函数微分的定义
微分 PPT课件

微分形式的不变性
设函数 y f ( x)有导数 f ( x),
(1) 若x是自变量时, dy f ( x)dx;
(2) 若x是中间变量时, 即另一变量t的可 微函数x g(t), 则 dy f (x)g(t)dt
证 (1) 必要性 f ( x)在点x0可微,
y A x o(x),
y A o(x) ,
x
x
则 lim y A lim o(x) A.
x0 x
x0 x
即函数 f ( x)在点 x0可导, 且A f ( x0 ).
(2) 充分性 函数f ( x)在点x0可导,
y lim
x0 x
微分 dy叫做函数增量y的线性主部.
y A x o(x) dy o(x)(其中A与x无关)
y与dy的关系 (1) y dy o(x);(dy为y的线性主部) (2) 当A 0时,y ~ dy; (3) 当x很小时,y dy .
3.可微的条件
性质3.7 函数f (x)在点x0可微 f (x)在点x0处可导, 且 A f (x0 ).
d(secx) _s_e_c_x_ta_n__x__dx d(cscx) _-c_s_c_x_c_o_t_x_dx
d(_a_x_) ax lnadx 1
d(loga x) _x__ln__a1dx
d(_e_x_) exdx
1
d(l_n_x_) 1 dx,
x
d(lnx1) _x___dx
x 0.02
x 0.02
4.微分的几何意义
微分概念及其计算

y f (x0 x) f (x0) f (x0 )x f (x0 x) f (x0) f (x0)x
令 x x0 x f (x) f (x0) f (x0)(x x0 )
使用原则: 1) f (x0 ), f (x0 ) 好算 ; 2) x 与x0 靠近.
在点 可微 , 则
y f (x0 x) f (x0 ) Ax o(x)
lim y lim ( A o(x) ) A
x0 x x0
x
故
在点 的可导, 且
说明
由定理4.5,我们得到
dy f (x0 )x
当 y x 时,y' 1,dy dx 1 x x,
称x为自变量的微分, 记作 则有 dy f (x) dx
在点 的可导, 则
lim y x0 x
f (x0 )
y x
f (x0 )
( lim 0 ) x0
故Hale Waihona Puke y f (x0 )x x f(x0)x o(x)
即 dy f (x0 )x
线性主部
定理4.5 函数 在点
在点 可微的充要条件是
处可导, 且
即
dy f (x0 )x
证: “必要性”
已知
第四章 微商与微分
第二节 微分概念及其计算
一、微分的定义 二、微分的几何意义 三、基本微分公式与微分运算法则 四、微分在近似计算中的应用
导数的定义
定义 设函数f (x)在 U(x0) 有定义,且 x0+x U(x0).
如果极限 lim f (x0 x) f (x0 ) lim y a 存在,
说明: y f (x0 )x o(x) dy f (x0 )x
函数的微分

练习: (1)求函数y cos x在x
6 2 (2)求函数y x 当x由1变到1.01 时的微分.
处的微分.
二、微分的几何意义
如图,设M ( x0 , y0 ) 和点N ( x0 x, y0 y ) 是曲线上y f ( x )的两点。 由图可知, MQ x, QN y。 设切线MP的倾斜角是, 则
y , x 0 x 根据无穷小与函数极限的关系,上式可写成
这表明,当f '( x0 ) 0时,函数的增量 可以分为两个部分: 把它叫做y的线性主部; 另一部分是x, 当x 0时,它是比 x高阶的无穷小.
一部分是f '( x0 ) x, 它是y的主要部分,
所以当 x 很小时,可以认为y f '( x0 )x.
2、 微分的四则运算法则 设 u(x) , v(x) 均可微 , 则
du dv
(C 为常数)
vdu udv
3. 复合函数的微分
分别可微 ,
则复合函数
的微分为
f (u ) ( x) dx
du
d y f (u ) du
若yf(u) u(x) 则dyf (u)du
dy
x2 x 0.02
3 x 2 x
x2 x 0.02
0.24.
