第19章《一次函数》检测卷
第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)

2022-2023学年新人教版初中八年级数学下册第十九单元基础知识质量检测卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)函数y=x―25中自变量x的取值范围是( )A.x>2B.x<2C.x≥2D.x≤22.(3分)一次函数y=﹣2x+2经过点(a,2),则a的值为( )A.﹣1B.0C.1D.23.(3分)已知一次函数y=kx﹣4(k≠0),y随x的增大而增大,则k的值可以是( )A.﹣2B.1C.0D.﹣34.(3分)下列函数中,是一次函数的是( )A.y=3x﹣5B.y=x2C.y=6xD.y=1x―15.(3分)在正比例函数y=kx中,y的值随着x值的增大而增大,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A.B.C.D.6.(3分)点P1(﹣1,y1),点P2(2,y2)是一次函数y=kx+b(k<0)图象上两点,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定7.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是( )A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快8.(3分)下列问题中,变量y与x成一次函数关系的是( )A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系9.(3分)一次函数y=﹣2x+6的图象与y轴的交点坐标是( )A.(0,6)B.(6,0)C.(3,0)D.(0,3)10.(3分)在正比例函数y=kx中,y的值随着x值的增大而减小,则点A(﹣3,k)在( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(a,b)在函数y=4x+3的图象上,则代数式12a﹣3b+1的值等于 .12.(3分)一次函数y=(k﹣3)x﹣2的函数值y随自变量x的增大而减小,则k的取值范围是 .13.(3分)小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为 .14.(3分)已知三点A(﹣2,6),B(﹣3,1),C(1,﹣3).若正比例函数y=kx图象经过其中两点,则k的值为 .15.(3分)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为 .16.(3分)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m= .三.解答题(共9小题,满分72分)17.(6分)求下列函数中自变量的取值范围.(1)y=2x﹣1;(2)y=x―3+5―x;(3)y=14―2x.18.(6分)平面直角坐标系xOy中,经过点(1,2)的直线y=kx+b,与x轴交于点A,与y轴交于点B.(1)当b=3时,求k的值以及点A的坐标;(2)若k=b,P是该直线上一点,当△OPA的面积等于△OAB面积的2倍时,求点P的坐标.19.(6分)已知y﹣1与x﹣1成正比例,且x=3时,y=4.(1)求y与x之间的函数关系式;(2)当y=﹣1时,求x的值.20.(8分)如图,一次函数y=kx+b(k≠0)的图象经过A,B两点.(1)求此一次函数的解析式;(2)结合函数图象,直接写出关于x的不等式kx+b<4的解集.21.(8分)我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了yml水.(1)试写出y与x之间的函数关系式?(2)当滴了1620mL水时,小明离开水龙头几小时?22.(8分)已知一次函数y=―12x+3.(1)作出函数的图象;(2)求图象与两坐标轴所围成的三角形的面积.23.(10分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下关系:(其中0≤x≤30)时间/x257101213141720接受能力/y47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(10分)狗头枣产于陕西省延安市一带,久负盛名,其性味甘平,有润心肺、止咳、补五脏、治虚损的功效,已成为革命圣地延安最为著名的特产.某经销商购进了一批狗头枣,根据以往的销售经验,每天的售价与销售量之间有如下关系:当单价为38元/千克时,每天可以销售50千克,单价每下调1元,销量就会增加2千克,若设单价下调了x 元/千克,销售量为y千克.(1)y与x之间的关系式为 ;(2)当售价为28元/千克,这天的销售量是多少?(3)如果这批狗头枣的进价是20元/千克,某天的售价定为30元/千克,则这天的销售利润是多少元?25.(10分)甲超市在国庆节期间进行苹果优惠促销活动,苹果的标价为5元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.其中x(单位:kg)表示购买苹果的重量,y甲(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 元;购买5kg苹果需付款 元;(2)写出付款金额y甲关于购买苹果的重量x的函数关系式;(3)乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?参考答案1.C;2.B;3.B;4.A;5.A;6.A;7.D;8.A;9.A;10.C;11.﹣8;12.k<3;13.1.5千米;14.﹣3;15.y=﹣2x﹣4;16.4;17.解:(1)y=2x﹣1中,自变量的取值范围是全体实数;(2)由题意得:x﹣3≥0,5﹣x≥0,解得:3≤x≤5;(3)由题意得:4﹣2x>0,解得:x<2.18.