基于CdSe量子点复合体系的制备、表征及光谱学性能研究
CdSeCdS量子点荧光探针检测Cu2+

第42卷第1期2023年2月沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报JournalofShenyangLigongUniversityVol 42No 1Feb 2023收稿日期:2022-05-24基金项目:广西自然科学基金项目(2019GXNSFAA185013)作者简介:汪登鹏(1995 )ꎬ男ꎬ硕士研究生ꎻ通信作者:高锋(1976 )ꎬ男ꎬ副教授ꎬ研究方向:稀土功能材料ꎮ文章编号:1003-1251(2023)01-0061-07CdSe/CdS量子点荧光探针检测Cu2+汪登鹏ꎬ高㊀锋ꎬ藤田澧久(广西大学资源环境与材料学院ꎬ南宁530000)摘㊀要:采用液相反应法在水介质中合成巯基乙酸封端的CdSe/CdS核壳结构量子点ꎬ基于Cu2+对量子点荧光的猝灭效应ꎬ以CdSe/CdS核壳量子点为荧光探针定量检测水溶液中Cu2+的浓度ꎮ研究结果表明:Cu2+的浓度为0.5~60μmol/L时ꎬCdSe/CdS量子点的荧光强度与Cu2+的浓度成良好的分段线性关系ꎬ浓度检测限为0.06μmol/Lꎻ该荧光探针对Cu2+的检测具有高选择性ꎻ对实际自来水样品中Cu2+的检测结果准确可靠ꎻ量子点的淬灭机理为动态淬灭ꎮ关㊀键㊀词:量子点ꎻ荧光淬灭ꎻCu2+检测ꎻ荧光探针中图分类号:O657.3文献标志码:ADOI:10.3969/j.issn.1003-1251.2023.01.010CdSe/CdSQuantumDotFluorescenceProbeforDetectionofCu2+WANGDengpengꎬGAOFengꎬFUJITAToyohisa(CollegeofResourcesEnvironmentandMaterialsꎬGuangxiUniversityꎬNanning530000ꎬChina)Abstract:CdSe/CdScore ̄shellquantumdots(QDs)withthioglycolicacidweresuccessful ̄lysynthesizedinaqueousmediumbyliquidphasereaction.BasedonthequenchingeffectofCu2+onQDfluorescenceꎬtheCdSe/CdScore ̄shellQDfluorescenceprobewasestablishedtoquantitativelyanalyzeCu2+inaqueoussolution.Theresultsshowthatthefluorescencein ̄tensityofCdSe/CdSQDshasagoodfractionallinearrelationshipwiththeconcentrationofCu2+intherangeof0.5~60μmol/LꎬandthedetectionlimitofCu2+is0.06μmol/L.ThefluorescenceprobehasahigherselectivityforCu2+thanothermetalionsꎬandthedetectionofCu2+inactualtapwatersamplesareaccurateandreliable.ThequenchingmechanismofQDsisdynamicquenching.Keywords:quantumdotꎻfluorescencequenchingꎻCu2+detectionꎻfluorescenceprobe㊀㊀河流和湖泊中的有毒重金属ꎬ如铬㊁镉㊁铜㊁铅和汞等ꎬ对动物㊁植物及人类的生存和健康影响很大[1]ꎮ其中铜是生物必需的元素之一ꎬ铜的缺乏会导致生物体的某些功能障碍ꎬ但过度摄入铜会导致铜中毒ꎬCu2+是铜最常见的价态ꎬ痕量Cu2+的测定具有重要的意义ꎮ目前检测Cu2+的方法主要有原子吸收光谱法[2]㊁原子荧光分光光度法[3]㊁电感耦合等离子体质谱法㊁电化学法[4]和荧光探针法[5]等ꎮ与荧光探针法相比较ꎬ其他几种方法虽然都具备一定的检测能力ꎬ但存在选择性差㊁灵敏度不高ꎬ或具有高选择性与灵敏度但设备复杂㊁昂贵ꎬ或存在样品制备程序复杂等问题ꎬ故其应用受到一定限制ꎮ荧光探针法最大的优势是其荧光响应迅速ꎬ此外还具有可视性和灵敏度高㊁检测重金属离子的选择性好㊁线性范围宽等优点ꎬ且该检测方法成本低㊁操作简单ꎮ上述诸多优势使得荧光探针成为当前研究的热点ꎬ并广泛应用于生物医学和分析化学等领域[6]ꎮ荧光探针大致可分为有机荧光探针和无机荧光探针ꎮ与有机荧光探针相比ꎬ无机量子点具有高荧光量子产率㊁荧光发射光谱可调㊁多种荧光颜色可视性的优点ꎮ用于检测Cu2+的量子点荧光探针较多ꎬ如CdX(X代表Te㊁Se㊁S)[7]㊁ZnS㊁C[8]和Au量子点[9]等ꎮ根据光谱特性ꎬ量子点荧光探针可分为基于单一荧光峰强度变化的普通荧光探针和基于两个发射峰相对强度的比率荧光探针[10]ꎻ根据结构ꎬ量子点可分为单晶体型㊁核壳型和混晶型等[11-13]ꎮ量子点检测Cu2+有Turn ̄offꎬOff ̄on两种方式ꎮ本文首先制备疏基乙酸封端的CdSe/CdS核壳型量子点ꎬ并通过X射线衍射仪(XRD)㊁透射电子显微镜(TEM)和光致发光光谱(PL)对其进行表征ꎻ然后以该量子点作为Cu2+浓度检测探针ꎬ基于Turn ̄off模式定量检测水溶液中Cu2+的浓度ꎻ最后使用该荧光探针对自来水样品中的Cu2+浓度进行检测ꎮ1㊀实验部分1.1㊀实验试剂疏基乙酸(TGA)㊁硼氢化钠(NaBH4)㊁氯化镉(CdCl2 2.5H2O)㊁硫化钠(Na2S 9H2O)和各种金属离子标准溶液(K+㊁Na+㊁Mg2+㊁Ba2+㊁Al3+㊁Mn2+㊁Fe3+㊁Ca2+㊁Pb2+㊁Cu2+㊁Zn2+㊁Cd2+)ꎬ均购自国药集团化学试剂有限公司ꎻ盐酸(HCl)㊁三羟甲基氨基甲烷(Tris)ꎬ购自阿拉丁试剂(上海)有限公司ꎮ所有试剂均为分析纯ꎮ1.2㊀实验仪器透射电子显微镜(F200X型ꎬ赛默飞世尔科技公司)ꎻ高灵敏稳瞬态荧光光谱仪(FL3C ̄111TC ̄SPC型ꎬ堀场仪器(上海)有限公司)ꎻX射线衍射仪(D/MAX2500V型ꎬ日本理学公司)ꎻ傅里叶红外光谱仪(NicoletiS20型ꎬ赛默飞世尔科技公司)ꎮ1.3㊀CdSe/CdS核壳量子点的制备采用液相反应法[14]制备CdSe/CdS核壳量子点ꎮ向三颈烧瓶中通氮气30min后ꎬ分别加入一定量的单质Se㊁NaBH4和10mL超纯水ꎬ剧烈搅拌后得到无色澄清的NaHSe溶液ꎮ称取一定量的CdCl2溶解于100mL超纯水中ꎬ然后加入一定体积的TGAꎬ再加入1mol/L的NaOH溶液调节pH为11ꎬ再通入氮气30min以排除氧气ꎮ将配制好的NaHSe溶液快速转移至CdCl2混合溶液中ꎬ边通氮气边剧烈搅拌ꎬ升温至80ħ加热回流30minꎬ得到CdSe溶液ꎮ待其冷却至室温后ꎬ按照CdSe和CdS物质的量比为1ʒ1配制一定量的CdCl2和Na2S溶液ꎬ在剧烈搅拌下逐滴加入CdSe溶液中ꎬ将反应体系升温至80ħ并回流30min后制备得到CdSe/CdS核壳结构的量子点ꎮ使用无水乙醇洗涤量子点ꎬ离心3次后重新分散于超纯水中待用ꎮ1.4㊀量子点检测Cu2+的浓度将300μL的CdSe/CdS量子点溶液㊁2.4mL的Tris ̄HCl缓冲液(浓度为10mmol/LꎬpH为9.0)㊁300μL的Cu2+溶液混合后静置10minꎬ再采用397nm波长近紫外光激发ꎬ检测其发射的荧光强度ꎮ2㊀结果与讨论2.1㊀量子点的表征测试得到CdSe和CdSe/CdS量子点的XRD图谱ꎬ如图1所示ꎮ图1㊀CdSe和CdSe/CdS量子点的XRD图26沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷㊀㊀由图1可见ꎬCdSe/CdS量子点的XRD谱线在衍射角25.8ʎ㊁43.2ʎ和50.5ʎ三个位置出现清晰的衍射峰ꎬ峰位介于立方CdSe和CdS的(111)㊁(220)和(311)晶面的特征峰之间ꎬ说明CdSe的内核与CdS包层之间存在相互作用力ꎬ使晶格参数发生变化ꎬ从而使其衍射峰位产生偏移ꎮ在CdSe外延生长CdS的纳米颗粒中也观察到类似的衍射峰[15]ꎮ此外ꎬ与CdS和CdSe晶体相比ꎬ这些衍射峰出现明显宽化的现象ꎬ反映出所制备CdSe/CdS样品的量子点特征ꎮ采用透射电子显微镜/能谱仪(TEM/EDS)对CdSe/CdS量子点进行分析ꎬ结果如图2所示ꎮ图2㊀CdSe/CdS量子点的TEM/EDS分析㊀㊀由图2(a)可见ꎬCdSe/CdS量子点显示出良好的分散性ꎬ单个粒子接近球形ꎮ根据量子点统计数据(图2(a)中粒径分布插图)可知ꎬ量子点的平均粒径约为2.4nmꎮ图2(b)中晶格条纹清晰ꎬ晶面间距为0.218nmꎬ对应CdSe的(220)晶面ꎬ证明产物中存在CdSeꎻ在量子点晶格内部及边缘ꎬ没有观察到明显的晶格畸变ꎬ说明CdS与CdSe具有很好的晶格匹配性ꎬCdSe表面可能外延生长出CdS层ꎮ由图2(c)可视区域内个别较大量子点的能谱分析结果可以观察到ꎬCd㊁S㊁Se元素分布较为均匀ꎬS元素分布于量子点团聚体的整个投影区域ꎬ而Se元素倾向于分布在投影区域的内部ꎬ分布面积明显小于S元素ꎬ表明合成物质为CdSe/CdS核壳结构的量子点ꎮCdSe和CdSe/CdS的吸收光谱与荧光光谱如图3所示ꎮ图3㊀CdSe与CdSe/CdS量子点吸收光谱和荧光光谱㊀㊀由图3可以看出ꎬCdSe/CdS的吸收峰相较于CdSe有少许蓝移ꎬ相同的现象也发生于其荧光光谱中ꎮ这是由于在CdSe表面外延生长形成CdS壳层所致ꎮ此外ꎬ图3(b)中CdSe/CdS的荧光强度远远高于CdSe的强度ꎬ这是由于CdS壳层对CdSe核粒子的表面缺陷进行了修饰ꎬ减少了CdSe禁带结构中的缺陷能级数量ꎬ提高了CdSe36第1期㊀㊀㊀汪登鹏等:CdSe/CdS量子点荧光探针检测Cu2+激子复合发光的强度[15]ꎮ2.2