雷达信号波形的基本类型

合集下载

中国反隐雷达的原理

中国反隐雷达的原理

中国反隐雷达的原理反隐雷达是一种用于侦察和跟踪隐身飞机的雷达系统。

隐身飞机是指具备较低雷达截面积(RCS)的飞机,它们能够减少被雷达探测到的概率。

因此,反隐雷达的原理就是通过各种技术手段来识别和追踪这些隐身飞机。

下面将详细介绍反隐雷达的工作原理。

反隐雷达的工作原理主要包括以下几个方面:1. 多普勒雷达:多普勒雷达主要通过接收目标飞机的回波信号,分析回波信号中的多普勒频移信息来判断目标飞机的运动状态和速度。

多普勒雷达可以检测到目标飞机的微弱运动信号,其中包括目标飞机的微小波动、振荡等。

通过分析这些微弱的运动信号,结合雷达信号处理算法,可以有效识别和追踪隐身飞机。

2. 频率波形雷达:频率波形雷达是一种根据雷达信号的频率变化进行目标识别和追踪的技术。

通过改变雷达发射信号的频率和波形,可以使其与目标飞机的回波信号产生相互作用,从而获得目标的特征信息。

频率波形雷达具有较高的灵敏度和辨识度,可以有效对抗隐身飞机。

3. 多靶接收机(MTI)雷达:多靶接收机雷达主要是通过在接收机中采用多个接收通道,同时接收多个脉冲回波信号,并通过处理这些信号,识别和分离出有效目标。

MTI雷达在接收器中引入一种特殊的处理技术,可以有效抑制地物和杂波对目标的干扰,提高目标的信噪比和探测能力。

4. 主动相控阵雷达(AESA):主动相控阵雷达是一种利用大量天线单元组成的多个阵元,通过电子技术来控制各个阵元的发射和接收方向,以实现雷达波束的快速扫描和定向。

AESA雷达具有快速反应、多目标跟踪和强抗干扰能力等特点,可以有效应对隐身飞机的挑战。

5. 被动雷达:被动雷达是一种利用目标本身发射的无线电信号作为侦测目标的手段。

被动雷达通过接收目标飞机发射的无线电信号,分析信号特征,如频率、功率等,识别和跟踪目标。

由于被动雷达只接收信号而不发射,因此很难被目标飞机察觉和干扰,具有一定的隐蔽性。

以上是反隐雷达的几种工作原理,通过应用这些原理和技术手段,可以有效对抗隐身飞机的威胁,提高空中侦察和目标跟踪的能力。

第七讲地质雷达波相识别_图文(精)

第七讲地质雷达波相识别_图文(精)

第七讲地质雷达波相识别地质雷达反射记录的波形比地震波复杂的多,一方面是由于地质雷达分辨率高记录的信号丰富,另一方面是由于电磁波的干扰因素多,此外还由于雷达发射的子波比较复杂,并非简单的脉冲。

因而雷达资料的处理与解释是一项复杂细致的工作。

特别是各种地层、目标体、干扰波的识别需要坚实的理论基础和丰富的实践经验。

7.1 地质雷达的波组特征雷达天线发射的是子波而不是单脉冲,子波由几个震荡波形组成,占有一定的时间宽度,反射与折射波依然保持有原来子波的特点,只是幅值上有所变化。