解:(1)∵直线y=kx+b经过点(1,2),∴k+b=2,当b=3时,k=﹣1,∴直线解析式为y=﹣x+3,令y=0,得x=3,∴点A的坐标为(3,0);(2)由(1)知k+b=2,当k=b时,可得k=b=1,∴直线解析式为:y=x+1,令x=0,得y=1,令y=0,得x=﹣1,∴点A的坐标为(﹣1,0),点B坐标为(0,1),∴S△OAB=12×1×1=12,设点P(m,n),∵△OPA的面积等于△OAB面积的2倍,∴12×1×|n|=2×12,∴|n|=2,得n=±2,∴点P坐标为(1,2)或(﹣3,﹣2).19.解:(1)∵y﹣1与x﹣1成正比例,∴设y﹣1=k(x﹣1),∵x=3时y=4,∴4﹣1=k(3﹣1),解得:k=3 2,∴y与x之间的函数关系式为:y﹣1=32(x﹣1),即y=32x―12;(2)当y=﹣1时,﹣1=32x―12,解得:x=―1 3.20.解:(1)将点A(3,4),B(0,﹣2)的坐标分别代入y=kx+b中,得3k+b=4 b=―2,解得k=2b=―2,故一次函数的解析式y=2x﹣2;(2)观察图象可知:关于x的不等式kx+b<4的解集为x<3.21.解:(1)∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开x小时滴的水为3600×2×0.05x,∴y=360x(x≥0).(2)当y=1620mL时,1620=360x,解得x=4.5小时,答:小明离开水龙头4.5小时.22.解:(1)直线一次函数y=―12x+3过(0,3)(6,0)两点,描点连线可以画出其图象,如图:(2)图象与两坐标轴所围成的三角形的面积=12×6×3=9.23.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为13分钟时,学生的接受能力最强;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.24.解:(1)由题意可知y与x之间的关系式为,y=50+2x;(2)当售价为28元/千克,价格下调了x=38﹣28=10,将x=10代入关系试中得y=50+2×10=70,∴当售价为28元/千克,这天的销售量是70千克;(3)当售价为30元/千克,价格下调了x=38﹣30=8,将x=8代入关系试中得y=50+2×8=66,∴当售价为30元/千克时的销售量是66千克,利润=(售价﹣进价)×销售量=(30﹣20)×66=660元,∴这天的销售利润是660元.25.解:(1)由题意可知:文文购买3kg苹果,不优惠,∴文文购买3kg苹果需付款:3×5=15(元),购买5kg苹果,4kg不优惠,1kg优惠,∴购买5kg苹果需付款:4×5+1×5×0.6=23(元),故答案为:15,23;(2)由题意得:当0<x≤4时,y甲=5x,当x>4时,y甲=4×5+(x﹣4)×5×0.6=3x+8,∴付款金额y甲关于购买苹果的重量x的函数解析式为:y甲=5x(0<x≤4) 3x+8(x>4);(3)文文在甲超市购买10kg苹果需付费:3×10+8=38(元),文文在乙超市购买10kg苹果需付费:5×10×0.8=40(元),∵38<40,∴文文应该在甲超市购买更划算.。
人教版八年级下册数学 第19章 一次函数 单元检测卷(含答案)

第19章一次函数单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(共11题;共33分)1.下列函数中为一次函数的是()A. B. C. D. (、是常数)2.下列函数中,“y是x的一次函数”的是()A. y=2x﹣1B. y=x2C. y=1D. y=1﹣x3.一次函数y=kx+b的图象经过第一、三、四象限,则()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<04.下列函数(1)y=πx;(2)y=2x﹣1;(3)y=;(4)y=22﹣x;(5)y=x2﹣1中,一次函数的个数是()A. 4个B. 3个C. 2个D. 1个5.如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A. 当x=2时,y=5B. 矩形MNPQ的面积是20C. 当x=6时,y=10D. 当y=时,x=106.对于函数,下列说法不正确的是()A. 其图象经过点(0,0)B. 其图象经过点(﹣1,)C. 其图象经过第二、四象限D. y随x的增大而增大7.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是()A. y=-2x-3B. y=-2x-6C. y=-2x+3D. y=-2x+68.结合正比例函数y=4x的图象回答:当x>1时,y的取值范围是()A. y=1B. 1≤y<4C. y=4D. y>49.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A. 2小时B. 2.2小时C. 2.25小时D. 2.4小时10.函数y= 中,自变量x的取值范围是()A. x>2B. x≥﹣3C. x>﹣3D. x≥211.把直线y=﹣x+l沿y轴向上平移一个单位,得到新直线的关系式是()A. y=﹣xB. y=﹣x+2C. y=﹣x﹣2D. y=﹣2x二、填空题(共11题;共33分)12.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为t(分钟).y甲、y乙与x之间的函数图象如图所示,则乙返回到学校时,甲与学校相距________千米.13.已知正比例函数y=mx的图象经过(3,4),则它一定经过________ 象限.14.如图,已知一次函数y=kx+b,观察图象回答下列问题:x________ 时,kx+b<0.15.已知一次函数y=2x+4的图象经过点(m,8),则m=________16.函数中,自变量x的取值范围是________。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。