㊀荧光检测条件的优化按1.4中实验方法ꎬ采用CdSe/CdS量子点检测Cu2+浓度ꎬ改变静置反应时间ꎬ测得不同反应时间下CdSe/CdS量子点的荧光强度及Cu2+诱使CdSe/CdS量子点的荧光淬灭ꎬ结果如图4所示ꎮ图中纵坐标为荧光强度比I/I0ꎬI表示添加Cu2+时量子点的荧光强度ꎬI0表示不添加Cu2+时量子点的荧光强度ꎮ图4㊀反应时间对荧光强度的影响㊀㊀由图4可见ꎬCdSe/CdS量子点的荧光强度随时间变化不明显ꎬ说明其荧光稳定性较好ꎮ加入Cu2+后ꎬCdSe/CdS量子点的荧光淬灭反应迅速ꎬ5min后荧光强度保持稳定ꎬ说明5min后Cu2+与CdSe/CdS量子点的反应基本完全ꎬ荧光淬灭效果接近最大值ꎮ故适宜的静置反应时间为5minꎮ溶液的pH不同可能会影响量子点的荧光强度ꎬ也可能会影响检测物质的灵敏度和选择性[16]ꎮTGA封端的CdSe/CdS量子点在pH较低的缓冲液中荧光几乎完全猝灭ꎬ并形成沉淀[17]ꎮ如果pH过高ꎬCu2+会与溶液中的OH-发生化学反应ꎬ形成沉淀ꎬ进而影响检测的灵敏度ꎮ因此ꎬ本文考察溶液pH在5.5~10.7的范围内变化时对实验结果的影响ꎮ测得不同pH下的CdSe/CdS量子点荧光强度及Cu2+诱使CdSe/CdS量子点的荧光淬灭ꎬ结果如图5所示ꎮ由图5可以看出:当溶液的pH较小时ꎬ由于量子点表面的硫醇基团不太稳定ꎬ不能保持较高的荧光强度ꎻ随着pH增大ꎬCdSe/CdS量子点的荧光强度逐渐增大并趋于稳定ꎬ当pH为8.0时ꎬ荧光强度接近最大值ꎬ此时Cu2+诱使量子点荧光淬灭效率基本达到最高ꎮ故选择适宜的pH为8.0ꎮ图5㊀pH对荧光强度的影响2.3㊀CdSe/CdS量子点对Cu2+的荧光响应特性㊀㊀CdSe/CdS量子点对Cu2+具有灵敏的荧光响应特性ꎬ测得不同Cu2+浓度下的荧光光谱及荧光淬灭率(1-I/I046沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷图6㊀Cu2+对CdSe/CdS量子点的荧光淬灭效应㊀㊀由图6(a)可见ꎬ随着Cu2+浓度的增加ꎬCdSe/CdS量子点的荧光强度逐渐下降ꎮ在Cu2+浓度为60μmol/L的情况下ꎬ荧光猝灭率达到92.7%ꎮ由图6(b)可知ꎬCu2+浓度对CdSe/CdS量子点荧光强度的影响可以由两段线性关系表示ꎬ分别如图6(c)和图6(d)所示ꎮ由图6(c)的拟合结果可知ꎬCu2+浓度(C(Cu2+))在0.5~7μmol/L范围内时ꎬ(1-I/I0)与C(Cu2+)的线性关系为1-I/I0=0.00882+0.07943C(Cu2+)(1)线性相关系数R2=0.969ꎮ由图6(d)的拟合结果可知ꎬC(Cu2+)在7~60μmol/L范围内时ꎬ(1-I/I0)与C(Cu2+)的线性关系为1-I/I0=0.45637+0.00762C(Cu2+)(2)线性相关系数R2=0.989ꎮ浓度检测限(LimitofDetectionꎬLOD)计算公式为[18]LOD=3δ/K(3)式中:δ为空白样11次检测值的标准偏差ꎻK为标准曲线的斜率ꎮ根据式(3)计算得到体系对Cu2+浓度的检测限为0.06μmol/Lꎬ本方法的检测限低于文献[19-21]的研究结果ꎮ采用不同配体的量子点检测Cu2+浓度的方法比较如表1所示ꎮ表1㊀使用量子点测量Cu2+浓度的方法比较量子点材料配体浓度检测限/(μmol L-1)CdS[19]甘油三酯0.1CdS[20]肽0.5CdS[21]半胱氨酸1.5CdSe/CdS(本文)TGA0.062.4㊀荧光检测Cu2+的选择性采用CdSe/CdS荧光探针在最佳条件下对Cu2+进行荧光检测ꎬ通过与其他11种金属离子(即K+㊁Na+㊁Mg2+㊁Ba2+㊁Al3+㊁Mn2+㊁Fe3+㊁Ca2+㊁Pb2+㊁Cd2+㊁Zn2+)相比较ꎬ评估CdSe/CdS量子点体系对Cu2+的选择性ꎮ其中ꎬ添加Cu2+的浓度为50μmol/Lꎬ其他离子浓度取为Cu2+浓度的10倍ꎮ各种离子对CdSe/CdS荧光探针荧光强度的影响如图7所示ꎮ图7㊀各种离子对CdSe/CdS荧光探针荧光强度的影响㊀㊀由图7可以看出ꎬ除Cu2+以外的其他金属离子对CdSe/CdS量子点的荧光强度影响不大ꎬ说明CdSe/CdS量子点对Cu2+的检测具有高选择性ꎮ2.5㊀荧光淬灭机理分析物与荧光探针之间发生荧光淬灭反应的机理主要有静态淬灭和动态淬灭两种[22]ꎮ静态淬灭认为分析物与荧光探针的基态荧光分子发生反应形成非荧光体ꎻ动态淬灭认为荧光淬灭与扩散过程有关ꎬ是分析物与处于激发态的荧光分子之间发生碰撞ꎬ释放热能ꎬ使得荧光体无辐射跃迁至基态ꎬ从而导致荧光淬灭ꎮ静态荧光淬灭过程会形成非荧光体ꎬ因此其反应前后的紫外-可见吸收光谱会发生改变ꎬ但反应前后的荧光寿命不发生改变ꎻ动态荧光淬灭与静态荧光淬灭特征相反ꎬ其反应前后紫外-可见吸收光谱不变ꎬ但荧光寿命会发生变化ꎮ不同Cu2+浓度下CdSe/CdS量子点的紫外-可见吸收光谱如图8所示ꎮ添加Cu2+和不添加Cu2+时CdSe/CdS量子