这里将雷达子波的周期、持续时间长度和衰减比三个参量作为子波的波阻特征。

子波的频率成分与天线的主频相近,持续一个半到两个周期,后续振相略有衰减。

例如对于100MHz天线的子波,持续时间可到15-20ns,对于1GHz的天线,持续时间约2ns。

子波的波形的确定对于后期处理是非常重要的,它是小波处理的基础。

有很多方法可以获得各种频率天线的子波,最简单的方法是利用金属板反射。

将一块较大的金属板放置于地面上,发射与接受天线与金属板平行,相距为3个周期的时程,进行数据采集,即可获得子波记录。

不同类型的雷达、不同型号的天线,雷达子波的形状是不同的。

天线与介质的距离、介质的电导特性对子波的形态和特点也有一定的影响,应根据现场工作条件从记录中分离子波。

从下边的记录中也可以辨认出子波的特征。

表面反射波、内界面反射波都是近联各州其的衰减波形。

对其进行分析可以得到子波的波组特征7.2 地质与工程介质结构及反射特征雷达的探测对象通常是多界面结构,如各类地层、岩性,松散层、风化层等都是多层结构。

隧道中的围岩、初衬、二衬等,也是多界面结构。

雷达波向介质内传播时,被称为下行波,经反射回表面的波称为上形波。

下行波每遇到一个界面就发生一次反射和折射,入射波能量即被分成两部分,一部分经折射继续向下传播,另一部分经反射掉头向上,变成上行波。

反射与折射能量的分配与反射、折射系数的平方成正比。

雷达原理与系统知识要点总结(必修)

雷达原理与系统知识要点总结(必修)

成绩构成:平时20%(原理10%+系统10%,含考勤和课堂测试),期中30%,期末40%,课程设计10%。

雷达原理与系统(必修)知识要点整理第一章:1、雷达基本工作原理框图认知。

2、雷达面临的四大威胁3、距离和延时对应关系4、速度与多普勒关系(径向速度与线速度)5、距离分辨力,角分辨力6、基本雷达方程(物理过程,各参数意义,相互关系,基本推导)7、雷达的基本组成(几个主要部分),及各部分作用第二章雷达发射机1、单级振荡与主振放大式发射机区别2、基本任务和组成框图3、峰值功率、平均功率,工作比(占空比),脉宽、PRI(Tr),PRF(fr)的关系。

第三章接收机1、超外差技术和超外差接收机基本结构(关键在混频)2、灵敏度的定义,识别系数定义3、接收机动态范围的定义4、额定噪声功率N=KTB N、噪声系数计算及其物理意义5、级联电路的噪声系数计算6、习题7、AGC,AFC,STC的含意和作用第四章显示器1、雷达显示器类型及其坐标含义;2、A型、B型、P型、J型第五章作用距离1、雷达作用距离方程,多种形式,各参数意义,PX=?Rmax=?(灵敏度表示的、检测因子表示的等)2、增益G和雷达截面A的关系2、雷达目标截面积定义3、习题4、最小可检测信噪比、检测因子表示的距离方程5、奈曼皮尔逊准则的定义6、虚警概率、检测概率、信噪比三者关系,习题.(会看图查数)由概率分布函数、门限积分区间表示的各种概率形式;6.5 CFAR●什么是CFAR●慢变化CFAR的框图和原理●快变化CFAR的框图和原理,(左右平均、左右平均选大)●CFAR的边缘效应,图及分析7、为什么要积累,相参积累与非相参积累对信噪比改善如何,相参M~M倍。

