i2c 建立保持时间原理解释
建立时间和保持时间

建立时间和保持时间X 数据∣÷-1 SIr^l<~th~~时钟「tsu:建立时间th:保持时间信号经过传输线到达接收端之后,就牵涉到建立时间和保持时间这两个时序参数,Setup/Hold time是测试芯片对输入信号和时钟信号之间的时间要求, 也就是它们表征了时钟边沿触发前后数据需要在锁存器的输入持续时间,是芯片本身的特性。
建立时间是指触发器的时钟信号提升沿到来以前,数据稳定不变的时间。
输入信号应提前时钟提升沿(如提升沿有效)T时间到达芯片,这个T就是建立时间Setup time.如不满意Setup time,这个数据就不能被这一时钟打入触发器, 只有在下一个时钟提升沿,数据才能被打入触发器;保持时间是指触发器的时钟信号提升沿到来以后,数据也必需保持一段时间,数据保持不变以便能够稳定读取(信号在器件内部通过连线和规律单元时,都有行定的延时。
延时的大小与连线的长短和规律单元的数目有关,同时还受器件的制造工艺、工作电压、温度等条件的影响。
信号的凹凸电平转换也需要肯定的过渡时间假如hold time 不够,数据便不能被有效读取并转换为输出。
假如数据信号在时钟边沿触发前后持续的时间分别超过建立时间和保持时间,那么这部分超过的重量分别称为建立时间裕量和保持时间裕量。
(这期间其实还涉及到竞争冒险的问题,也就是毛刺,稍后在讨论,建立保持时间的存在即是触发器内部的特性又在屏蔽毛刺方面起到了肯定的作用。
)其实建立时间就是在脉冲信号到来时,输入信号已经稳定等待的时间;而保持时间是信号脉冲到来后,而输入信号还没有到达下降沿的时间。
举个例子:建立时间就是你到伴侣家做客去早了,但是仆人还没回来,你等待的时间就是建立时间;保持时间就是进入房子后,逗留的(有效)时间。
当然在实际测试中我发觉时钟信号也是存在抖动和偏移的。
虽然系统时序设计中对时钟信号的要求特别严格,由于我们全部的时序计算都是以恒定的时钟信号为基准。
数据传输模型(建立时间与保持时间)

数据传输模型(建⽴时间与保持时间)关于建⽴时间和保持时间的详细介绍以及相关例题可以参考以下⽂章:在介绍数据传输模型之前必须要了解的两个概念是建⽴时间和保持时间,下⾯就介绍⼀下建⽴时间和保持时间的含义及其物理意义?建⽴时间就是时钟触发事件来临之前,数据需要保持稳定的最⼩时间,以便数据能够被时钟正确的采样。
保持时间就是时钟触发事件来临之后,数据需要保持稳定的最⼩时间,以便数据能够被电路准确的传输。
可以通俗的理解为:时钟到来之前,数据需要提前准备好;时钟到来之后,数据还要稳定⼀段时间。
建⽴时间和保持时间组成了数据稳定的窗⼝,如下图所⽰。
下⾯看⼀种典型的上升沿 D 触发器,来说明建⽴时间和保持时间的由来。
G1~G4 与⾮门是维持阻塞电路,G5~G6 组成 RS 触发器。
时钟直接作⽤在 G2/G3 门上,时钟为低时 G2/G3 通道关闭,为⾼时通道打开,进⾏数据的采样传输。
但数据传输到 G2/G3 门之前,会经过 G4/G1 与⾮门,将引⼊时间延迟。
引⼊建⽴时间的概念,就是为了补偿数据在 G4/G1 门上的延迟。
即时钟到来之前,G2/G3 端的输⼊数据需要准备好,以便数据能够被正确的采样。
数据被时钟采样完毕后,传输到 RS 触发器进⾏锁存之前,也需要经过 G2/G3 门,也会引⼊延迟。
保持时间就是为了补偿数据在 G2/G3 门上的延迟。
即时钟到来之后,要保证数据能够正确的传输到 G6/G5 与⾮门输⼊端。
如果数据在传输中不满⾜建⽴时间或保持时间,则会处于亚稳态,导致传输出错。