点的荧光寿命谱图如图9所示ꎮ由图8可见ꎬ添加不同浓度Cu2+后CdSe/CdS量子点的紫外-可见吸收光谱没有明显变化ꎮ由图9可见ꎬ添加Cu2+后ꎬ量子点的寿命明56第1期㊀㊀㊀汪登鹏等:CdSe/CdS量子点荧光探针检测Cu2+显减小ꎮ因此ꎬCu2+导致CdSe/CdS量子点荧光淬灭的机理为动态淬灭ꎮ图8㊀不同Cu2+浓度下CdSe/CdS量子点的紫外-可见吸收光谱图9㊀添加和不添加Cu2+时CdSe/CdS量子点的荧光寿命谱图2.6㊀实际水样中Cu2+浓度的检测为评估CdSe/CdS量子点荧光探针对检测Cu2+的实用性与可靠性ꎬ采用实际水样(自来水)进行检测实验ꎮ选取三种不同Cu2+浓度水平(10㊁20㊁30μmol/L)的自来水样品ꎬ每个样品检测三次取平均值ꎬ检测结果如表2所示ꎮ表中回收率为Cu2+浓度的检测值与实际值之比ꎬ相对标准偏差为标准偏差与平均值之比ꎬ反映Cu2+检测的精度ꎮ表2㊀自来水样品中实际Cu2+浓度与检测值的比较样品实际浓度/(μmol L-1)检测值/(μmol L-1)回收率/%相对标准偏差/%54.8897.62.8自来水1010.45104.52.52020.32101.63.8㊀㊀由表2可看出ꎬ各样品的回收率均接近100%ꎮ自来水中可能存在多种阳离子ꎬ如Na+㊁Ca2+㊁Mg2+㊁Mn2+等ꎬ本文实际水样测定结果表明ꎬ这些金属离子的存在不会干扰Cu2+的检测ꎬ再次证明了CdSe/CdS量子点荧光探针对检测Cu2+的实用性与可靠性ꎮ3㊀结论(1)采用溶液反应法成功合成了CdSe/CdS核壳结构量子点荧光探针ꎮ基于Turn ̄off模式利用CdSe/CdS量子点检测水介质中的Cu2+ꎬ在Cu2+浓度为60μmol/L的情况下ꎬ荧光猝灭率达到92.7%ꎮ(2)确定最优检测条件为:反应时间5minꎬ溶液pH为8.0ꎮ确定了荧光淬灭率与Cu2+浓度间的分段线性关系ꎮ(3)紫外-可见吸收光谱和荧光寿命测试结果表明ꎬCdSe/CdS量子点对Cu2+的荧光淬灭为动态淬灭机制ꎮ(4)对自来水样品中Cu2+浓度的检测值与实际浓度的相对标准偏差不超过4%ꎬ且回收率较高ꎮCdSe/CdS量子点对Cu2+的检测具有高选择性ꎬ干扰离子的存在几乎不影响CdSe/CdS量子点对Cu2+荧光响应的灵敏度ꎮ参考文献:[1]ZHANGXYꎬZHANGMꎬLIUHꎬetal.Environmentalsustainability:apressingchallengetobiologicalsewagetreatmentprocesses[J].CurrentOpinioninEnviron ̄mentalScience&Healthꎬ2019ꎬ12:1-5.[2]SMICHOWSKIPꎬLONDONIOA.Theroleofanalyti ̄caltechniquesinthedeterminationofmetalsandmet ̄alloidsindietarysupplements:areview[J].Micro ̄chemicalJournalꎬ2018ꎬ136:113-120.[3]HARIBALAꎬHUBTꎬWANGCGꎬetal.AssessmentofradioactivematerialsandheavymetalsinthesurfacesoilarounduraniumminingareaofTongliaoꎬChina[J].EcotoxicologyandEnvironmentalSafetyꎬ2016ꎬ130:185-192.[4]LEEWꎬKIMHꎬKANGYꎬetal.Abiosensorplatformformetaldetectionbasedonenhancedgreenfluores ̄centprotein[J].Sensorsꎬ2019ꎬ19(8):1846.66沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷[5]BIANWꎬWANGFꎬZHANGHꎬetal.FluorescentprobefordetectionofCu2+usingcore ̄shellCdTe/ZnSquantumdots[J].Luminescenceꎬ2015ꎬ30(7):1064-1070.[6]PARKSHꎬKWONNꎬLEEJHꎬetal.Syntheticratio ̄metricfluorescentprobesfordetectionofions[J].ChemicalSocietyReviewsꎬ2020ꎬ49(1):143-179. [7]蔡朝霞ꎬ阮晓娟ꎬ石宝琴ꎬ等.水溶性CdSe量子点的合成及其作为荧光探针对大肠杆菌的快速检测[J].分析试验室ꎬ2011ꎬ30(3):107-110. [8]孙雪花ꎬ张锦婷ꎬ郝都婷ꎬ等.基于Ag+修饰氮掺杂碳量子点用于组氨酸的荧光开启检测[J].分析试验室ꎬ2021ꎬ40(4):399-403.