பைடு நூலகம்
例3 求函数 y x 3 当 x 1, 和x 3时的微分 .
解 dy ( x 3 )x 3 x 2 x .
dy x1 3 x 2x x1 3x dy x3 3 x 2x x3 27x
dy f ' ( x)x
当 y x时,dy dx x
于是函数的微分又可以 记为 dy f ' ( x)dx 从而
微分的基本概念及其应用

微分的基本概念及其应用微积分是数学中一门重要的分支,其中微分是其核心概念之一。
微分主要研究函数的变化率,以及在这种变化中的应用。
本文将介绍微分的基本概念以及其应用,帮助读者更好地理解和应用微分。
一、微分的基本概念在介绍微分之前,我们首先需要了解几个相关的基本概念。
1.1 函数函数是自变量和因变量之间的一种关系。
通常用字母表示自变量,用函数符号表示因变量。
例如,y = f(x)中,x为自变量,y为因变量,f 为函数符号。
1.2 极限极限是微积分中一个基础的概念。
它描述了当自变量趋近于某个值时,函数的值的趋势。
用极限符号表示为lim(x→a)f(x),表示x在趋近于a的过程中,f(x)的取值趋势。
1.3 导数导数是函数的一种变化率。
它描述了函数在某一点上的瞬时变化速度。
用符号f'(x)表示,即函数f(x)的导数为f'(x)。
1.4 微分微分是导数的基本应用,是微积分的核心概念之一。
微分用Δx表示函数自变量的一个无穷小的增量,用Δy表示函数因变量的相应的增量。
微分的定义为dy = f'(x)dx,其中dy为函数因变量的微分,f'(x)为函数在点x处的导数,dx为函数自变量的微分。
二、微分的应用微分作为微积分的核心概念,在数学和其他领域具有广泛的应用。
以下列举了微分在几个重要领域中的应用。
2.1 曲线研究微分可以用于研究曲线的性质。
通过计算曲线上某一点处的导数,可以得到该点切线的斜率。
通过分析导数的正负性,可以确定函数在不同区间上的增减情况,进而描绘出曲线的形状。
2.2 最值问题微分可以用于求解最值问题。
最值问题是指在一定范围内,寻找函数取得最大或最小值的点或值。
通过求解函数的导数,将导数为零的点带入函数中,便可得到函数的最值点。
2.3 调和分析微分方程是微分学的重要组成部分。
微分方程描述了函数及其导数之间的关系。
通过对微分方程的求解,可以获得函数解析解,进而分析函数在不同条件下的特性。
高等数学第二章:函数的微分

dx
26
注: 由导数的“微商”及一阶微分形式不变性,
(3) 通常把自变量x的增量x 称为自变量的 微分,记作 dx, 即 dx x. 什么意思?
例如: 已知 y x , 求 d y.
解 d y (x)x 1 x x, 由于 y x, 故得 d y d x x.
11
上例表明:
自变量的增量就是自变量的微分:x d x
y A x o(x),
lim y x0 x
lim A o(x)
x0
x
A.
即函数 f ( x)在点 x0可导,且A f ( x0 ).
7
定理 函数 f ( x)在点x0可微 函数 f ( x)
在点 x0处可导,且 A f ( x0 ),即有 dy f ( x0 )x.
(2) 充分性 函数f ( x)在点x0可导,
y lim
x0 x
f ( x0 ),
即 y x
f ( x0 ) , ( x 0,
0)
从而 y f ( x0 ) x (x),
f ( x0 ) x o(x),
函数 f ( x)在点 x0可微, 且 f ( x0 ) A.
d(u v) du dv
d(uv) vdu udv
d
u v
vdu udv v2
18
例 设 y ln( x e x2 ), 求dy.