1、数据发起时间沿和捕获时间沿CLK。
(1)输⼊端⼝到FPGA内部的第⼀级触发器;(2)FPGA内部寄存器之间的路径;(3)FPGA内部末级触发器到输出端⼝的路径;如果是hold的数据到达时间,则是从Capture Edge开始,再加上Tclka+Tco+Tdata;也即⽐setup的数据到达之间多了⼀个clk的时间。
这⾥是需要区分的,因为后⾯计算setup和hold的裕量时会⽤到。
I2C总线工作原理

I2C总线工作原理I2C是一种串行通信总线,常用于连接主控制器和外设设备之间。
I2C总线通过低速的串行数据传输,可同时连接多个设备,使用双线(SDA和SCL)来进行通信。
本文将详细介绍I2C总线的工作原理。
1.物理层:I2C总线包含两条线路:数据线(SDA)和时钟线(SCL)。
SDA线用于数据传输,而SCL线用于同步数据传输的时钟信号。
这两条线都由一个上拉电阻连接到正电源,以保持高电平状态。
当总线上的设备需要发送数据时,它将拉低SDA线上的电平。
在同一时间,SCL线上的电平将控制数据的传输速率。
2.起始信号和停止信号:I2C总线使用起始信号和停止信号来定义数据传输的开始和结束。
起始信号是由主控制器发送的,通常在主控制器要发送数据之前。
停止信号也是由主控制器发送的,在数据传输完成后。
起始信号由将SCL线保持高电平,SDA线从高电平跳变到低电平。
停止信号是在SCL线保持高电平,SDA线从低电平跳变到高电平。
3.地址和数据传输:在I2C总线上,每个设备都有一个唯一的7位地址,用于寻址特定的设备。
主控制器在发送数据之前,必须先向设备发送一个地址字节。
地址字节由起始信号之后的8个位组成(其中最高位为0用于读操作,1用于写操作)。
设备在成功接收到其地址之后,将向主控制器发送一个应答位。
4.字节传输:一旦设备的地址被成功接收,主控制器可以开始发送数据字节。
数据字节的传输遵循以下步骤:-主控制器发送一个数据字节-设备接收到数据字节并发送一个应答位-主控制器发送下一个数据字节-设备接收到数据字节并发送一个应答位-重复以上步骤,直到所有数据字节都被传输完成5.应答信号:每当主控制器发送一个应答请求时,设备都应该发送一个应答位来确认数据的接收情况。
应答位是一个低电平脉冲,由设备在接收到数据字节后发送。
如果设备成功接收到数据字节,则发送一个低电平的应答位。
若设备遇到错误或无法接收数据,则发送一个高电平的非应答位。
6.时钟同步:I2C总线的数据传输是由SCL线上的时钟信号进行同步的。
iic时序中数据建立时间

iic时序中数据建立时间一、数据建立时间的作用在IIC总线通信中,数据建立时间是指从SCL信号由低电平变为高电平时,SDA信号的电平要稳定在数据线上的一个时间间隔。
这个时间间隔是为了确保接收方能够正确识别数据的位值,即在SCL信号上升沿之前,SDA信号已经稳定并且能够被准确读取。
数据建立时间的作用是为了保证数据的可靠传输。
在IIC通信中,SCL信号控制数据的传输时序,SDA信号则承载具体的数据位值。
当SCL信号由低电平变为高电平时,SDA信号必须在一定的时间内稳定在数据线上,以确保接收方能够准确读取数据。
如果数据建立时间不足,SDA信号可能还未稳定,接收方就开始读取数据,就会导致数据读取错误。
二、数据建立时间的实现方式在IIC总线通信中,数据建立时间是通过控制SCL信号的高电平时间来实现的。
具体而言,数据建立时间应大于或等于t_BUF,其中t_BUF是IIC设备的数据缓冲时间,也是数据从发送方到接收方的传输时间。
