通用变频器控制异步电动机正反转

合集下载

异步电动机实现正反转的方法

异步电动机实现正反转的方法

异步电动机实现正反转的方法
异步电动机实现正反转的方法是通过改变电机的输入电压或改变电机的相序来实现的。

以下是几种常见的实现方法:
1. 改变电机的输入电压:通过改变电机的输入电压的相位差和大小,可以实现电机的正反转。

当输入电压的相位差为0时,电机正转;当相位差为180度时,电机反转。

通过改变输入电压的大小,可以控制电机的转速。

2. 改变电机的相序:在三相异步电动机中,通过改变电机的相序可以实现电机的正反转。

在正转时,电机的相序为ABC,即A相、B相和C相的电流依次流过电机的三个绕组;在反转时,电机的相序为ACB,即A相、C相和B相的电流依次流过电机的三个绕组。

通过改变相序,可以改变电机的磁场方向,从而实现电机的正反转。

3. 利用变频器控制:变频器是一种能够根据输入信号改变输出频率的器件,通过改变电机的输入频率,可以实现电机的正反转。

当输入频率为标准频率时,电机正转;当输入频率为负向频率时,电机反转。

同时,通过改变输入频率的大小,可以控制电机的转速。

变频器在工业控制中广泛应用,可以实现电机的精确控制。

这些方法都可以实现异步电动机的正反转,具体选择哪种方法取决于应用场景和要求。

变频器控制电动机正反转调速电路

变频器控制电动机正反转调速电路

变频器控制电动机正反转调速电路很多变颇器控制电动机正反转调速电路.通常都利用交流接触器来实现其正转、反转、停止,以及外接信号的控制,其优点是动作可靠、线路简单、r办企业电工人员都能掌握。

如图85所示,合上电源断路器QP,接人380v交流电源.使电路处于热备机状态。

若需要正转时,则按下正转起动按钮sBI(1—3),此时交流接触器KI线圈得电吸合且KI辅助常开触点[3—5)闭合白锁,同时KI常开触点(19—21)闭合,将FR与c〔)M连接起来、变频器正相序工作,控制电动机正转运行;欲停止时,按下停止按钮sDl(1—3),此时.交流接触器Kj线圈断电释放.Kl常开触点(19—21)断开FR与c[)M的连接,使变频器停止丁作,电动机失电停止运转。

需要反转时,按下反转起动按钮sB2(3—9),此时交流接触器K2线圈得电吸合fl K2辅助常开触点(3—9)闭合自锁,同时K2常开触点(19—23)闭合,将R只—coM连接起来,变频器反相序工作,控制电动机反转运行;欲停止时,按下停止按钮sIL(1—3).此时.交流接触器x2线圈断电释放.K2常开触点(19—23)断开RR—c()M的连接,使变频2R停止丁作,中压变频器电动机失电停止运转。

因电路中正反转交流接触器线圈回路中各串联了对方接触器的互锁常闭触点,以保证在正反转操作时,不会出现两只交流接触器同时工作的现象,起到互锁保护作用。

当需要正常停机或出现事故停机时.复位端子RST—COM(13—19)断开,变频器发出报警信号。

此时技下复位按钮sB4(17—19),将RsT与c()M端子连接起来,报警即可解除。

阐85巾,QF为保护断路器;Fu为控制回路熔断器Exl为正转控制交流接触器;K2为反转控制交流接触器,s11j为停止按钮;sB2为正转起动按钮;SB3为反转起动按钮;SB4为复泣按钮,Hz为频率表;RPl为1kn、2w的线绕式频率给定电位器;配Pg为10ko、1/2w校正电阻,用于频率调整。

变频器控制电动机正反转

变频器控制电动机正反转

变频器外部端子点动控制一、实验目的了解变频器外部控制端子的功能,掌握外部运行模式下变频器的操作方法。

二、三、控制要求1.正确设置变频器输出的额定频率、额定电压、额定电流、额定功率、额定转速。

2.通过外部端子控制电机启动/停止、正转/反转,按下按钮“S1”电机正转启动,松开按钮“S1”电机停止;按下按钮“S2”电机反转,松开按钮“S2”电机停止。

3.运用操作面板改变电机启动的点动运行频率和加减速时间。

四、参数功能表及接线图13P0701110正向点动14P07021211反向点动15{P105830正向点动频率(30Hz)1617P105920反向点动频率(20Hz)18|10点动斜坡上升时间(10S)P106019P10615点动斜坡下降时间(5S)注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(P0010=30;P0970=1)(2)设定P0003=2 允许访问扩展参数>(3)设定电机参数时先设定P0010=1(快速调试),设置上表P0304-P1121参数,P3900=1,P0003=3结束快速调试;再设置上表P0700-P1061参数,电机参数设置完成设定P0010=0(准备)2.变频器外部接线图?五、操作步骤1.检查实训设备中器材是否齐全。