[9]ALDEWACHIHꎬCHALATITꎬWOODROOFEMNꎬetal.Goldnanoparticle ̄basedcolorimetricbiosensors[J].Nanoscaleꎬ2017ꎬ10(1):18-33.[10]李亚楠ꎬ王俊平.基于双发射免标记核酸探针的比率型荧光传感器用于银的检测[J].分析试验室ꎬ2020ꎬ39(1):12-16.[11]WANGJꎬJIANGCXꎬWANGXQꎬetal.Fabricationofan"ion ̄imprinting"dual ̄emissionquantumdotna ̄nohybridforselectivefluorescenceturn ̄onandratio ̄metricdetectionofcadmiumions[J].Analystꎬ2016ꎬ141(20):5886-5892.[12]吕俊杰ꎬ董小绮ꎬ孟鑫ꎬ等.Mn掺杂ZnS/ZnS核壳量子点磷光猝灭法测定铜离子[J].分析试验室ꎬ2019ꎬ38(3):321-325.[13]CAOYWꎬWANGCꎬZHUBHꎬetal.Afacilemeth ̄odtosynthesishigh ̄qualityCdSequantumdotsforlargeandtunablenonlinearabsorption[J].OptMaterꎬ2017ꎬ66:59-64.[14]张梦亚ꎬ高兵ꎬ柳翠ꎬ等.L ̄半胱氨酸修饰CdTe与CdTe/CdS量子点的水相合成与表征[J].稀有金属材料与工程ꎬ2016ꎬ45(S1):554-559.[15]沈嘉林ꎬ李玲ꎬ沈水发.CdSe@CdS核-壳结构量子点的微乳水热法制备[J].功能材料与器件学报ꎬ2019ꎬ25(2):82-87.[16]BIANWꎬWANGFꎬZHANGHꎬetal.FluorescentprobefordetectionofCu2+usingcore ̄shellCdTe/ZnSquantumdots[J].Luminescenceꎬ2015ꎬ30(7):1064-1070.[17]XUHꎬMIAORꎬFANGZꎬetal.Quantumdot ̄based"turn ̄on"fluorescentprobefordetectionofzincandcadmiumionsinaqueousmedia[J].AnalyticaChimi ̄caActaꎬ2010ꎬ687(1):82-88.[18]MANJUBAASHININꎬTHANGADURAITDꎬBHARATHIGꎬetal.Rhodaminecappedgoldnanopar ̄ticlesforthedetectionofCr3+ioninlivingcellsandwatersamples[J].JournalofLuminescenceꎬ2018ꎬ202:282-288.[19]CHENYFꎬROSENZWEIGZ.LuminescentCdSquantumdotsasselectiveionprobes[J].AnalChemꎬ2002ꎬ74(19):5132-5138.[20]GATTÁS ̄ASFURAKMꎬLEBLANCRM.Peptide ̄coatedCdSquantumdotsfortheopticaldetectionofcopper(II)andsilver(I)[J].ChemCommunꎬ2003(21):2684-2685.[21]BOONMECꎬNOIPATꎬTUNTULANITꎬetal.Cys ̄teaminecappedCdSquantumdotsasafluorescencesensorforthedeterminationofcopperionexploitingfluorescenceenhancementandlong ̄wavespectralshifts[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopyꎬ2016ꎬ169:161-168. [22]甘晓娟ꎬ刘绍璞ꎬ刘忠芳ꎬ等.某些芳香族氨基酸作探针荧光猝灭法测定安乃近及其代谢产物[J].化学学报ꎬ2012ꎬ70(1):58-64.(责任编辑:宋颖韬)76第1期㊀㊀㊀汪登鹏等:CdSe/CdS量子点荧光探针检测Cu2+。
《CdS基宽光谱复合材料合成及其光催化还原CO2性能研究》

《CdS基宽光谱复合材料合成及其光催化还原CO2性能研究》一、引言随着环境问题的日益严重,光催化技术已成为科研领域的一个热点。
其中,光催化还原CO2技术具有巨大的应用潜力,可有效减少温室气体的排放并转化为有价值的化学品。
CdS作为一种典型的宽光谱半导体材料,因其具有较高的光吸收能力和良好的光催化性能,在光催化还原CO2领域受到了广泛关注。
然而,单纯的CdS材料存在着一些缺陷,如光生载流子复合率高、光响应范围有限等。
为了解决这些问题,研究者们开始探索将CdS与其他材料复合,以提高其光催化性能。
本文旨在研究CdS基宽光谱复合材料的合成及其在光催化还原CO2方面的性能。
