不唯一,根据表格中观察到的,可以为,通过推导证明即可得;(3)根据排列可知和的中间分数有,,,等,由此可得.试题解析:(1)①观察每一行的规律可得括号位于第⑦行,按分子的排序可知是,②观察表格可知第一个出现的和的中间分数在第⑧行,是,故答案为:①;②.(2)本题结论不唯一,证法不唯一,如:结论:.∵a、b、c、d均为正整数,,,∴,.∴.(3)根据排列可知和的中间分数有,,,等,由此可得mn的最小值为1504,故答案为:1504.【点睛】本题考查了规律性问题,第(1)问题相对来说比较容易,后面两问需要通过分析发现其中存在的关系,然后用来解题,比较抽象,需要有一定的想象力.。

2023届北京市西城区北京师范大附属中学八年级数学第一学期期末考试试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( )A .16cmB .19cmC .22cmD .25cm2.下列计算,正确的是( )A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 63.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( ) A .4 B .5 C .6 D .94.下列计算正确的是 ( ).A .()236a a =B .22a a a •=C .326a a a +=D .()3339a a = 5.如图,点E 是等腰三角形△ABD 底边上的中点,点C 是AE 延长线上任一点,连接BC 、DC ,则下列结论中:①BC=AD ;②AC 平分∠BCD ;③AC=AB ;④∠ABC=∠ADC .一定成立的是( )A .②④B .②③C .①③D .①② 6.已知23a =+,23b =-a 与b 的大小关系为( )A .a b =B .a b <C .a b >D .不能确定7.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±18.下列垃圾分类的图标中,轴对称图形是( )A .B .C .D .9.已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为( )A .3B .4C .5D .610.若a 、b 、c 为三角形三边,则下列各项中不能构成直角三角形的是( ) A .a =7,b =24,c =25B .a =5,b =13,c =12C .a =1,b =2,c =3D .a =30,b =40,c =5011.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣312.如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN ,使从A 到B 的路径AMNB 最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( ) A . B . C .D .二、填空题(每题4分,共24分)13.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.14.如图,△ABC 的两条高BD 、CE 相交于点O 且OB =OC .则下列结论: ①△BEC ≌△CDB ;②△ABC 是等腰三角形;③AE =AD ;④点O 在∠BAC 的平分线上,其中正确的有_____.(填序号)15.若式子()()2x 1x 1x 2--+的值为零,则x 的值为______. 16.已知4a x =,3b x =,则2a b x -= _________ .17.小强从镜子中看到的电子表的读数是15:01,则电子表的实际读数是______.18.因式分解:29x -=_____.三、解答题(共78分)19.(8分)如图,在ABC ∆中,90ACB ∠=︒,30B ∠=︒,AD 平分CAB ∠,延长AC 至E ,使CE AC =,连接DE .求证:BAD ∆≌EAD ∆20.(8分)如图,Rt ABC ∆中,90ACB ∠=,点D 为边AC 上一点,DE AB ⊥于点E ,点M 为BD 中点,CM 的延长线交AB 于点F .(1)求证:CM=EM ;(2)若50BAC ∠=,求EMF ∠的大小;21.(8分)如图,在平面直角坐标系中,点O 为坐标原点,点A(0,3)与点B 关于x 轴对称,点C(n,0)为x 轴的正半轴上一动点.以AC 为边作等腰直角三角形ACD ,∠ACD=90°,点D 在第一象限内.连接BD ,交x 轴于点F .(1)如果∠OAC=38°,求∠DCF 的度数;(2)用含n 的式子表示点D 的坐标;(3)在点C 运动的过程中,判断OF 的长是否发生变化?若不变求出其值,若变化请说明理由.22.(10分)如图,AB ∥CD ,直线EF 分别交直线AB 、CD 于点M 、N ,MG 平分∠EMB ,MH 平分∠CNF ,求证:MG ∥NH .23.