2.按照变频器外部接线图完成变频器的接线,认真检查,确保正确无误。

3.打开电源开关,按照参数功能表正确设置变频器参数(具体步骤参照变频器实训三十五)。

4.按下按钮“S1”,观察并记录电机的运转情况。

5.按下操作面板按钮“”,增加变频器输出频率。

6.松开按钮“S1”待电机停止运行后,按下按钮“S2”,观察并记录电机的运转情况。

7. 松开按钮“S2”,观察并记录电机的运转情况。

8. 改变P1058、P1059的值,重复4、5、6、7,观察电机运转状态有什么变化。

9. ~10.改变P1060、P1061的值,重复4、5、6、7,观察电机运转状态有什么变化。

基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制PLC(可编程逻辑控制器)和变频器是工业控制领域中常用的设备,它们可以用来控制三相异步电动机的正反转。

通过PLC和变频器的配合,可以实现对电动机的精确控制,提高生产效率,确保生产设备的安全运行。

本文将详细介绍如何利用PLC和变频器实现对三相异步电动机正反的控制。

一、PLC的基本原理PLC(可编程逻辑控制器)是一种专门用来控制工业过程的装置。

它可以根据预先设定的程序来实现对工业设备的自动控制。

PLC主要由输入模块、输出模块、中央处理器和存储器组成。

输入模块用来接收外部信号,输出模块用来输出控制信号,中央处理器负责对输入信号进行处理,并根据预设的程序来控制输出模块的动作。

PLC的工作原理是通过接收输入信号,根据预设的程序进行逻辑处理,然后产生相应的控制信号输出到输出模块,从而控制工业设备的运行。

PLC可以实现对各种工业设备的自动控制,包括电动机、泵、阀门等。

二、变频器的基本原理变频器是一种用来调节电动机转速的装置,它可以根据外部输入信号来控制电动机的转速。

变频器可以将交流电源转换为可调的交流电源,从而实现对电动机转速的精确控制。

变频器主要由整流器、滤波器、逆变器和控制电路组成。

变频器的工作原理是通过控制逆变器的开关管来改变输出电压和频率,从而实现对电动机的转速控制。

变频器可以实现对电动机的起动、加速、减速、停止等动作,同时还可以保护电动机免受过载、过流、短路等故障的影响。

PLC和变频器可以配合使用,实现对三相异步电动机的正反转控制。

下面我们将介绍如何利用PLC和变频器来实现对电动机的正反转控制。

1. 硬件连接首先需要将PLC和变频器连接起来,以便它们之间可以进行通信。

一般来说,PLC和变频器之间可以采用RS485通信接口进行连接。

在连接时需要确保PLC和变频器的通信参数设置一致,包括波特率、数据位、校验位等。

2. 编写PLC程序接下来需要编写PLC程序,用来实现对电动机的正反转控制。

变频器控制启动、停止、正反转电路图详细解读

变频器控制启动、停止、正反转电路图详细解读

变频器控制启动、停止、正反转电路图详细解读变频器的控制,不外乎启动,停止,正转,反转,调速这几样基本的逻辑,这些逻辑基本上要求是电平状态有效,而不是上升边缘有效,所以使用按钮开关控制变频器的时候,一般需要使用自保形式的按钮开关来完成,如果不是自保形式的,需要另外加中间继电器来做自保。

1、单开关启停变频器只通过RUN端子给高电平,变频器就可以启动了,当开关断开,相当于RUN端子变成了低电平,变频器就停止运行了。

这种情况使用一个自保按钮开关就可以满足变频器的启停控制,多出来的一个开关,可以用来做故障复位,接到RST上,当然是用非保持的开关更理想,当变频器有故障的时候,按一下复位开关,就可以清楚变频器的故障了。

因为没有单独的电位器给定,这时候可以通过操作面板来给定频率。

上边的逻辑,当然也可以通过PLC之类的逻辑控制器来完成。

2、双开关实现正反转启停有些场合需要控制变频器正反转,而交流异步电机虽然可以在变频器输出端把任何两条相线调转就能反转,但是操作起来比较麻烦费劲,而变频器都带有反转直接启动控制功能。