8、积累对作用距离的改善,(方程、结论、习题)9、大气折射原因、直视距离计算(注意单位Km还是m)10、二次雷达方程、习题。

11、分贝表示的雷达方程,计算、习题,普通雷达方程的计算。

第六章距离测量1、R,tr,距离分辨力、脉宽、带宽关系2、最短作用距离、最大不模糊距离与脉宽、重频关系3、双重频判距离模糊、习题。

实验1.雷达信号波形分析实验报告

实验1.雷达信号波形分析实验报告

实验1.雷达信号波形分析实验报告实验一雷达信号波形分析实验报告一、实验目的要求1. 了解雷达常用信号的形式。

2. 学会用仿真软件分析信号的特性。

3.了解雷达常用信号的频谱特点和模糊函数。

二、实验参数设置信号参数范围如下:(1)简单脉冲调制信号:载频:85MHz脉冲重复周期:250us脉冲宽度:8us幅度:1V(2)线性调频信号载频:85MHz脉冲重复周期:250us脉冲宽度:20us信号带宽:15MHz幅度:1V三、实验仿真波形1.简单的脉冲调制信号程序:Fs=10e6;t=0:1/Fs:300e-6;fr=4e3;f0=8.5e7;x1=square(2*pi*fr*t,3.2)./2+0.5;x2=exp(i*2*pi*f0*t);x3=x1.*x2;subplot(3,1,1);plot(t,x1,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('脉冲信号重复周期T=250US 脉冲宽度为8us') grid;subplot(3,1,2);plot(t,x2,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('连续正弦波信号载波频率f0=85MHz') grid;subplot(3,1,3);plot(t,x3,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('·幅度/v')title('脉冲调制信号')grid;仿真波形:脉冲信号重复周期T=250us 脉冲宽度为8us 幅度/v10-101时间/s连续正弦波信号载波频率f0=85MHz23x 10-4 幅度/v10-101时间/s脉冲调制信号123x 10-4幅度/v0-101时间/s23x 10-42.线性调频信号程序:Fs=10e6;t=0:1/Fs:300e-6;fr=4e3;f0=8.5e7;x1=square(2*pi*fr*t,8)./2+0.5;x2=exp(i*2*pi*f0*t); x3=x1.*x2;subplot(2,2,1);plot(t,x1,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('脉冲信号重复周期T=250US 脉冲宽度为8us ') grid;subplot(223);plot(t,x2,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('连续正弦波信号载波频率f0=85MHz ')grid;eps = 0.000001;B = 15.0e6;T = 10.e-6; f0=8.5e7;mu = B / T;delt = linspace(-T/2., T/2., 10001);LFM=exp(i*2*pi*(f0*delt+mu .* delt.^2 / 2.)); LFMFFT = fftshift(fft(LFM));freqlimit = 0.5 / 1.e-9;freq = linspace(-freqlimit/1.e6,freqlimit/1.e6,10001); figure(1) subplot(2,2,2)plot(delt*1e6,LFM,'k');axis([-1 1 -1.5 1.5])grid;xlabel('时间/us')ylabel('幅度/v')title('线性调频信号T = 10 mS, B = 15 MHz')subplot(2,2,4)y=20*log10(abs(LFMFFT));y=y-max(y);plot(freq, y,'k');axis([-500 500 -80 10]);grid; %axis tight xlabel('频率/ MHz') ylabel('频谱/dB')title('线性调频信号T = 10 mS, B = 15 MHz')仿真波形:??/v 0123-4??/v 时间/s??/v 012x 10-10 0.5 时间/us-0.5 1??/dB 3 x 10-4时间/s-5000 频率/ MHz500四、实验成果分析本实验首先利用MTALAB软件得到一个脉冲调制信号,然后再对其线性调频分析,得到上面的波形图。

雷达电路基本特性与原理总结

雷达电路基本特性与原理总结

雷达电路基本特性与原理总结雷达是一种广泛应用于军事、航海、气象等领域的无线电设备,它通过利用电磁波的特性来探测、跟踪和测量目标物体。

雷达电路是构成雷达系统的重要组成部分,它包括发射电路、接收电路以及信号处理电路。

本文将对雷达电路的基本特性与原理进行总结。

一、发射电路雷达发射电路主要负责产生高频电磁波信号。

其核心是振荡器,通过振荡器产生的的电磁波信号经过功率放大器放大后输出。

发射电路通常采用脉冲信号的形式,具有高频率、尖锐的脉冲状波形特点。

这种波形能够提供足够的功率和较高的分辨率,从而实现雷达系统对目标物的精确测量和探测。

二、接收电路雷达接收电路主要负责接收从目标物体反射回来的电磁波信号。

接收电路中的天线将反射信号转化为电信号并经过放大器进行增益。

为了减小背景噪声和增强目标信号的强度,接收电路通常会采用窄带滤波器对信号进行滤波。

此外,为了提高雷达系统的灵敏度,接收电路还可以应用自动增益控制(AGC)技术,根据接收信号的强度自动调节放大倍数。

三、信号处理电路雷达信号处理电路主要负责对接收到的信号进行解调、滤波、整形等处理,以便进一步提取目标信息。

在解调方面,采用混频器将高频信号转化为中频信号,并通过滤波器去除噪声。

为了实现目标的测量和识别,信号处理电路还可以实现距离测量、速度测量以及目标识别等功能。

此外,为了优化雷达系统性能,信号处理电路还可以应用自适应波形技术,根据目标的特性自动调节发射波形参数。

综上所述,雷达电路的三个主要部分共同工作,实现了雷达系统对目标物的精确探测和测量。

发射电路产生高频脉冲信号,接收电路接收并增强目标反射信号,信号处理电路对接收信号进行解调、滤波和整形,以便提取目标信息。

在实际应用中,雷达电路的优化设计和创新技术的应用将进一步提高雷达系统的性能和可靠性。

总结:雷达电路是雷达系统的重要组成部分,包括发射电路、接收电路和信号处理电路。

发射电路产生高频脉冲信号,接收电路接收并增强目标反射信号,信号处理电路对接收信号进行解调、滤波和整形,以提取目标信息。

雷达原理介绍ppt课件

雷达原理介绍ppt课件

的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个

雷达原理与系统-雷达信号波形与脉冲压缩(二)