二、实验方法1. 材料制备本文采用溶胶-凝胶法合成CdS基宽光谱复合材料。
首先,将适量镉盐和硫源在溶液中混合,加入表面活性剂以控制颗粒形貌。
随后,通过热处理和硫化处理得到CdS基复合材料。
2. 结构表征利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对合成材料的晶体结构、形貌和微观结构进行表征。
3. 光催化性能测试以光催化还原CO2为探针反应,评价CdS基宽光谱复合材料的光催化性能。
在封闭的光反应器中,以合成材料为光催化剂,以CO2和H2O为反应物,光照条件下进行反应。
通过气相色谱仪分析反应产物,计算CO2的转化率和产物选择性。
三、结果与讨论1. 材料表征结果XRD结果表明,合成材料具有典型的CdS晶体结构。
SEM 和TEM图像显示,材料具有均匀的颗粒形貌和良好的分散性。
此外,通过能谱分析(EDS)和X射线光电子能谱(XPS)等手段,证实了材料中各元素的化学状态和价态。
2. 光催化性能分析实验结果表明,CdS基宽光谱复合材料具有优异的光催化还原CO2性能。
在可见光照射下,该材料能够有效地将CO2转化为碳氢化合物和醇类等有机物。
与纯CdS相比,复合材料的光催化性能得到显著提高。
这主要归因于复合材料具有较宽的光谱响应范围、较高的光生载流子分离效率和较强的氧化还原能力。
原位构筑CdSe核-ZnS壳结构复合量子点及其光学性能研究

摘 要 : 次 利 用 油 酸 一 液 体 石 蜡 原 位 构 筑 C S 首 de
剂 与核 作用 的机 会 , 强 核 的稳 定 性 , 少 激 发 缺 增 减
核 一Z S壳结构复 合量 子点 材料 。透射 电镜 显 示 了 n C S 核 一 Z S壳结 构 ; de n 紫外 可 见 光谱 、 光 光谱 及 荧 激 光共 聚 焦 等 结 果 , 明所 制 得 的 C S 表 d e核 ~Z S n 壳结 构复 合量 子点材 料具 有 明显 的增 强量 子点 的荧
大增 强 , d e 子点 在包 裹 了 Z S层 以后 , 紫外 CS 量 n 其
荧光及 复 杂 的激 发 态 衰 减 -3 2。根 据 带 隙理 论 , 在 裸量子 点表 面包 覆另 一 种 晶 体结 构 相 似 、 隙 能更 带 宽 的半导 体 材料 , 得 核 壳结 构 纳 米 晶体 ( C S 制 如 d/
Z S C S / n 、 d / n e等 )34, 以减 少 猝 灭 n 、 d eZ S C S Z S [ ]可 -
光 效率 的特 点。
陷, 从而 使 量 子 点 的荧 光 性 质 得 到 改 善 。在 C S de
量 子点 表面包 裹适 当厚 度 的 Z S得 到 的 C S / n n d eZ S 核壳 型量 子点具 有 很 好 的单 分 散 性 , 定性 大 大 增 稳 强 , 致发 光 的量子 产率 也有 了较 大 的提升 。 光
晶体 上生 长 C S 量 子 点 的 方 法_ , de 5 开辟 了 核壳 量 ]
子点 的 新 时 代 。但 他 们 首 先 是 以 Z S为 内 核 而 n
C S 为外 壳 , 于 Z S的 晶格 常 数 比 C S de 由 n d e小 , 而
cdse量子点发射光谱

CdSe量子点是一种常见的荧光材料,其发射光谱的特性取决于其结构和制备工艺。
一般来说,CdSe量子点的发射光谱具有以下特点:
1. 发射光谱宽:由于CdSe量子点的尺寸和形状的变化,其发射光谱宽度较大,通常在400nm~600nm之间。
2. 发射波长可调:通过控制CdSe量子点的尺寸和组成,可以调节其发射波长,使其在可见光区域中具有较宽的发射带。
3. 发射光谱窄:随着CdSe量子点尺寸的减小,其发射光谱的带宽会变窄,同时发射峰的位置也会发生变化,从而实现对发射波长的精确控制。
4. 荧光量子产率高:CdSe量子点具有较高的荧光量子产率,即荧光发射能量与其吸收能量之比,通常在90%以上。
5. 荧光发射波长可调:通过改变CdSe量子点的组成和尺寸,可以调节其发射波长,实现对荧光发射波长的精确控制。
总的来说,CdSe量子点的发射光谱特性使其在荧光标记、发光二极管、太阳能电池等领域具有广泛的应用前景。
CdSe量子点简要综述2

CdSe量子点综述量子点(quantum dots, QDs)是一种半导体纳米晶(nanocrystals, NCs)通常由Ⅱ-Ⅱ和Ⅱ-Ⅱ族元素组成,如CdSe、CdTe、ZnSe、CuInS、InP等。
也可以由两种或两种上的半导体材料构成,如核壳结构的CdSe/ZnS、CdSe/CdZnS等,以及掺杂结构的ZnS:Mn,ZnSe:Cu等。
1.量子点结构常见的二元半导体量子点由于覆盖光谱有限且稳定性不高,易受外界环境物理化学的影响而发生质量退化,因此,常通过制备合金量子点或核壳结构量子点来改善量子点的物理化学性质错误!未找到引用源。