人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案

人教版八年级数学下册《第十九章一次函数》检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一次函数的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限2.函数图象向右平移个单位后,对应函数为()A.B.C.D.3.已知直线经过一、二、四象限,则直线的图象只能是()A.B.C.D.4.一次函数的函数值随的增大而减小,则的值为()A.2 B.3 C.4 D.55.一次函数的图象经过两个点和,则,的大小关系是()A. B. C.当时, D.当时,6.网语期印,李明同学在老家学习生活,为缓解线上学习疲劳,在某个周末和爸爸进行登山锻炼,登山过程中,两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示(甲为爸爸,乙为李明),李明提速后,李明的登山速度是原来速度的2倍,并先到达山顶.根据图象所提供的信息,下列说法情误的是()A.甲登山的速度是每分钟米B.乙在A地时距地面的高度b为米C.乙登山分钟时追上甲D.登山时间为5分钟、8分钟、分钟时,甲、乙两人距地面的高度差为米7.如图,直线分别与轴、轴交于点和点,直线分别与轴、轴交于点和点,点是内部(包括边上)的一点,则的最大值与最小值之差为()A.1 B.2 C.4 D.68.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题9.在函数y= 中,自变量x的取值范围是.10.若点在函数的图象上,则代数式的值为。
11.已知一次函数与(k是常数,)的图像的交点坐标是,则方程组的解是.12.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(小时)的函数关系及自变量的取值范围是13.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系.如果通讯费用为60元,那么A方案与B方案的通话时间相差分钟.三、解答题14.已知一次函数(,为常数,)的图象经过点和.(1)求该一次函数的解析式;(2)当时,求该一次函数的函数值的取值范围.15.如图,一次函数的图象与轴交于点B,与正比例函数的图象交于点.(1)求的面积;(2)利用函数图象直接写出当时,x的取值范围.16.油炸冰激凌是以面包、鸡蛋、冰激凌为材料制作的一种西式小吃,某油炸冰激凌专卖店每天固定制作甲、乙两个款型的油炸冰激凌共1000个,且所有产品当天全部售出,原料成本、销售单价及店员生产提成如表所示:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过10750元,应怎样安排甲、乙两种款型的制作量,可使该店这一天所获得的利润最大?并求出最大利润(总成本=原料成本+生产提成,利润=销售收入﹣投入总成本)17.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求乙车出发多少时间,两车相距50千米?18.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A ,B 两种图书.经调查,购进A 种图书费用y 元与购进A 种图书本数x 之间的函数关系如图所示,B 种图书每本20元. (1)当和时,求y 与x 之间的函数关系式;(2)现学校准备购进300本图书,其中购进A 种图书x 本,设购进两种图书的总费用为w 元. ①当时,求出w 与x 间的函数表达式;②若购进A 种图书不少于60本,且不超过B 种图书本数的2倍,那么应该怎样分配购买A ,B 两种图书才能使总费用最少?最少总费用多少元?19.如图,直线124l y x =-+:分别与x 轴、y 轴交于A ,B 两点,直线2l 与1l 交于点()2P a ,,与x 轴交于点()30C -,,点M 在线段AB 上,直线ME x ⊥轴于点E ,与2l 交于点N . (1)求直线2l 的表达式; (2)设点M 的横坐标为m . ①当32m =时,求线段MN 的长; ②若点M ,N ,E 三点中,其中两点恰好关于第三点对称,直接写出此时m 的值参考答案:1.D2.D3.B4.A5.A6.C7.B8.B9.x≠﹣110.1111.12.13.3014.(1)解:∵点,在该一次函数的图象上∴解得∴该一次函数的解析式为.(2)解:∵∴该一次函数的函数值随的增大而减小.当时;当时.∴当时,该一次函数的函数值的取值范围是.15.(1)解:∵一次函数的图象过点∴∴∴一次函数的表达式为 .当时∴∴ .(2)当时,的取值范围为16.(1)解:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元可得:y=(20﹣10﹣2) x+(16﹣8﹣1.5) (1000﹣x)=1.5x+6500;(2)设安排甲型产品x件,则乙型产品(1000-x)件,根据题意得到不等式,解不等式即可得到结论.由题意,12x+9.5(1000﹣x)≤10750,解得x≤500∵y=1.5x+6500,1.5>0∴x=500时,y有最大值=1.5×500+6500=7250答:该店每天制作甲、乙款型的油炸冰激凌各500个,可使该店这一天所获得的利润最大,最大利润7250元.17.(1)解:由图象可知乙车比甲车晚出发1个小时(2)解:设甲的函数解析式为y=kx,把点(5,300)代入得到k=60,故y=60x设乙的函数解析式为y=k′x+b,把点(1,0)和点(4,300)代入得到解得故y=100x﹣100由得= =1.5所以乙车出发后1.5小时追上甲车.(3)解:由题意:60x﹣(100x﹣100)=50或100x﹣100﹣60x=50解得到x= 或因为﹣1= ,﹣1=所以求乙车出发或小时,两车相距50千米.18.(1)解:当时,设将代入解析式,得解得当时,设将、分别代入解析式得解得综上, (2)解:①当时;②此时随x 的增大而减小 当时,w 最小,最小值为: 故购买A 种200本,B 种100本时总费用最少,最少总费用为5800元19.18.(1)解:将点()2P a ,代入124l y x =-+:,得224a =-+ 解得1a = 设2l y kx b =+:∴203k bk b =+⎧⎨=-+⎩解得1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴2l 的表达式为1322y x =+ (2)解:①根据题意3931242N M ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,∴95144MN =-=. ②m 的值为139 13。