(10分)如图,把长方形纸片OABC 放入平面直角坐标系中,使OA OC ,分别落在x y ,轴的的正半轴上,连接AC ,且45AC =2AO CO =.(1)求点A C ,的坐标;(2)将纸片OABC 折叠,使点A 与点C 重合(折痕为EF ),求折叠后纸片重叠部分CEF ∆的面积;(3)求EF 所在直线的函数表达式,并求出对角线AC 与折痕EF 交点D 的坐标.24.(10分)如图,在ABC 中,AB AC =,D 在边AC 上,且BD DA BC ==. ()1如图1,填空A ∠=______,C ∠=______.()2如图2,若M 为线段AC 上的点,过M 作直线MH BD ⊥于H ,分别交直线AB 、BC 与点N 、E .①求证:BNE 是等腰三角形;②试写出线段AN 、CE 、CD 之间的数量关系,并加以证明.25.(12分)解下列方程组:38526x y x y -=⎧⎨-=⎩,. 26.每到春夏交替时节,雄性杨树会以漫天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民公有__________人;(2)请补全条形统计图;(3)扇形统计图中请求出扇形E的圆心角度数.参考答案一、选择题(每题4分,共48分)1、B【分析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2、D【解析】A、a2-a,不能合并,故A错误;B 、a 2•a 3=a 5,故B 错误;C 、a 9÷a 3=a 6,故C 错误;D 、(a 3)2=a 6,故D 正确,故选D .3、C【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <1.因此,本题的第三边应满足5<x <1,把各项代入不等式符合的即为答案. 4,5,1都不符合不等式5<x <1,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键. 4、A【解析】请在此填写本题解析!A. ∵ ()236a a =, 故正确;B. ∵ 23•a a a =, 故不正确;C. ∵a 3与a 2不是同类项,不能合并 ,故不正确;D. ∵ ()33327a a = , 故不正确;故选A.5、A【解析】根据全等三角形的判定和性质得出结论进而判断即可.【详解】∵点E 是等腰三角形△ABD 底边上的中点,∴BE =DE ,∠AEB =∠AED =90°,∴∠BEC =∠DEC =90°. 在△BEC 与△DEC 中,∵BE DE BEC DEC EC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DEC (SAS )∴BC =CD ,∠BCE =∠DCE ,∴∠ABC =∠ADC ,∴④∠ABC =∠ADC ;②AC 平分∠BC D 正确.故选A .【点睛】本题考查了等腰三角形的性质、全等三角形的判定和性质,关键是根据SAS 证明△BEC ≌△DEC .6、A进行化简,进而比较大小,即可得到答案.【详解】∵a =2=,2b = ∴a b =.故选A .【点睛】 本题主要考查二次根式的化简,掌握二次根式的分母有理化,是解题的关键. 7、B【解析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得. 【详解】∵分式2x 1x 1-+的值为零, ∴21010x x -=⎧⎨+≠⎩, 解得:x=1,故选B .【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.8、D【分析】根据轴对称图形的定义即可判断.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.故选:D .【点睛】本题考查了轴对称图形,只要掌握基本知识点,再认真审题,看清题目要求,细心做答本题就很容易完成.9、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a ,再求这组数据的平均数.数据3,a ,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.10、C【解析】试题分析:要组成直角三角形,三条线段满足较小的平方和等于较大的平方即可.A、72+242=252,B、52+122=132,D、302+402=502,能构成直角三角形,不符合题意;C、12+22≠32,本选项符合题意.考点:本题考查勾股定理的逆定理点评:解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.11、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=5⨯,510-故选C.12、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.