比如一个开关接到变频器的正转端子(有些是FWD,这里是DI1),这时候变频器会正转,开关当然要选择保持式的,当开关断开后,变频器会直接停止。

同样,当另外一个开关接到变频器的反转端子(有些是REV,这里是DI2),这时候变频器会反正,开关同样要保持式的,当开关断开后,变频器会停止运行。

如果没有外接电位器,同样可以通过面板来给定变频器的频率值。

3、一个开关控制启停,另外一个控制转速给定上边已经说到一个开关控制变频器启停的情况了,另外一个开关其实还可以用来做转速给定的,最简单的,比如点动控制,有些变频器特别是欧系的,可以通过内部参数设定多功能端子,可以把一个开关设置成点动形式,这样通过这个开关可以控制变频器工作在点动状态,点动状态变频器往往会以5%的转速运行,当然这个值还可以通过面板另外修改的。

还可以利用多段速功能端口或者UP/DOWN来给定,本质和点动模式是一样的。

基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制1. 引言1.1 背景介绍2000 字要求内容,段落结构清晰,语言通顺流畅,符合专业标准。

部分如下:基于PLC变频器三相异步电动机正反的控制研究,旨在深入探讨如何通过PLC和变频器实现对三相异步电动机的正反转控制,进一步提高工业生产中电机控制的精确性和灵活性。

本研究将结合实际案例,通过实验验证控制方法的可行性和效果,为工业生产提供更加可靠、高效的电动机控制解决方案。

通过对正反转控制技术的研究,为工业自动化领域的发展做出贡献,推动新技术在工业控制领域的广泛应用。

1.2 问题阐述在电动机控制领域,如何实现对三相异步电动机的正反控制一直是一个重要的问题。

传统的电动机正反控制往往需要复杂的电路以及大量的元件,不仅成本高昂,而且容易出现故障。

传统控制方式的响应速度也较慢,无法实现高效率的控制。

如何利用现代的技术手段来实现对电动机的正反控制,成为了当前研究的热点。

基于PLC与变频器的结合可以很好地解决上述问题,PLC具有逻辑控制功能强大,能够实现复杂的控制逻辑;而变频器可以实现对电机的精确调速,以及实现正反转控制。

将PLC与变频器相结合,可以实现对三相异步电动机的正反控制,提高控制精度和效率。

本文将研究基于PLC与变频器的三相异步电动机正反控制方法,旨在解决传统方法存在的问题,提高电动机控制的效率和灵活性。

1.3 研究意义本文对基于PLC变频器三相异步电动机正反控制进行了深入研究,旨在探讨如何利用先进的控制技术提高工业生产过程中电动机的运行效率和精度。

随着工业自动化程度的不断提高,电动机在生产线上的应用越来越广泛,其控制质量直接影响到整个生产过程的稳定性和效果。

通过本研究,可以有效地解决电动机在正反转控制过程中可能出现的问题,提高控制精度和反应速度,从而使生产过程更加稳定和高效。

本文还将探讨如何利用PLC技术和变频器技术相结合,实现对三相异步电动机的更精细化控制,进一步提高生产效率和品质。

最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及调速电路

最简单的变频器控制电机正反转及
调速电路(总2页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
最简单的变频器控制电机正反转及调速电路
1.线路图
有正反转功能变频器控制电动机正反转调速线路,如下图
器件:QF:断路器
UF:变频调速器
SB1:正转启动按钮
SB2:反转启动按钮
SB3:停止按钮开关
SB4:故障复位按钮
K1,K2:继电器(线圈电压380Vac)
RP1,RP2:调速电位器
M:三相交流电动机
2.工作原理
旋转RP1调速电位器将设定频率调至目标值,再启动正反转,亦可在运行过程中随时调整电位器,改变变频器运行频率(注意不可转得太快)。