为了确保数据建立时间的准确性,需要根据具体的IIC设备的规格书,了解其数据建立时间的要求。
不同的IIC设备可能有不同的要求,因此在设计和布线中需要严格按照规格书中的要求进行。
三、注意事项1. 确保IIC设备的工作频率和时钟频率一致,否则可能导致数据建立时间不足或过长。
2. 在设计和布线中,应尽量缩短SCL和SDA信号的传输路径,以减少信号的传输时间和干扰。
3. 需要注意IIC设备的驱动能力,以确保SDA信号能够在规定的时间内稳定在数据线上。
4. 在进行IIC通信时,应注意信号的抗干扰能力,避免外部干扰对数据建立时间的影响。
5. 在进行IIC设备的布局时,应尽量避免长线和并行线,以减少信号的传输时间和干扰。
IIC时序中的数据建立时间是确保数据能够正确传输的关键步骤之一。
通过控制SCL信号的高电平时间,保证SDA信号在数据线上稳定的时间间隔,可以确保接收方能够准确读取数据。
在设计和布线中,需要注意IIC设备的规格要求,合理设计和布局,以确保数据建立时间的准确性和稳定性。
I2C总线时序详解教学资料

I2C总线时序详解I2C总线时序详解I2C总线位传输由于连接到I2C 总线的器件有不同种类的工艺(CMOS、NMOS、双极性),逻辑0(低)和逻辑1(高)的电平不是固定的,它由电源VCC的相关电平决定,每传输一个数据位就产生一个时钟脉冲。
数据的有效性SDA 线上的数据必须在时钟的高电平周期保持稳定。
数据线的高或低电平状态只有在SCL 线的时钟信号是低电平时才能改变。
I2C位传输数据有效性起始和停止条件SCL 线是高电平时,SDA 线从高电平向低电平切换,这个情况表示起始条件;SCL 线是高电平时,SDA 线由低电平向高电平切换,这个情况表示停止条件。
起始和停止条件一般由主机产生,总线在起始条件后被认为处于忙的状态起始和停止条件,在停止条件的某段时间后总线被认为再次处于空闲状态。
如果产生重复起始条件而不产生停止条件,总线会一直处于忙的状态,此时的起始条件(S)和重复起始条件(Sr)在功能上是一样的。
I2C总线数据传输字节格式发送到SDA 线上的每个字节必须为8 位,每次传输可以发送的字节数量不受限制。
每个字节后必须跟一个响应位。
首先传输的是数据的最高位(MSB),如果从机要完成一些其他功能后(例如一个内部中断服务程序)才能接收或发送下一个完整的数据字节,可以使时钟线SCL 保持低电平,迫使主机进入等待状态,当从机准备好接收下一个数据字节并释放时钟线SCL 后数据传输继续。
应答响应数据传输必须带响应,相关的响应时钟脉冲由主机产生。
在响应的时钟脉冲期间发送器释放SDA 线(高)。
在响应的时钟脉冲期间,接收器必须将SDA 线拉低,使它在这个时钟脉冲的高电平期间保持稳定的低电平。
通常被寻址的接收器在接收到的每个字节后,除了用CBUS 地址开头的数。
I2C总线数据传输和应答据,必须产生一个响应。
当从机不能响应从机地址时(例如它正在执行一些实时函数不能接收或发送),从机必须使数据线保持高电平,主机然后产生一个停止条件终止传输或者产生重复起始条件开始新的传输。
i2c方案原理

i2c方案原理一、引言i2c(Inter-Integrated Circuit,简称I2C)是一种串行通信协议,用于连接集成电路芯片。
它由飞利浦公司于1982年推出,并在2006年被发布为开放标准。
i2c方案广泛应用于消费电子、工业自动化、汽车电子等领域,具有简单、灵活、可靠的特点。
二、基本原理i2c方案基于主从结构,其中一个设备充当主设备,其他设备作为从设备。