人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
人教版八年级下册数学 第19章 一次函数 单元同步检测试题
第19章 一次函数 单元测试题一.选择题(每题3分,共30分)1.下列函数中,“y 是x 的一次函数”的是( )A. y=2x ﹣1B. y=x 2C. y=1D. y=1﹣x2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0< 3.有下列等式:y =﹣2x ﹣1,y =x 2,y =|x|,|y|=x .其中y 是x 的函数的有( )A .1个B .2个C .3个D .4个4.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<35.如果通过平移直线3x y =得到53x y +=的图象,那么直线3x y =必须( ). A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位 6.琪琪的爷爷饭后出去散步,从家中走20分钟到一个离家900米的文屏花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示琪琪爷爷离家的时间与外出的距离之间的关系是 ( )A B C D7.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是8.如图,直线y =kx+b (k <0)经过点P (1,1),当kx+b ≥x 时,则x 的取值范围为( )A .x ≤1B .x <1C .x ≥1D .x >19.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )A .32B .34C .36D .3810.如图,是A 市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )A .4℃B .8℃C .12℃D .16℃二.填空题(每题3分,共30分)11.若正方形的边长为x ,面积为y ,则y 与x 之间的关系式为 (x >0).12.已知点(﹣2,y 1),(1,y 2),(﹣1,y 3)都在直线y =3x+b 上,则y 1、y 2、y 3的值的大小关系是 (用“>”号连接).13.一次函数y=(m+2)x+1若y 随x 的增大而增大,则m 的取值范围是___________.14.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .15.如图,直线y =x+1与两坐标轴分别交于A 、B 两点,点C 是OB 的中点,点D 、E 分别是直线AB 、y 轴上的动点,则△CDE 的周长最小值是 .16.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过A 1点作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2019的坐标为 .17.如图,在平面直角坐标系中,2,0,()()0,1A B ,AC 由AB 绕点A 顺时针旋转90 而得,则AC 所在直线的解析式是__________.18.如图,A 、B 两地相距200km ,一列火车从B 地出发沿BC 方向以120km/h 的速度行驶,在行驶过程中,这列火车离A 地的路程y (km )与行驶时间t (h )之间的函数关系式是 .三.解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图.请你根据图象解决下列问题:⑴ 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?⑵ 分别求出甲、乙两人的行驶速度;⑶ 在什么时间段内,两人均行驶在途中(不包括起点和终点)?请你根据图中的情形,分别求出关于行驶时间x 与行程y 之间的函数关系式,根据图象回答:① 两人相遇;② 甲在乙的前面;③ 甲在乙后面.20.一次函数y=mx+n(m,n为常数)(1)若函数图象由y=2x﹣1平移所得,且经过点(4,5),求函数解析式;(2)若函数图象经过(﹣l,﹣2),且交y轴于负半轴,求m的取值范围.21.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?22.某公司新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?23.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O 、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.24.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?。
第19章一次函数测试题(2)