1.1合金量子点合金量子点即将几种不同带隙的半导体材料在纳米尺度上进行的合金化,形成合金或固溶体。
由于每种半导体材料都有其相应的能带宽,通过形成合金通过调节合金半导体组分的化学计量比来改变纳米晶的组成,从而改变量子点的能带宽及晶格常数。
此类量子点也可按照组成元素的多少分为三元合金和多元合金。
要制备均匀结构的合金,两种组成的生长速率必须相等,并且在一种成分的生长的条件下不能阻止另一种成分的生长,同时两种成分需要充分相似使得两者容易混合,否则会形成核壳结构或者两种组分独立成核。
1.2核/壳结构量子点根据各种半导体材料能带位置的不同,壳层在核/壳结构量子点中起到作用的不同,可以将核/壳量子点分为三类:TypeⅡ、TypeⅡ和TypeⅡ型结构,如图1.1所示。
图1.1 半导体异质结的能带结构TypeⅡ型结构的量子点要求壳层材料能带大于核层材料能带,电子和空穴都被限域在核材料中,从而提高量子点的荧光效率,但也有相反的情况;TypeⅡ型结构的量子点要求壳层材料的价带或导带处于核层材料的带隙中,通过光子的激发,壳层材料能带的重叠导致电子和空穴的空间分离而分别处于核层材料和壳层材料中;TypeⅡ型结构很少应用到核壳量子点结构中去。
TypeⅠ型结构是最早被研究的结构,该结构中宽能带的壳层材料所起的作用是钝化核层材料的表面缺陷,使核材料与外部环境隔离,将载流束缚在核中。
CdS量子点敏化二维WO3纳米薄膜的制备及其光电化学性能研究的开题报告

CdS量子点敏化二维WO3纳米薄膜的制备及其光电化学性能研究的开题报告尊敬的指导老师:本人拟选题为“CdS量子点敏化二维WO3纳米薄膜的制备及其光电化学性能研究”,该选题旨在研究CdS量子点与二维WO3纳米薄膜的复合光电化学性能,为新能源开发提供一定的科学依据。
现在,本人将详细说明该选题研究背景、研究目的、研究内容、研究方法及可行性分析等方面的情况。
一、研究背景二氧化钨(WO3)在催化分解水中具有诸多优异特性,但其光催化性能有待进一步提升,因此研究新型光敏材料来改善其光敏性能显得尤为迫切。
量子点是一种具有独特物理和化学特性的半导体微晶,近年来受到广泛关注。
CdS量子点具有优异的电子传输性能和优异的光催化性能,因此被广泛应用于光催化分解水等领域。
因此,将CdS量子点引入WO3纳米薄膜中,可以进一步提高WO3的光催化性能。
二、研究目的本文旨在制备CdS量子点敏化的二维WO3纳米薄膜,研究其光电化学性能及机理,探究CdS量子点对于二维WO3纳米薄膜光催化性能的影响,为新型光催化材料的开发提供理论和实验基础。
三、研究内容1. 合成CdS量子点;2. 制备WO3纳米薄膜;3. CdS量子点敏化的二维WO3纳米薄膜的性质表征;4. 探究CdS量子点对于二维WO3纳米薄膜光催化性能的影响;5. 实验结果的统计和分析。
四、研究方法1. 化学制备法制备CdS量子点;2. 溶胶凝胶法制备WO3纳米薄膜;3. 采用SEM、TEM、XRD等方法对样品进行表征;4. 采用光电流法和电化学阻抗谱法研究样品的光电性能;5. 采用紫外可见光谱测定催化反应的光催化性能。
五、可行性分析本选题的研究内容较为明确,研究方法的操作规范且有一定的先导研究。
本项目的研究内容具有实践性和运用性,具有推广意义。
因此,本选题的研究有可行性。
以上就是本人“CdS量子点敏化二维WO3纳米薄膜的制备及其光电化学性能研究”的开题报告,如有不妥之处请您指正。
基于FRET原理的CDs-Ce6体系构建及性能评价

基于FRET原理的CDs-Ce6体系构建及性能评价李钒;杨焜;张春林;刘长军;田丰【摘要】目的:依据荧光共振能量转移(fluorescence resonance energy transfer,FRET)原理,设计一种碳量子点(CDs)与光敏剂二氢卟吩E6(Ce6)的复合体系.方法:使用短链钝化剂,通过一步水热法合成表面富含氨基的CDs,再通过经典的NHS/EDC反应将Ce6与CDs复合.利用荧光光谱仪、透射电镜、红外光谱仪、紫外一可见光吸收光谱等评价CDs以及CDs-Ce6体系的理化性能.结果:CDs-Ce6体系具有良好的水溶性,且有明显的一单氧产出.结论:CDs-Ce6体系设计改善了纯Ce6不溶于水的缺点,且一单氧产出明显,有望成为一种理想的新型光敏剂.【期刊名称】《医疗卫生装备》【年(卷),期】2016(037)012【总页数】4页(P7-9,24)【关键词】荧光共振能量转移;碳量子点;二氢卟吩E6;CDs-Ce6体系;光敏剂【作者】李钒;杨焜;张春林;刘长军;田丰【作者单位】300161天津,军事医学科学院卫生装备研究所;300161天津,军事医学科学院卫生装备研究所;300300天津,东丽医院消化内科;300161天津,军事医学科学院卫生装备研究所;300161天津,军事医学科学院卫生装备研究所【正文语种】中文【中图分类】R318;R454.2光动力疗法(photodynamic therapy,PDT)是一种利用光动力反应进行疾病诊断和治疗的新技术,在恶性肿瘤治疗方面已引起广泛关注。