二、填空题(每题4分,共24分)13、55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.14、①②③④【分析】由三角形内角和定理可得∠ABC =∠ACB ,可得AB =AC ;由AAS 可证△BEC ≌△CDB ;可得BE =CD ,可得AD =AE ;通过证明△AOB ≌△AOC ,可证点O 在∠BAC 的平分线上.即可求解.【详解】解:∵OB =OC ,∴∠OBC =∠OCB ,∵锐角△ABC 的两条高BD 、CE 相交于点O ,∴∠BEC =∠CDB =90°,∵∠BEC +∠BCE +∠ABC =∠CDB +∠DBC +∠ACB =180°,∴180°﹣∠BEC ﹣∠BCE =180°﹣∠CDB ﹣∠CBD ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形,故②符合题意;∵∠OBC =∠OCB ,∠BDC =∠BEC =90°,且BC =BC ,∴△BEC ≌△CDB (AAS ),故①符合题意,∴BE =CD ,且AB =AC ,∴AD =AE ,故③符合题意;连接AO 并延长交BC 于F ,在△AOB 和△AOC 中,AB AC OB OC OA OA =⎧⎪=⎨⎪=⎩∴△AOB ≌△AOC (SSS ).∴∠BAF =∠CAF ,∴点O 在∠BAC 的角平分线上,故④符合题意,故正确的答案为:①②③④.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质,解题的关键是:灵活运用全等三角形的判定和性质.15、﹣1【分析】直接利用分式的值为零则分子为零分母不等于零,进而得出答案.【详解】∵式子()()2112x x x --+的值为零, ∴x 2﹣1=0,(x ﹣1)(x+2)≠0,解得:x =﹣1.故答案为﹣1.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.16、49【解析】分析:根据同底数幂的除法及乘法进行计算即可.详解:x a ﹣2b =x a ÷(x b •x b )=4÷(3×3)=49. 故答案为:49. 点睛:本题考查的是同底数幂的除法及乘法,解答此题的关键是逆用同底数幂的除法及乘法的运算法则进行计算.17、10:51【解析】由镜面对称的特点可知:该电子表的实际读数是:10:51.故答案为10:51.18、()()33x x +-【分析】根据公式法进行因式分解即可.【详解】解:()()2229333x x x x -=-=+-, 故答案为:()()33x x +-.【点睛】本题考查用公式法因式分解,熟练掌握公式法并灵活应用是解题的关键.三、解答题(共78分)19、见解析【分析】根据已知条件可得AE= 2AC ,然后根据30°所对的直角边是斜边的一半可得AB=2AC ,从而得出AB=AE ,然后根据角平分线的定义可得∠BAD=∠EAD ,最后利用SAS 即可证出结论.【详解】证明:∵CE AC =∴AE=CE +AC=2AC在Rt △ABC 中,90ACB ∠=︒,30B ∠=︒∴AB=2AC∴AB=AE∵AD 平分CAB ∠,∴∠BAD=∠EAD在BAD ∆和EAD ∆中AB AE BAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴BAD ∆≌EAD ∆(SAS )【点睛】此题考查的是全等三角形的判定和直角三角形的性质,掌握利用SAS判定两个三角形全等和30°所对的直角边是斜边的一半是解决此题的关键.20、(1)见解析;(2)100°【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)先根据题意,得出∠ABC的度数;再根据等边对等角及三角形外角得出∠CMD=2∠CBM及∠DME=2∠EBM,从而求出∠CME的度数后即可得出答案.【详解】解:(1)DE AB⊥90DEB DCB∴∠=∠=︒∵M为BD中点,∴在Rt△DCB中,MC=12 BD,在Rt△DEB中,EM=12 BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°.【点睛】本题考查了直角三角形斜边的中线、三角形外角,等腰三角形等边对等角等知识,熟练掌握性质定理是解题的关键.21、(1)18°;(2)点D的坐标(n+1,n);(1)OF的长不会变化,值为1.【分析】(1)根据同角的余角相等可得∠DCF =∠OAC,进而可得结果;(2)作DH⊥x轴于点H,如图1,则可根据AAS证明△AOC≌△CHD,于是可得OC=DH,AO=CH,进而可得结果;(1)方法一:由轴对称的性质可得AC=BC,于是可得AC=BC=DC,进一步即得∠BAC =∠ABC,∠CBD =∠CDB,而∠ACB+∠DCB =270°,则可根据三角形的内角和定理推出∠ABC+∠CBD =45°,进一步即得△OBF是等腰直角三角形,于是可得OB=OF,进而可得结论;方法2:如图2,连接AF交CD于点M,由轴对称的性质可得AC=BC,AF=BF,进一步即可根据等腰三角形的性质以及角的和差得出∠CAF=∠CBF,易得BC=DC,则有∠CBF=∠CDF,可得∠CAF=∠CDF,然后根据三角形的内角和定理可得∠AFD=∠ACD=90°,即得△AFB是等腰直角三角形,然后根据等腰直角三角形的性质可推出OF=OA,问题即得解决.