主设备控制总线的时序和数据传输,从设备响应主设备的请求。
1. 总线结构i2c总线由两根线组成:串行数据线(SDA)和串行时钟线(SCL)。
SDA用于双向数据传输,SCL用于时钟同步。
2. 数据传输数据传输分为两种模式:地址模式和数据模式。
在地址模式下,主设备发送从设备的地址和读写方向的位,从设备通过SDA线响应。
在数据模式下,主设备发送或接收数据位,从设备通过SDA线响应。
3. 时序控制i2c使用时钟同步进行数据传输。
时钟由主设备产生,并控制数据的读写。
三、i2c的工作方式i2c方案的工作方式可以概括为以下几个步骤:1. 总线初始化主设备启动总线,通过发送一个特定的起始条件将总线置为忙状态。
2. 从设备选择主设备发送从设备的地址和读写方向的位,从设备通过SDA线响应。
3. 数据传输主设备根据需要发送或接收数据。
4. 响应控制从设备接收到数据后,通过响应控制线(ACK)发送一个ACK或NACK信号,表示接收到了数据或出现了错误。
5. 信号终止主设备发送一个停止条件来结束数据传输。
四、i2c的优势和应用领域i2c方案具有以下优势,使其广泛应用于各个领域:1. 简单i2c只需要两根线,使硬件设计更加简单。
2. 灵活i2c总线可以连接多个设备,每个设备都有唯一的地址,提供了灵活的系统设计选择。
3. 可靠i2c使用时钟同步,可以有效减少传输错误和冲突。
i2c方案适用于以下领域:1. 消费电子i2c广泛应用于智能手机、平板电脑、数码相机等消费电子产品中,用于连接各个芯片和模块。
I2C工作原理

文化在交流中传播高考频度:★★★★☆难易程度:★★★☆☆被誉为中芬文明交流互鉴“架桥人”的赫尔辛基大学孔子学院,作为芬兰认识中国、中国与芬兰深化友谊和合作的重要窗口,在推动汉语在芬兰的发展方面取得了丰硕的成果,已成为芬兰最大的汉语教学、汉语水平考试及中国问题研究中心,孔子学院还在芬兰多所大学的五个语言中心设立了汉语教学点。
赫尔辛基大学孔子学院的创建①扩大了中华文化的国际影响力②表明了中华优秀传统文化是中华文明的重要标志③见证了中华优秀传统文化能够推动芬兰社会发展④为中华文化的传播和中芬文化的交流作出了贡献A.①② B.①④ C.②③ D.③④1.文化交流促进世界文化的发展文化传播的意义——既促进本民族文化的繁荣,又促进世界文化的发展。
2.做传播中外文化交流的友好使者我们既要更加热情地欢迎世界各地优秀文化在中国传播,又要更加主动地推动中华文化走向世界。
做中外文化交流的友好使者,是时代赋予我们的使命。
文化传播的途径和文化传播的手段1.秦国攻灭楚国后,为了加强对南方地区的控制,派50万官兵驻扎岭南地区。
这使得相当一部分中原人留在了粤东北地区,对当地文化产生了深远的影响。
秦统一中国后,为了戍边和开发新区,组织了一系列大规模的人口迁徙。
其中最著名的北戍五原、云中,南戍五岭,人数近百万,对长城沿线和华南的开发起了重要作用。
上述材料体现的文化传播途径是A.教育是文化传播的重要途径B.人口迁徙是文化传播的重要途径C.战争是文化传播的根本途径D.古代商贸活动是文化传播的重要途径2.中央电视台“一带一路”的特别报道《数说命运共同体》,通过讲述贸易、投资、中国制造、基础设旅、饮食文化、人员往来等方面的故事,呈现出“一带一路”沿线国家“命运共同体”图景。
该节目通过最新视频技术,使主持人“走出”演播室,在不同国家之间“穿越”,和观众一起认识“一带一路”沿线国家各方面的情况。