第19章一次函数测试题(2)一.选择题(共12小题)1.如图所示的图象分别给出了y与x的对应关系,其中y不是x的函数的是()A.B.C.D.2.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②甲出发2h后到达C村;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了30min或55min时两人相距4km.其中正确的是()A.①③④B.①②③C.①②④D.①②③④3.若正比例函数y=kx(k≠0)的图象经过点(﹣2,3),则k的值为()A.B.﹣2C.D.34.已知一次函数y=(2k﹣1)x+b+2的图象如图所示,则k的取值范围是()A.k<1B.k<﹣1C.k>D.k>﹣5.直线y=﹣kx+k与直线y=kx在同一坐标系中的大致图象可能是图中()A.B.C.D.6.已知直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤x+k的解集为()A.x≥1B.x≤1C.x≥2D.x≤27.已知一次函数y=kx+b(k≠0),如表是x与y的一些对应数值,则下列结论中正确的是()x…﹣1012…y…6420…A.y随x的增大而增大B.函数的图象向上平移4个单位长度得到y=﹣2x的图象C.函数的图象不经过第三象限D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y28.下列一次函数中,y的值随着x的值增大而减小的是()A.y=x﹣1B.y=+2C.y=﹣1+2x D.y=1﹣3x9.一次函数y=kx+b的图象如图所示,下列结论:①k<0;②b=﹣1;③y随x的增大而减小;④不等式kx+b<0的解集是x<2.其中正确的个数是()A.1B.2C.3D.410.甲、乙两车将一批抗疫物资从A地运往B地,两车各自的速度都保持匀速行驶,甲、乙两车离A地的距离s(km)与甲车行驶时间t(h)之间的函数关系如图所示,则下列结论:①A,B两城相距240千米;②乙车比甲车晚出发0.5小时,却早到0.5小时;③乙车行驶的速度是km/h;④乙车在A、B两地的中点处追上甲车.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图1,在矩形ABCD的边AD上取一点E,连接BE.点M,N同时以1cm/s的速度从点B出发,分别沿折线B﹣E﹣D﹣C和线段BC向点C匀速运动.连接MN,DN,设点M运动的时间为ts,△BMN的面积为Scm2,两点运动过程中,S与t的函数关系如图2所示,则当点M在线段ED上,且ND平分∠MNC时,t的值等于()A.2+2B.4+2C.14﹣2D.12﹣212.如图,一次函数l:y=﹣x+2的图象与x轴、y轴分别交于A、B两点,以A为直角顶点在第一象限作等腰直角三角形ABC,则直线BC的解析式是()A.B.C.D.二.填空题(共5小题)13.函数y=+中自变量x的取值范围是.14.已知一次函数y=(1﹣2a)x+a﹣如果函数值y随着自变量x的增大而减小,那么在平面直角坐标系中,这个函数图象与y轴的交点M位于y轴的半轴.(填正或负)15.如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集是.16.如图,已知函数y=2x﹣1和y=5﹣x的图象交于点B,则二元一次方程组的解是.17.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发、途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地,甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,当乙车修好时,甲车行驶了小时.三.解答题(共6小题)18.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶,设两车出发时间为x(单位:h),货车、轿车与甲地的距离为y1(单位:km),y2(单位:km),图中的线段OA、折线BCDE分别表示y1,y2与x之间的函数关系.(1)货车行驶的速度为km/h;(2)求DE所在直线的函数解析式;(3)直接写出两车出发多长时间相距200km.19.已知y=y1+y2,其中y1与x﹣3成正比例,y2与x2+1成正比例,且当x=0时,y=﹣2,当x=1时,y=4.(1)求y与x的函数关系式;(2)求出该函数与坐标轴的交点坐标.20.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.21.一次函数的图象经过点A(2,1)和点B(0,2).(1)求一次函数的表达式;(2)利用图象回答下列问题:①一次函数的图象与x轴的交点坐标是.②当x,时,y≥3.22.北京冬奥会期间,某商店为专注冬奥的商机决定购进A、B两款“冰墩墩、雪容融”纪念品,若购进A款纪念品4件,B款纪念品6件,需要960元;若购进A款纪念品2件,B款纪念品5件,需要640元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进两种纪念品共100件,考虑到资金周转,用于购买这100件纪念品的资金不能超过9920元,那么该商店最多可购进A纪念品多少件.(3)若销售每件A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,在(2)中的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.小婳家周末驾车游玩,早上8:00从家出发,2.5h后到达A景区,一家人在A景区附近游玩、吃饭,2h后,再次出发,0.5h后到达B景区,在B景区游玩2h,之后给汽车加油10L(给汽车加油的时间忽略不计),然后一家人驾车原路返回.已知整个过程中汽车行驶速度不变,汽车耗油情况如下表所示,汽车油箱内油量与行驶时间的关系图象如下:里程(km)010*******…剩余油量(L)605244…(1)补全表格;(2)小婳家到A景区的路程为km;车速为km/h;(3)在小婳一家从家到A景区这段路程内,求剩余油量与时间之间的关系式及a的值;(4)若小婳需要在19:00去家附近的画室上素描课,她能否准时上课?回到家时汽车油箱内剩余的油量是多少?。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