【详解】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO =90°.∵∠ACD=90°,∴∠DCF+∠ACO =90°,∴∠DCF =∠OAC,∵∠OAC=18°,∴∠DCF=18°;(2)过点D作DH⊥x轴于点H,如图1,则∠AOC =∠CHD=90°,∵△ACD是等腰直角三角形,∠ACD=90°,∴AC=CD,又∵∠OAC=∠DCF ,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=1,∴点D的坐标为(n+1,n);(1)不会变化.方法一:∵点A(0,1)与点B关于x轴对称,∴AO=BO=1,AC=BC,∴∠BAC =∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD =∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB =270°,∴∠BAC +∠ABC+∠CBD +∠CDB=90°,∴∠ABC+∠CBD =45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF =∠OFB=45°,∴OB=OF=1,即OF的长不会变化;方法2:如图2,连接AF交CD于点M,∵点A与点B关于x轴对称,∴AC=BC,AF=BF,∴∠OAC=∠OBC,∠OAF=∠OBF,∴∠OAF−∠OAC=∠OBF−∠OBC,即∠CAF=∠CBF,∵AC=CD,AC=BC,∴BC=CD,∴∠CBF=∠CDF,∴∠CAF=∠CDF,又∵∠AMC=∠DMF,∴∠AFD=∠ACD=90°,∴∠AFB=90°,∴∠AFO=∠OFB=45°,∴∠AFO=∠OAF=45°,∴OF=OA=1,即OF的长不会变化.【点睛】本题以直角坐标系为载体,主要考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形的内角和定理、轴对称的性质和等腰三角形的性质等知识,涉及的知识点多,属于常考题型,熟练掌握上述基本知识是解题的关键.22、详见解析.【分析】依据平行线的性质以及角平分线的定义,即可得到∠CNH=∠BMG,再根据平行线的性质即可得到∠CNM=∠BMN,依据∠HNM=∠GMN,即可得到MG∥NH.【详解】证明:∵MG平分∠EMB,MH平分∠CNF,∴∠CNH=12∠CNF,∠BMG=12∠BME=12∠AMN,∵AB∥CD,∴∠CNF =∠AMN ,∴∠CNH =∠BMG ,∵AB ∥CD ,∴∠CNM =∠BMN ,∴∠CNF +∠CNM =∠BMG +∠BMN ,即∠HNM =∠GMN ,∴MG ∥NH .【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23、(1)A (8,0),C (0,4);(2)10;(3)y=2x-6,(4,2)【分析】(1)设OC=a ,则OA=2a ,在直角△AOC 中,利用勾股定理即可求得a 的值,则A 和C 的坐标即可求得;(2)重叠部分是△CEF ,利用勾股定理求得AE 的长,然后利用三角形的面积公式即可求解;(3)根据(1)求得AC 的表达式,再由(2)求得E 、F 的坐标,利用待定系数法即可求得直线EF 的函数解析式,联立可得点D 坐标.【详解】解:(1)∵2AO CO =,∴设OC=a ,则OA=2a ,又∵AC =a 2+(2a )2=80,解得:a=4,则A 的坐标是(8,0),C 的坐标是(0,4);(2)设AE=x ,则OE=8-x ,如图,由折叠的性质可得:AE=CE=x ,∵C 的坐标是(0,4),∴OC=4,在直角△OCE 中,42+(8-x )2=x 2,解得:x=5,∴CF=AE=5,则重叠部分CEF ∆的面积是:12×5×4=10;(3)设直线EF的解析式是y=mx+n,由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),∴30 54 m nm n+=⎧⎨+=⎩,解得:26 mn=⎧⎨=-⎩,∴直线EF的解析式为y=2x-6,∵A(8,0),C(0,4),设AC的解析式是:y=px+q,代入得:804p qq+=⎧⎨=⎩,解得124pq⎧=-⎪⎨⎪=⎩,∴AC的解析式是:1=42y x-+,联立EF和AC的解析式:=261=42y xy x-⎧⎪⎨-+⎪⎩,解得:=4=2 xy⎧⎨⎩,∴点D的坐标为(4,2).【点睛】本题为一次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及方程思想等知识.在(1)中求得A、C的坐标是解题的关键,在(2)中求得CF的长是解题的关键,在(3)中确定出E、F的坐标是解题的关键.本题考查知识点较多,综合性较强,难24、(1)36,72;(2)①证明见解析;②CD=AN+CE ,证明见解析.