雷达原理与系统-雷达信号波形与脉冲压缩(二)
冲已经完全发射。这就限制了雷达的最小作用距离
Rmin
cT
2
2Rmin
2 Rmin
,T
tr '
因此, T 可按下式选择: T
c
c
tr ' 为收发开关恢复时间,一般取(1~2)s。
(3)从雷达的作用距离及其对能量的要求,对远距离的探测通常使用带
调制的宽脉冲信号。为了解决近距离盲区的问题,经常发射窄脉冲补盲。
vr ,u
fr
2
fr
Ru
vr,u
1000 Hz
150 km
50 m/s
250 Hz
600 km
12.5 m/s
5000 Hz
30 km
250 m/s
4.6 距离与多普勒模糊
脉冲重复频率PRF的选择必须考虑避免产生距离和多普勒模糊,并使得
雷达的平均发射功率降到最低。不同PRF对应的距离和多普勒模糊如下表
两种PRF为:
f r1 N f rd =59 1.5e3=88.5 (kHz)
f r 2 ( N 1) f rd =60 1.5e3=90 (kHz)
对应的无模糊距离为
Ru1
c
300e6
=
1.695 (km)
2 f r1 2 88.5e3
Ru 2
c
300e6
=
1.667 (km)
PRF不能低于目标的最大多普勒频移的2倍,否则雷达无法分辨目标的
多普勒信息。
若目标可能的最大径向速度 vr max
多普勒频移为 f d max ,则PRF选取
对应的最大
f r 2 f d max
2vr max

雷达仿真参数

雷达仿真参数

雷达仿真参数雷达仿真是通过计算机模拟和分析雷达工作过程的一种方法。

在雷达仿真中,需要使用一系列的参数来描述雷达系统的性能和特性。

这些参数包括雷达的发射和接收信号、天线参数、目标参数等等。

本文将着重介绍雷达仿真中常用的参数及其含义。

1. 雷达发射信号参数雷达发射信号的参数主要包括频率、脉冲宽度、重复频率、功率等。

频率用于描述雷达发射信号的频率范围,通常以赫兹(Hz)为单位。

脉冲宽度表示雷达发射信号的脉冲宽度,可用纳秒(ns)为单位。

重复频率是指雷达脉冲的发射频率,一般以赫兹(Hz)表示。

功率表示雷达发射信号的功率大小,常以瓦特(W)为单位。

2. 雷达接收信号参数雷达接收信号的参数包括波形、带宽、信噪比等。

波形用于描述雷达接收信号的波形特征,可以是连续波(CW)或脉冲波。

带宽表示雷达接收信号的频带宽度,常以赫兹(Hz)为单位。

信噪比是衡量雷达接收信号中信号与噪声的比值,通常以分贝(dB)为单位。

3. 雷达天线参数雷达天线参数主要包括天线增益、波束宽度、极化等。

天线增益描述天线的辐射效率,一般以分贝(dB)表示。

波束宽度表示天线主瓣束宽的角度范围,常以度(°)表示。

极化是指天线辐射电磁波时的电场或磁场方向,可以是垂直极化、水平极化或者其他极化方式。

4. 雷达目标参数雷达目标参数是描述被雷达探测到的目标的性质和位置信息。

包括目标的距离、速度、方位角、仰角等。

距离表示目标距离雷达的距离,通常以米(m)为单位。

速度表示目标相对于雷达的运动速度,常以米每秒(m/s)表示。

方位角是指目标相对于雷达的方位角度,仰角是指目标相对于雷达的仰角度。

通过对这些参数的合理设定和调整,可以模拟出不同雷达工作状态下的信号和目标响应,从而进行雷达性能评估、系统优化等工作。

雷达仿真是雷达系统设计和研发中的重要环节,能够有效地减少实际试验成本和提高系统性能。

总结起来,雷达仿真参数是用于描述雷达工作过程的一系列参数,包括发射信号参数、接收信号参数、天线参数和目标参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达信号波形的基本类型
现代雷达根据其使命和技术体制的不同,分为预警雷达、火控雷达、制导雷达、导航雷达、成像雷达等多种类型。