人教版八年级数学下册《第十九章一次函数》单元测试卷带答案
人教版八年级数学下册《第十九章一次函数》单元测试卷带答案时间:120分钟 满分:120分一、选择题(每小题4分,共40分)1. 已知一次函数y= kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是 ( ) A.(-1,2) B.(1,-2) C.(2,3) D.(3,4)2. 如图,在矩形OACB 中,A( -2,0),B(0,-1),若正比例函数y= kx 的图象经过点C ,则k 的值是 ( )A. -2B.−12 C.2 D. 123. 如图,若一次函数y=-2x+b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式-2x+b>0的解集为 ( ) A.x >32 B.x <32 C. x>3 D. x<34. 下列关于一次函数y= kx+b(k<0,b>0)| 的说法,错误的是 ( ) A. 图象经过第一、二、四象限 B. y 随x 的增大而减小 C. 图象与y 轴交于点(0,b) D. 当 x >−bk 时,y>05. 已知一次函数 y₁=ax +b 和 y₂=bx +a (a ≠b ),函数y ₁和y ₂的图象可能是 ( )6. 定义:对于给定的一次函数y= ax+b(a,b为常数,且a≠0),把形如y={ax+b(x≥0),−ax+b(x<0)的函数称为一次函数y= ax+b的“衍生函数”,已知一次函数y=x-1,若点P(-2,m)在这个一次函数的“衍生函数”图象上,则m的值是 ( )A. 1B. 2C. 3D. 47. 已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A 和点 B.则下列直线中,与x轴的交点不在线段AB上的直线是 ( ) A. y=x+2 B.y=√2x+2C. y=4x+2D.y=2√33x+28. 如图,在平面直角坐标系中,点A的坐标为(2,7),点B的坐标为(5,0),点C是y轴上一个动点,且点A,B,C三点不在同一条直线上,当△ABC 的周长最小时,点C的坐标是( )A.(0,2)B.(0,5)C.(0,7)D.(0,9)9. 已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费 ( )A. 17元B. 19元C. 21元D. 23 元10. 如图,在平面直角坐标系中,点A(-1,0),B(0,3),直线BC交坐标轴于 B,C,且∠CBA=45°,点 M 在直线 BC上,且AM⊥AB,则直线 BC的解析式为 ( )A. y=x+3B.y=23x+3C.y=12x+3D.y=13x+3二、填空题(每小题4分,共24分)11. 函数y=√2x−4中,自变量x的取值范围是 .12. 已知正比例函数γ= kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随x的增大而 .(填“增大”或“减小”)13. 如图,正比例函数的图象与一次函数y=-x+1的图象相交于点 P,点P到x轴的距离是2,则这个正比例函数的解析式是 .14. 定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为“k级函数”.如:正比例函数γ=-3x,当l≤x≤3时,-9≤y≤-3,则-3-(--9) =k(3-1),求得k=3,所以函数y= -3x为“3级函数”.如果一次函数y=2x-1(1≤x≤5)为“k 级函数”,那么k的值是 .15. 如图,点A,B,C在一次函数y= -2x+b的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则阴影部分面积之和是 .16. 甲、乙两人分别从A,B两地相向而行,匀速行进,甲先出发且先到达B地,他们之间的距离s( km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了 h.三、解答题(共56分)17. (9分)已知y-3与2x-1成正比例,且当x=1时y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x₁,y₁),B(x₂,y₂)都在该函数的图象上,且y₁>y₂,试判断x₁,x₂的大小关系.18. (8分)如图,直线.y=2x+3与x轴交于点A,与y轴交于点 B.(1)求A,B两点的坐标.(2)过点 B作直线BP与x轴交于点P,且使AP=2OA,求△BOP的面积.19. (8分)(北京中考)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=xy=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式.(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.20. (10分)如图,在平面直角坐标系中,点A,B的坐标分别为(−√32, 0),(√32, 1)连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标.(2)求线段 BC所在直线的解析式.21. (10分)在初中阶段的函数学习中,我们经历了“确定函数的解析式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|={a(a≥0),−a(a<0).结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx−3|+b中,当x=2时y=−4;当x=0时y=−1.(1)求这个函数的解析式.(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质.