正转时,按下按钮SB1,继电器K1得电吸合并自锁,其常开触点闭合,FR-COM 连接,电动机正转运行;停止时,按下按钮SB3,K1失电释放,电动机停止。

反转时,按下按钮SB2,继电器K2得电吸合并自锁,其常开触点闭合,RR-COM 连接,电动机反转运行;停止时,按下按钮SB3,K2失电释放,电动机停止。

事故停机或正常停机时,复位端子RST-COM断开,并发出报警信号。

按下复位按钮SB4,使RST-COM连接,报警解除。

控制线路串联于变频器内部热继电常闭辅助触点,提高电路保护性能。

3.应用
该电路有加减速平稳,运行可靠,控制简单的特点,大大调高了设备的自动化程度,比常规控制正反转电路的优点是:保护性能大大提高,可以调速。

可广泛应用于建筑施工,仓库,酒店餐饮业,小型工厂等货物的上下传输系统中。

三相380V变频器的控制异步交流电动机正反转工作过程详解

三相380V变频器的控制异步交流电动机正反转工作过程详解

一提到变频器,大家都知道,用它来调速效果很好。

其实,用变频器三相380v来控制三相异步交流电机的正反转,效果也不错。

下面就给大家来讲解一下。

现举一例说明,看下图:变频调速电动机正反转控制电路上图为三相380V变频器控制三相交流电机正反转电路图。

从图中可以看出,电路由两部分组成:负载工作主电路和控制电路。

负载工作主电路是由电源主开关(断路器)、交流接触器KM主触点、变频器内置交—直—交转换电路、三相异步交流电动机M等。

控制电路由变频器内置辅助电路,启动按钮开关SB2,停止按钮开关SB1、交流接触器KM电磁线圈,接触器常开辐助触点及电机正反转选择开关SA 等。

RP为频率给定信号电位器。

二、三相380V变频器控制三相交流电机正反转工作过程见上图,先合上电源开关QF,控制电路得电,当按下启动按钮SB2时,接触器KM线圈得电吸合并自锁,连接COM与SA之间的接触器动合触点KM闭合。

主电路中接触器主触点闭合,变频器输入端R、S、T得电,变频器准备工作。

操作选择开关SA,当SA与FWD接通时,电机正向运转;当SA与REV接通时,电机反向运转。

需要停机时,将选择开关SA置于中间位置,三相380V 变频器先停止工作。

按下停止按钮SB1,接触器KM线圈失电复位,接触器主触点断开,切断三相电源。

若先按下停止按钮SB1,接触器线圈失电复位,接触器主触点断开,直接切断变频器输入电源,电机停止工作。

深圳市艾米克电气有限公司自2004年成立以来,经过十年的快速稳健发展,目前已经成长为国际知名的变频器制造商。

公司具有业内领先的自主核心技术和可持续研发能力,提供通用变频器、电流矢量变频器、磁通矢量变频器、风机专用变频器、水泵专用变频器、纺织专用变频器、空压机变频器、注塑机专用变频器等优质产品。

由于变频器在众多行业中都能实现高效节约电能,提高工艺水平等优势,艾米克变频器已广泛应用于风机、水泵、空压机、注塑机、卷绕机、中央空调,纺织、化工、冶金、矿业、制药、陶瓷、造纸、油田、塑料、印刷、热电、烟草、食品等各类机械设备中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通用变频器控制异步电动机正反转
一、实训的目的:
1、掌握通用变频器控制异步电动机的主回路接线;
2、掌握通用变频器控制异步电动机变频器内的参数的设定;
3、掌握通用变频器控制异步电动机变频器面板启动方法;
4、掌握通用变频器控制异步电动机变频器外部端子控制变方式的电
动机启动方法;
5、掌握通用变频器控制异步电动机的正反转运行方法;
二、实训所需元件
本实训使用ATV31变频器和普通异步电动机,为保证安全,ATV71变频器组件不能上电。

三、实训电路及原理
本实训采用的电路图如图1所示,LI1、LI2、LI3为三相380V电源进线,Q为小型断路器,M为三相异步电动机,S1、S2为转换按钮,用于变频器的外部端子启动,其中S1为正转启动,S2为反转启动(通过设定变频器内部参数来设定),PE为保护接地。

\
图1 实训二电路图
四、实训的内容及步骤
1、按图1所示进行外部连线(ATV31变频器的动力引出线和控制线已经引出到实验板的端子上,在连线时不需打开变频器的面板,电动机线直接引到相应的端子上,并确认相应的线号)。