但无论是哪种类型的雷达,其辐射信号波形都可以归为以下几种基本类型:调幅脉冲信号、线性调频和非线性调频脉冲信号、相位编码脉冲信号、连续波信号和调频连续波信号。

调幅脉冲信号是最常用、最简单、也是最重要的雷达信号之一,通常被称为常规脉冲雷达信号。

其数学表达式为
s(t)=Arect(t/T)ej2πft,其中A为信号幅度,T为脉冲宽度,f为
载波频率。

调幅脉冲雷达信号的波形如图2.3-3所示。

线性调频信号是一种具有大时宽带宽积的信号,可以通过非线性相位调制或线性频率调制获得。

由于线性调频信号可以获得较大的压缩比,因此在高分辨率雷达和脉冲压缩雷达等领域得到了广泛应用。

线性调频信号的数学表达式为
s(t)=Arect(t/T)ej2π[ft+μt^2/2],其中A为信号幅度,f为载波频率,T为脉冲宽度,μ=B/T为信号的调频频率,B为调制带宽。

线性调频信号有正斜率和负斜率两种基本形式,其波形和频率变化关系如图2.3-4所示。

相位编码信号因其固有特性被广泛应用于脉冲压缩技术。

连续波信号和调频连续波信号则在雷达测距和测速等方面发挥着重要作用。

一般情况下,当带宽宽度积(BT)大于等于1时,线性
调频信号的特性可以用以下表达式表示:幅频特性为
S_LFM(f) = A/μ^2 rect[(f-f_0)/B],相频特性为Φ_LFM(f) = -
πμ(f-f_0)^2/4,信号的瞬时频率为f_i = f_0 + μt (-T/2 ≤ t ≤ T/2)。

下图展示了带宽为1MHz,脉冲宽度为100μs的线性调频信号
的时域波形、幅度谱和相频谱。

相位编码脉冲信号属于“离散调制型”信号,其编码通常使用伪随机序列。

由于其主副比较大,压缩性能好,因此备受关注。

然而,相位编码信号对XXX频移比较敏感,只适用于多
普勒频率范围较窄的场合。

伪随机相位编码(PCM)信号的
复数表达式为S_PCM(t) = u(t)ej2πft = a(t)ejφ(t) + 2πft,其中u(t)为复包络,a(t)为幅度调制函数,φ(t)为相位调制函数。

对于二相信号,φ(t)只有0或π两种取值,可以用二进制序列表示。

如果二相编码信号的包络为矩形,则其复包络可以写成式
(2.3-8)。

其中T为子脉冲宽度,c_k为二进制序列。

在雷达系统中,常常需要使用相位编码脉冲信号。

这类信号常常使用巴克码和m序列等编码序列。

其中,巴克码是一
种较为理想的二元列码,具有较大的时宽带宽积和良好的相关特性。

巴克码的自相关函数可以表示为一个具有正负两种取值的序列。

虽然巴克码的长度有限,但是它仍然是一种很理想的编码压缩信号。

另一方面,m序列是由具有线性反馈特性的移存器产生的最长线性反馈移存器序列。

m序列的周期最长,因此在雷达系统中也经常被使用。

在巴克码中,目前已知的序列长度有2、3、4、5、7、11、13等。

其中,以13位巴克码最具有实用价值。

但是,巴克码
自相关函数的主副比等码长,即使13位巴克码的自相关函数
理论上也只有22.3分贝的旁瓣抑制。

因此,巴克码虽然是一
种较为理想的编码压缩信号,但是在实际应用中仍然需要注意其局限性。

除了巴克码和m序列之外,相位编码脉冲信号还可以使
用二相编码脉冲和四相编码脉冲等相位调制方式。

这些编码序
列和线性调频信号一起,成为脉冲压缩雷达经常使用的基本发射波形。

在具体应用中,我们可以根据需要选择不同的编码序列和相位调制方式,以满足实际需求。

相关文档
最新文档