(3)已知函数y=12x−3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx−3|+b≤12x−3的解集.22. (11分)为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲、乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45 元/个,下表是时间销售数量(个)销售收入(元)(销售收入=售价×销售数量)甲种型号乙种型号第一月228 1 100第二月3824 2 460(1)求甲、乙两种型号水杯的售价.(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下,设购进甲种型号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.参考答案1.【答案】B2.【答案】D3.【答案】B4.【答案】D5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】B10.【答案】C11.【答案】x≥212.【答案】减小13. 【答案】y= -2x14.【答案】215.【答案】316.【答案】1017. 【答案】解:(1)设y−3=k(2x−1),把x=1,y=6代入,得(6−3=(2×1−1)k,解得k=3,则y−3=3(2x−1),所以y与x之间的函数解析式为y=6x.(2)当x=2时y=6x=12.(3)∵在函数y=6x中k>0,且y₁>y₂ ∴x₁>x₂.18. 【答案】解:(1)当y=0时x=−32;当x=0时y=3.所以点 A的坐标为(−32,0),点 B的坐标为(0,3).(2)由(1)知OA=32,OB=3.当点 P在点A的左侧时,AP=2OA=3,所以点 P的坐标为(−92,0)所以S BOP=12OB⋅OP=12×3×92=274;当点P在点A的右侧时,AP=2OA=3,所以点P的坐标为(32,0)所以S BOP=12OB⋅OP=12×3×32=94.综上,△BOP 的面积为274或 94. 19.【答案】解:(1)∵一次函数y= kx+b(k≠0)|的图象由函数y=x 的图象平移得到∴k=1.又一次函数y= kx+b(k≠0)的图象经过点(1,2) ∴1+b=2,解得b=1,∴一次函数的解析式为y=x+1. (2)m≥2.【解法提示】∵ 当x>1 时,函数y= mx(m≠0)的函数值都大于y=x+l 的函数值,∴函数y= mx(m≠0)的图象在一次函数y=x+1图象的上方,如图,临界值为x=1,当x=1时,两条直线都过点(1,2).当y= mx 过点(1,2)时,解得m=2,结合函数图象,m 的取值范围为m≥2.20.【答案】解:(1)如图,过点B 作BD⊥x 轴于点D ,则∠ADB=90°.∵A (−√32,0),B (√32,1) ∴DA =√3,DB =1∴AB =√DA 2+DB 2=√(√3)2+12=2 ∵在Rt△ABD 中∠ADB=90° BD =1=12AB ∴∠BAD =30∘∵△ADC 为等边三角形 ∴AC =AD =2 ∠BAC =60° ∴∠CAD =∠BAC +∠BAD =90°∴ 点 C 的坐标为 (−√32,2).(2)设线段 BC 所在直线的解析式为: y =kx +b.由(1)得点 C (−√32,2),将点 B (√32,1),C (−√32,2)代入得 {√32k +b =1,−√32k +b =2,解得 {k =−√33,b =32, ∴线段BC 所在直线的解析式为 y =−√33x +32.21.【答案】解:(1)将点( (2,−4),(0,−1)代入函数 y =|kx −3|+b 中,得 {|2k −3|+b =−4,|−3|+b =−1,解得{k=32, b=−4,∴这个函数的解析式是y=|32x−3|−4.(2)∵y=|32x−3|−4,∴y={32x−7(x≥2),−32x−1(x<2),∴ 函数y=32x−7过点((2,−4)和点((4,−1);函数y=−32x−1过点((0,−1)和点((−2,2).∴该函数的图象如图,性质是当x≥2时,y随x的增大而增大;当x<2时,y随x的增大而减小.(3)由函数图象可得,不等式|kx−3|+b≤12x−3的解集是1≤x≤4.22.【答案】解:(1)设甲种型号水杯的售价为x元/个,乙种型号水杯的售价为y元/个.根据题意得{22x+8y=1100,38x+24y=2460,解得{x=30,y=55.答:甲种型号水杯的售价为30元/个,乙种型号水杯的售价为55元/个.(2)根据题意得{a≤55,25a+45(80−a)≤2600,解得50≤a≤55,根据题意得w=(30−25)a+(55−45)(80−a)=−5a+800即w=−5a+800(50≤a≤55)°⋅−5<0∴w随a的增大而减小∴当a=50时,w的值最大,最大利润为w=−5×50+800=550(元).∴w与a的关系式为w=−5a+800(50≤a≤55)第三月的最大利润为550元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第十九章一次函数》检测试题
班级:_________ 姓名:__________ 学号:成绩:
1.函数y=
1
6
x-
中自变量x的取值范围是()
A.x>6
B.x<6
C.x≠6
D.x≠-6
2.用总长为100m的篱笆围成矩形场地,矩形面积S(m2)与一边长l之间的关系式为S=l(50-l),那么下列说法正确的是()
A.l是常量,S是变量,S是l的函数
B.50是常量,S和l是变量,l是S的函数
C.50是常量,S和l是变量,S是l的函数
D.l是变量,50是常量,l是S的函数3.正比例函数y=kx的自变量取值增加1,函数值就相应地减少4,则k的值为()
A.4
B.-4
C.1
4
D.-
1
4
4.对于函数y=-3x+1,下列结论正确的是()
A.它的图象必经过点(-1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x的增大而增大
5.将一次函数y=1
2
x的图象向上平移两个单位,平移后,若y>0,则x的取值范围是()
A.x>4
B.x>-4
C.x>2
D.x>-2