解
y
1
x
2
xe ex
x
2
2
,
dy
1
x
求函数微分

求函数微分
先求导,微分=导数×dx
dy=y‘dx
过程如下图:
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx 处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
微分是函数改变量的线性主要部分。
微积分的基本概念之一。
拓展资料
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。
如果函数的增量Δy = f(x + Δx) - f(x)可表示为Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。
于是函数y = f(x)的微分又可记作dy = f'(x)dx。
函数因变量的微分与自变量的微分之商等于该函数的导数。
第二章第3节-函数的微分
故 在点 可导, 且
定理 2.6 函数 在点
在点 x0 可微的充要条件是 处可导, 且 即
d y f ( x0 )x
“充分性” 已知 在点 的可导, 则
y lim f ( x0 ) x 0 x y f ( x0 ) x
Hale Waihona Puke d y 3 x x.2 0
(1)
( 2)
2 当x 很小时, y dy 3 x0 x.
定理 2.6 函数 在点
在点 x0 可微的充要条件是 处可导, 且 即
d y f ( x0 )x
证: “必要性”
已知
在点
可微 , 则
y f ( x0 x) f ( x0 ) A x o(x)
dy f ( x) 导数也叫作微商 dx
例1.
求 y x 2 在 x 1, x 0.01 时的微分。
x 1 x 0.01
解: d y
2 x x
x 1
0.02
x 0.01
例2. 求y=x3在x=2处的微分, 以及当x=0.1时在x=2 处的微分。
dx 3 x 2 dx 3x 2 x ( x dx ) 解: dy ( x )
1 x2 dx ; (16) d (arccot x) dx 2 . (15) d (arctan x) 1 x2 1 x
2.四则运算微分法则
设 u(x) , v(x) 均可微 , 则
du dv vdu udv
3. 复合函数的微分法则 均可导 , 则
(C 为常数)
(10)d (cot x) csc 2 xdx ;
高等数学————微分
五、全微分在近似计算中的应用
( 1 ) z dz f x ( x0 , y0 )x f y ( x0 , y0 )y
例4 设一金属圆柱受压变形后,底面半径由原来的 20cm变到20.1cm,高由原来的40cm减少到39.5cm,求 该金属体体积变化的近似值。 解:设圆柱体的底面半径为r,高为h,体积为V 则有 V r 2 h 所以
2 2
u u u ( 2) du dx dy dz x y z 1 y yz ye yz dz dx ( cos ze )dy 2 2
u u u ( 3) du dx dy dz x y z
yzx
yz1
zx yz ln xdy yx yz ln xdz dx
N ( x0 x, y0 y, z0 z )
z =AN :曲面立标的增量
z
z
B
过点M的切平面:
dz=AB : 切面立标的增量
z dz ( x y )
=AB+BN
z z0
dz
A
.
当x , y 很小时
0
z dz
x
P
y
y
Q
四、全微分的计算
可导 可微.
A f ( x0 ).
函数 y f ( x )在任意点 x的微分, 称为函数的 微分, 记作 dy或 df ( x ), 即 dy f ( x )x .
3、微分的几何意义
几何意义:(如图)
y
T N
o( x )
当y是曲线的纵 坐标增量时, dy 就是切线纵坐标 对应的增量.