【分析】(1)根据题意可得△ABC ,△BCD ,△ABD 都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=12∠ABC=12∠C ,然后利用三角形的内角和即可得解;(2)①通过“角边角”证明△BNH ≌△BEH ,可得BN=BE ,即可得证; ②根据题意可得AN=AB ﹣BN=AC ﹣BE ,CE=BE ﹣BC ,CD=AC ﹣AD=AC ﹣BD=AC ﹣BC ,则可得CD=AN+CE.【详解】解:(1)∵BD=BC ,∴∠BDC=∠C ,∵AB=AC ,∴∠ABC=∠C ,∴∠A=∠DBC ,∵AD=BD ,∴∠A=∠DBA ,∴∠A=∠DBA=∠DBC=12∠ABC=12∠C , ∵∠A+∠ABC+∠C=5∠A=180°,∴∠A=36°,∠C=72°;故答案为36,72;(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,∴∠ABD=∠CBD=36°,∵BH ⊥EN ,∴∠BHN=∠EHB=90°,在△BNH 与△BEH 中,BHN BHE BH BHHBN HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BNH ≌△BEH (ASA ),∴BN=BE ,∴△BNE 是等腰三角形;②CD=AN+CE ,理由:由①知,BN=BE ,∴AN=AB ﹣BN=AC ﹣BE ,∵CE=BE ﹣BC ,∴AN+CE=AC ﹣BC ,∵CD=AC ﹣AD=AC ﹣BD=AC ﹣BC ,∴CD=AN+CE.【点睛】本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.25、1,5.x y =⎧⎨=-⎩【分析】将②变形得526x y =+③,然后将③代入①可求得y 的值,最后把y 的值代入方程③即可求得x 的值,进而得到方程组的解.【详解】解:(1)38,526x y x y -=⎧⎨-=⎩①;② 由②,得 526x y =+,③将③带入①,得3(526)8y y +-=,5.y =-将5y =-代入③,得()55261x =⨯-+=所以原方程组的解为1,5.x y =⎧⎨=-⎩【点睛】本题主要考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,正确掌握解题方法是解题的关键.26、(1)2000;(2)详见解析;(3)1.8°【分析】(1)根据扇形统计图和条形统计图,利用A 类的数据求出总调查人数; (2)调查的总人数乘以D 所占的比例,即可求出D 的人数,从而补全条形统计图; (3)先求出E 所占的百分比,利用圆心角公式求解即可.【详解】(1) 根据扇形统计图和条形统计图可知,选A 的有300人,占总人数的15% 30015%=2000÷ (人)本次接受调查的市民公有2000人(2) D对应人数为:2000×25%=500补全条形统计图如下图所示(3)扇形E所在的百分比为:1-15%-12%-40%-25%=8%∴扇形E的圆心角度数为8 36028.8100︒⨯=︒【点睛】本题考查了统计的问题,掌握扇形图和条形图的性质、圆心角的公式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2016-2017学年度第一学期期末试卷
八年级数学
2017.1试卷满分:100分,考试时间:100分钟
一、选择题(本题共30分,每小题3分)
下面各题均有四个选项,其中只有一个..是符合题意的.
1.下列二次根式中,最简二次根式是(
). A.1x B.18 C.116 D.2
9a 2. 2015年9月14日,意大利物理学家马尔科?德拉戈收到来自激光干涉引力波天文台(LIGO )的系统自
动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个
LIGO 探测器上产生了-18410米的空间畸变(如图中的引力波信号图像所
示),也被称作“时空中的涟漪”,人类第一次探测到了引力波
的存在,“天空和以前不同了……你也听得到了.”这次引力波
的信号显著性极其大,探测结果只有三百五十万分之一的误差
.三百五十万分之一约为
0.000 000 285 7.将0.000 000 285 7用科学记数法表示应为(
). A .-82.85710 B. -72.85710 C .-62.85710 D.-60.285 710
3.以下图形中,不是..轴对称图形的是().
4. 如图,在△ABC 中,∠B=∠C=60,点D 在AB 边上,DE ⊥AB ,并与
AC 边交于点 E. 如果AD=1,BC=6,那么CE 等于(
).
A. 5
B. 4
C. 3
D. 2 5.下列各式正确的是(
). A. 6212121
=x x x x B.62331x x
x x C. 323322()x
xy x y y D.13223y
x
x y。

相关文档
最新文档