6.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是()
A.k>0,b>0
B.k>0,b<0
C.k<0,b>0
D.k<0,b<0
7.若直线y=3x+6与坐标轴围成的三角形面积为S,则S等于()
A.3
B.4
C.6
D.12
8.若等腰三角形的周长是100 cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的关系式的图象是()
9.如图所示,函数y
1=|x|和y
2
=
14
33
x+的图象相交于(-1,1),(2,2)两点,当
y 1>y
2
时,x的取值范围是()
A.x<-1
B.-1<x<2
C.x>2
D.x<-1或x>2
10.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是图中的()
11.已知一次函数y=3
2
x+m和y=-
1
2
x+n的图象都经过点A(-2,0),且与y轴分别交于点B、C,
那么△ABC的面积是()
A.2
B.3
C.4
D.6
12.夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗.该工人只打开一个进水管,蓄了少量水后关闭进水管立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满.已知每个进水管的进水速度与每个出水管的出水速度相同.从工人最先打开一个进水管开始,所用的时间为x,游泳池内的蓄水量为y,则下列各图中能够反映y与x的函数关系的大致图象是()
13.已知P
1(1,y
1
),P
2
(2,y
2
)是正比例函数y=x的图象上的两点,则y
1
_______y
2
(填“>”、“<”
或“=”).
14.如图三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为_______.
第14题图第15题图
15.如图,直线l
1与l
2
的交点P的坐标可以看成是方程组______________的解.
16.一次函数y=-2x+b中,当x=1时,y<1;当x=-1时,y>0.则b的取值范围是.
17.在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S
△AOB
=4,则k的值是_______.
18.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出
发所行的时间,y
1表示乌龟所行的路程,y
2
表示兔子所行的路程).
有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌
龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中
750米处追上乌龟.其中正确的说法是_______.(把你认为正确说
法的序号都填上)
19.一次函数y=kx+b表示的直线经过A(1,-1)、B(2,-3),试判断点P(0,1)是否在直线AB上?
20.已知2y-3与3x+1成正比例,且x=2时,y=5.
①求y与x之间的函数关系,并指出它是什么函数;
②若点(a,2)在这个函数的图象上,求a的值.
21.画出函数y=1
2
x-4的图象,并根据图象回答:
①方程1
2
x-4=0的解;
②不等式1
2
x-4<0的解集;
③当-1≤x≤2时,求y的取值范围.
22.如图,在△ABC中,AC=3,BC=4,直线AB的函数表达式是y=-4
3
x+4.
①求证:△ABC≌△BAO.
②求△ABC的面积.
23.某校实行学案式教学,需印刷若干份数学教案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费,而乙种不需要,两种印刷方式的费用y(元)与印刷份数x (份)之间的关系如图所示.
①填空:甲种收费的函数关系式是_______,乙种收费的函数关系式是_____________;
②该校某年级每次需印刷100~450(含100和450)份学案,选择哪种印刷方式较合算?
24.如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的函数表达式分别为y=-4 3 x
和y=3
4
x+
25
4
,AB边与y轴交于点D.
①求点A的坐标;
②求正方形OABC的边长;
③求直线OC的函数表达式.
25.(12分)健身运动已成为时尚,某公司计划组装A,B两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.
①公司在组装A,B两种型号的健身器材时,共有多少种组装方案?
②组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元.求总组装费用最少的组装方案,最少总组装费用是多少?
26.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案:
①若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
②设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
③若该家庭买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.
27.某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本y(万元)与产量x(吨)之间是一次函数关系,函数y与自变量x的部分对应值如表:
①求y与x
②当这种产品的总产量为40吨时,该产品的总成本是多少?(注:总成本=每吨成本×总产量)
③市场调查发现,这种产品每月销售量m(吨)与销售单价n(万元/吨)之间满足如图所示的函数关系,该厂第一个月按同一销售单价卖出这种产品25吨.请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价-成本)。