PDT的基本原理为:光敏剂进入机体并被肿瘤组织选择性摄取和潴留,在特定波长的光照射下,光敏剂吸收光子的能量跃迁到不稳定的激发态,在其返回基态过程中产生活性氧物质(reactive oxygen species,ROS),特别是一单氧(1O2),从而杀死肿瘤细胞,达到治疗肿瘤的作用[1-2]。
多数光敏剂由于分子结构上π共轭域的存在而呈疏水性,直接在水性生理环境中应用时,很容易发生团聚而导致ROS产率严重降低,进而影响PDT的效果[3]。
熵配体助力“完美”CdSeCdS核壳量子点的合成,以及其光学性质研究

熵配体助力“完美”CdSeCdS核壳量子点的合成,以及其光学性质研究撰文:ZJH编辑:CCL尺寸在量子限域效应范围内的溶液半导体纳米晶(量子点)以其独特的光学性质,如荧光量子产率高、吸收带宽、发射峰窄、光学稳定性好等,在生物成像与标记、激光、发光二极管、显示等领域受到了工业界和学术界的广泛关注。
作为一类新兴发光和光电材料,溶液量子点的合成化学是其发展的决定性因素。
在过去二十年左右的时间里,量子点合成化学主要集中在尺寸、形貌的单分散控制。
但是,作为一类优异的发光和光电材料,仅仅实现尺寸和形貌单分散是不够的。
更加重要的合成化学任务,应该是实现量子点光学与光电性质的合成化学控制,包括激发态光物理性质和光化学性质的化学合成控制。
理想的光物理性质包括荧光量子产率达到100%、荧光寿命呈单指数衰减、集合体荧光半峰宽与单颗粒光谱一致等。
理想的光化学性质包括荧光非闪烁和抗荧光漂白性能等。
但是到目前为止,尚无同时实现这些完美光学性质的量子点的报道。
最近浙江大学peng课题组报道了他们在CdSe/CdS核壳量子点上的最新研究成果,通过在羧酸镉系统中引入熵配体首次得到了能够同时满足理想激发态光学性质的CdSe/CdS核壳量子点。
相关研究成果发表以“Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size, shell thickness, and ligand dependent photoluminescence properties”为题发表在JACS上(图1)。
图1. 同时满足理想激发态光学性质CdSe/CdS核壳量子点经过过去二十多年的发展,单一组分的核量子点,如CdSe量子点,尽管无法同时满足,也已经实现了荧光量子产率达到100%、荧光寿命呈单指数衰减、集合体荧光半峰宽与单颗粒光谱一致等理想激发态光物理性质(JACS, 2015, 137(12), 4230–4235、JACS, 2016, 138(20), 6475–6483)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于CdSe量子点复合体系的制备、表征及光谱学性能研究
随着科学技术的发展,材料复合化已成为一个重要趋势,通过溶胶-凝胶法将稀土离子、纳米晶体和有机荧光染料固相化,制备出具有优越性能的新型复合光功能材料以满足人们对材料的特殊要求已成为研究热点。
本文选择绿色化学合成方法,采用无毒、易处理的CdO和Se粉末为Cd和Se的前驱体,在280℃的油酸、十二烷基膦酸、三辛基膦体系中快速的合成出了一系列不同粒径的油溶性CdSe量子点。
利用紫外-可见吸收光谱监测其生长动力学过程,发射光谱监测其生长过程中发射峰红移,其光致发光从浅绿色到深绿色依次变化。
结果表明所合成的不同粒径的油溶性CdSe量子点的尺寸分布较窄且单分散性良好,荧光量子产率为
10-22%。
油溶性CdSe量子点转化为水溶性CdSe量子点,红外光谱表征CdSe量子点表面巯基成功取代。
利用紫外-可见吸收光谱和激发光谱表征,水溶性CdSe量子点也一样的单分散性良好,但其荧光量子产率下降为5%。
随后制备不同浓度稀土铕离子(Eu3+)/CdSe量子点和罗丹明B(RhB)/CdSe量子点复合溶液,利用紫外-可见吸收光谱和发射光谱研究其光谱学性能。
结果表明Eu3+/CdSe量子点复合溶液存在能量转移,而在RhB/CdSe量子点复合溶液中能量转移不明显,由于其间电子转移导致CdSe量子点削弱了RhB/CdSe量子点复合溶液的发光。
最后以正硅酸乙酯(TEOS)和γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(GPTMS)为硅源,采用溶胶-凝胶法成功制备出了不同浓度Eu3+/CdSe量子点和RhB/CdSe 量子点掺杂复合SiO2凝胶玻璃,X射线衍射和红外光谱分析结果表明其组成大
部分为非晶态SiO2。
利用紫外-可见吸收光谱、激发光谱和发射光谱研究了两类复合SiO2凝胶玻璃的光学谱性能。
结果表明复合SiO2凝胶玻璃基质的发光随着掺杂量的增加而削弱,在
Eu3+/CdSe量子点掺杂复合SiO2凝胶玻璃中Eu3+、CdSe量子点和复合SiO2基质之间存在能量转移现象,在RhB/CdSe量子点掺杂复合SiO2凝胶玻璃中掺杂CdSe量子点削弱了RhB和复合SiO2凝胶玻璃基质的发光。