z z dz x y x y
证明: 由函数 z f ( x , y ) 在点(x,y)处可微有
函数微分的定义
函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不依赖于△x 的常数,是△x的高阶无穷小,则称函数在点x0可微的。
叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。
通过上面的学习我们知道:微分是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。
于是我们又得出:当△x→0时,△y≈dy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为:由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。
—导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。
记为:还可记为:,函数在点x0处存在导数简称函数在点x0处可导,否则不可导。
若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。
这时函数对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。
—导数公式微分公式函数和、差、积、商的求导法则函数和、差、积、商的微分法则拉格朗日中值定理如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使成立。
这个定理的特殊情形,即:的情形,称为罗尔定理。
描述如下:若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。
注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。
注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理柯西中值定理如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,那末在(a,b)内至少有一点c,使成立。
微分等于导数吗
微分等于导数吗
微分不等于导数。
导数是微分之商,导数的几何意义是函数图像在某一点处的斜率,而微分是在切线方向上函数因变量的增量。
扩展资料:
1、微分定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
2、求导定义:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
3、导数和微分的区别一个是比值、一个是增量。
4、导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。
5、微分是指函数图像在某一点处的切线在横坐标取得增量Δx
以后,纵坐标取得的增量,一般表示为dy。
6、微分和导数的关系,对于函数f(x),求导f'(x)=df(x)/dx,微分就是df(x),微分和导数的关系为df(x)=f'(x)dx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不依赖于△x 的常数,是△x的高阶无穷小,则称函数在点x0可微的。
叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。
通过上面的学习我们知道:微分是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。
于是我们又得出:当△x→0时,△y≈dy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为:
由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。
导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量
,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。
记为:还可记为:,
函数在点x0处存在导数简称函数在点x0处可导,否则不可导。
若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。
这时函数对于区间(a,b)内的每一个确定的x值,都对
应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。
导数公式微分公式
函数和、差、积、商的求导法则函数和、差、积、商的微分法则
拉格朗日中值定理
如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使
成立。
这个定理的特殊情形,即:的情形,称为罗尔定理。
描述如下:
若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。
注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。
注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍
下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理柯西中值定理
如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,
那末在(a,b)内至少有一点c,使成立。
罗彼塔(L'Hospital)法则
当x→a(或x→∞)时,函数,都趋于零或无穷大,在点a的某个去心邻域内(或当│x│>N)时,与都存在,≠0,且存在
则:=
这种通过分子分母求导再来求极限来确定未定式的方法,就是所谓的罗彼塔(L'Hospital)法则
注:它是以前求极限的法则的补充,以前利用法则不好求的极限,可利用此法则求解。
注:罗彼塔法则只是说明:对未定式来说,当存在,则存在且
二者的极限相同;而并不是不存在时,也不存在,此时只是说明了罗
彼塔法则存在的条件破列。
曲线凹向的判定定理
定理一:设函数在区间(a,b)上可导,它对应曲线是向上凹(或向下凹)的充分必要条件是:导数在区间(a,b)上是单调增(或单调减)。
定理二:设函数在区间(a,b)上可导,并且具有一阶导数和二阶导数;那末:
若在(a,b)内,>0,则在[a,b]对应的曲线是下凹的;
若在(a,b)内,<0,则在[a,b]对应的曲线是上凹的;
不定积分的概念
函数f(x)的全体原函数叫做函数f(x)的不定积分,
记作。
由上面的定义我们可以知道:如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分就是函数族
F(x)+C.
即:=F(x)+C
分部积分法
这种方法是利用两个函数乘积的求导法则得来的。
设函数u=u(x)及v=v(x)具有连续导数.我们知道,两个函数乘积的求导公式为:
(uv)'=u'v+uv',移项,得
uv'=(uv)'-u'v,对其两边求不定积分得:
,
这就是分部积分公式
例题:求
解答:这个积分用换元法不易得出结果,我们来利用分部积分法。
设u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部积分公式得:
关于分部积分法的问题
在使用分部积分法时,应恰当的选取u和dv,否则就会南辕北辙。
选取u和dv一般要考虑两点:
(1)v要容易求得;
(2)容易积出。
有理函数的积分举例
有理函数是指两个多项式的商所表示的函数,当分子的最高项的次数大于分母最高项的次数时称之为假分式,
反之为真分式。
我们有了定积分的概念了,那么函数f(x)满足什么条件时才可积?
定理(1):设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。
(2):设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
定积分的性质
性质(1):函数的和(差)得定积分等于它们的定积分的和(差).
即:
性质(2):被积函数的常数因子可以提到积分号外面.
即:
性质(3):如果在区间[a,b]上,f(x)≤g(x),则
≤(a<b)
性质(4):设M及m分别是函数f(x)在区间[a,b]上的最大值及最小值,则 m(b-a)≤≤M(b-a)
性质(5):如果f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一点ξ,使下式成立:
=f(ξ)(b-a)
注:此性质就是定积分中值定理。