2、确定接线正确无误,连接可靠后,将ATV31变频器上电。

3、在I/O 菜单组中确认以下参数; 参数 工厂设定值 本实验设定值 TCC 2C LOC TCT
TRN
TRN
LI1 LI2 LI3 5 1 3 5 6
4 2 Q
3 3
4 4 S2 S1 L1 L2 L3 LI1 LI2 24V PE U V W W U V PE M
3~
RRS LI2 LI2
4、在CTL菜单组中确认以下参数:
参数工厂设定值本实验设定值
FR1 AI1 AIP
RFC FR1 FR1
CHCF SIN SEP
CD1 TER LOC
5、在FUN菜单中设定停车方式为斜坡停车(STT为RNP)。

6、将菜单显示转换为SUP菜单组,显示当前菜单FRH,按ENT、上和下键,分别设定30.5Hz和40.5Hz,按RUN键,使电动机启动。

改变SET菜单中ACC和DEC(加速时间和减速时间)参数,观察电动机的转换变化情况。

当电动机稳定运行后,利用闪光测速仪记录频率与电动机实际转速的数值。

7、在I/O、CTL菜单组中改变以下参数;
参数工厂设定值本实验设定值TCC 2C 2C
TCT TRN TRN
RRS LI2 LI2
8、在合上S1按钮,电动机正转;断开S1按钮,电动机停止运行。

合上S2按钮,电动机反转;断开S2按钮,电动机停止运行。

改变变频器频率设定值和加、减速时间,重复以上操作,体会面板设定、面板启动、面板设定、外部端子启动的功能实现。

9、以上操作中,在设定频率值、电动机启动前,将SUP显示值转换到RFR和LCR,监控电动机的运行频率和启动电流的变化情况。

改变启动加速时间和停止减速时间,监控电流变化情况,将不同的加、减速时间状态下地最大启动电流、最大停车电流记录在自行设计的表格中。

10、在SET菜单组中将参数HSP设定为60Hz,用闪光测速仪测定变频器运行频率为60Hz、55Hz、50Hz、40Hz时电动机的实际转速,并记录在自行设计的表格中。

11、将HSP设定为65Hz,重复步骤10,记录相应的运行频率、转速、并画出n/f的曲线图。

12、完成以上实训步骤后,将变频器的设定参数恢复到工厂值。

通用变频器给定控制
一、实训目的
1、了解一般通用变频器速度给定的方式
2、掌握通用变频器本身模拟量速度给定方式的实现
3、掌握通用变频器外部模拟量速度给定方式的实现
4、了解在模拟量速度给定方式时,模拟量给定值与变频器运行速
度之间的关系
二、实训电路及原理
本实训使用ATV31实验板。

通用变频器的频率给定有以下几种常用方式:变频器面板给定、变频器本机模拟量给定、外部模拟量给定和通信给定。

正反转采用的是变频器面板给定方式,而此实训采用变频器本机模拟量给定、外部模拟量给定两种方式。

图a中变频器端子+10V、COM为变频器内部0~10V电源,AI1是变频器模拟量通道一。

实训内容按变频器本机模拟量给定方式接线。

R为实训台上5.1千欧多圈电位器,S1为实训台上转换按钮。

图b中模拟量信号来自于外部直流电源。

接线时,外部DC24V 电源的0V端应与变频器的COM端并接。

变频器AI1端口的输入信号范围是0~10V,操作时应注意电位器的输出信号小于10V。

两实训内容电动机负载均为普通异步电动机。

实训电路图
三、实训内容及步骤
1、按图a所示接线,确认连接可靠后,合上电源开关Q1,并确认
变频器显示状态。

2、旋转电位器,用万用表测量AI1、COM端子间电压为0V,确认
按钮S1处于断开状态。

3、在变频器上确认及设定如下参数:
参数变频器出厂设定值本实训设定值
ACC 3s 15s
DEC 3s 15s
LSP 0Hz 0Hz
HSP 50Hz 50Hz
ITH 1.5倍电动机名牌电流
参数组CTL LAC L1 L1 FR1 AI1 AI1
4、合上S1按钮,启动变频器。

此时电位器的输出电压为零,电动
机不运行。

旋转电位器,输出电压增加,电动机运行。

用万用表测量AI1、COM端子间电压,当输出电压为5V时,检查变频器的输出频率(将面板显示为SUP,监控FRH、RFR)。

此频率都为25HZ。

5、改变电位器输出电压,观察变频器输出频率,记录如下:
输出电压(V)0 2 4 6 8 10 FRH 0 9.2 19.7 30.1 40.1 50
RFR 0 9.2 19.7 30.1 40.1 50 由表格数据可以看出,当输出电压越大,变频器的输出频率也越大而且两者成线性关系。

相关文档
最新文档