茶叶、丝绸伴随着中国口音旅行到了世界各地,而远方的特产来到中国的同时也把海外“乡音”带进了汉语词典,阿拉伯神话传说在中国家喻户晓,中国的电影海报也张贴在外国的电影院里……这表明A.大众传媒具有文化传递、沟通、感召的强大功能B.文化既是民族的,又是世界的C.大众传媒是古今文化传播的主要途径D.文化与经济相互交融,相互影响3.2017年,中国在德国举办贯穿全年、覆盖全德的系列文化庆祝活动。
I2C详解

I2C详解1 I2C接口简介I2C全称:Inter-Integrated Circuit,是一种同步、半双工的通信总线。
同步:发送接收端要严格同步,一般有同步时钟线。
半双工:I2C只有一条数据线,所以master发数据与收数据不能同时进行。
I2C通信速率:模式速率标准模式100 kbps快速模式400 kbps高速模式3.4 MbpsI2C诞生的背景:最初的嵌入系统是使用内存映射(memory-mapped I/O)的方式来互连微控制器和外围设备的。
要实现内存映射,设备必须并行连入微控制器的数据线和地址线,也就意味着:如果要连接一款新的外围设备,需在设计芯片时候确定好。
所以很不灵活并且成本高。
1982年,Philips实验室开发了I2C,方便CPU与外设之间通信。
1.1 I2C原理简介我理解的是:I2C设计时的理念是:信号线尽量少并且速率要尽量高。
信号线少,可以减少引脚占用,这对早期的芯片(引脚很少)的很重要。
当然,如果单纯说减少信号线,1-wire总线只使用1根线通信(比如DS18B20、DHT11等都是使用这种协议),但是1-wire总线是异步通信,所以1-wire总线速率不可能太高(1-wire总线传输速率一般为16.3Kbit/s,最大可达142 Kbit/s,通常情况下采用100Kbit/s 以下的速率传输数据)。
标准的I2C需要两根信号线:SCL(Serial Clock):时钟线,时钟都是有master提供的SDA(Serial Data):双向数据线,发数据或者收数据(收发不能同时)I2C多master多slave示意图:图中是2个master+2个slave的示意,同一时刻只有一个master 与一个slave通信。
若想实现这个效果:1 多个master-slave 时钟、数据线连在一起,需要实现信号的“线与”逻辑(所以SDA、SCL 被设计为漏极开路结构,外加上拉电阻实现“线与”)2 需要实现“时钟同步”和“总线仲裁”,引脚在输出信号的同时还能对引脚上的电平进行检测,检测是否与刚才输出一致,为“时钟同步”和“总线仲裁”提供硬件基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i2c 建立保持时间原理解释
I2C总线协议是一种常见的串行总线,由一条数据线SDA和一条时钟线SCL组成。
在I2C总线上进行一次数据传输称为一帧,这一过程包括了启动信号、寻址字节以及若干个数据字节。
建立保持时间是电路时序中的重要概念。
建立时间(Tsu)是指触发器时钟上升沿到来之前,数据必须保持不变的时间;保持时间(Th)是指触发器时钟上升沿到来之后,数据必须保持不变的时间。
这两个时间的要求对于电路的正确工作至关重要,因为它们确保了数据的稳定和准确传输。
在I2C总线上,主控器与被控器之间的数据传输也需要遵循建立保持时间的原理。
具体来说,激活(获胜)的主机会根据Hs模式的毛刺抑制要求调整SDAH和SCLH的输入滤波器,同时也会调整建立和保持时间,以及SDAH和SCLH输出级的设置。
总体而言,建立保持时间原理在I2C总线上的应用是为了确保数据传输的准确性和稳定性,防止由于时序问题导致的数据传输错误。