三相异步电动机正反转原理

三相异步电动机正反转原理
三相异步电动机正反转原理

三相异步电动机正反转的基本原理

————培训心得主电路:(如下图一所示)

简单说就是K1的3对触点接通时,三相电源的相序按L1、L2、L3接入电动机,电动机正转;而当K2线圈的3对触点接通时,三相电源的相序按L1、L3、L2接入电动机,从而电动机反转。

L1 L2 L3

K1 K2

图一

控制回路:(如左图二所示)

正转控制时,按下按钮SB2,K1线圈获电吸合,K1常开触点闭合,同时K1常闭触点断开,互锁住K2线圈,电动机M 启动正转。

反转控制时,先按停止按钮SB1,接触器K1线圈断电释放,K1触头断开,电动机M 断电;然后按下反转按钮SB3, K2线圈获电吸合,K2常开触点闭合,同时K2常闭触点断开,互锁住K1线圈,电动机M 启动反转。

图二

K1

K2

SB2

SB1

K1

SB3

K2

K1

K2

0V

24V 直流

继电器各个角度特写

SB1、SB2、SB3开关按钮

电动机马达

SB1

SB2 SB3

SB1

SB2

SB3

2号线

3号线

4号线

继电器接线后各个角度特写(主电路)

继电器接线后各个角度特写(控制回路)

2号线

3号线

4号线

继电器接线后各个角度特写(如图一图二接线后)

注意事项:

1、将接至电动机三相电源接线中任意两相对调即可达到反转。

2、注意接线时主触点线用2.5平方毫米线、辅助触点线用1平方毫米线接。

电机正反转电路图

电机正反转电路图

三相异步电动机接触器联锁的正反转控制的电气电子原理图如图3-4所示。线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

220v单相电机正反原理 单相电机不同于三相电机,三相电进入电机后,由于存在120°电角度,所以产生N S N S旋转磁场,推动转子旋转。而单相电进入电机后,产生不了N S N S磁场,所以加了一个启动绕组,启动绕组在定子内与工作绕组错开90°电角度排列,外接离心开关和启动电容后与工作绕组并联接入电源,又因为电容有阻直通交的作用,交流电通过电容时又滞后一个电角度,这样就人为地把进入电机的单相电又分出来一相,产生旋转磁场,推动转子旋转。反转时,只要把工作绕组或者启动绕组的两个接线对调一下就行,产生S N S N的磁场,电机就反转了。 网友完善的答案好评率:75% 单相电机的接线方法,是在副绕组中串联(不是并联)电容,再与主绕组并联接入电源;只要调换一下主绕组与副绕组的头尾并联接线,电机即反转 如果电机是3条出线的,其中一条是公共点!(分别与另外2条线的测电阻其值较小)接电源零线!然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了!若要改变电机转向只要把220V电源相(火)线接在电容的另一端就可以了!

笼型电动机正反转的控制线路(电路图) 发布: | 作者: | 来源: jiasonghu | 查看:775次 | 用户关注: 接通电源让KMF--线圈通电其主触点闭合三相电源ABC分别通入电机三相绕组UVW,电动机正转。KMF线圈断电,主触点打开,电机停。让KMR线圈通电----其主触点闭合三相电源ABC通入电机三相绕组变为A—U未变,但B—W,C—V。电动→笼型电动机正反转的控制线路要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。设KMF为实现电机正转的接触器,KMR为实现电机反转的接触器。合上--S 笼型电动机正反转的控制线路 要使电动机给够实现反转,只要把接到电源的任意两根联线对调一头即可。为此用两个接触器来实现这一要求。 设 KMF 为实现电机正转的接触器, KMR 为实现电机反转的接触器。 接通电源→合上--S 让 KMF--线圈通电其主触点闭合 三相电源 ABC 分别通入电机三相绕组 UVW ,电动机正转。 KMF 线圈断电,主触点打开,电机停。 让 KMR 线圈通电----其主触点闭合 三相电源 ABC 通入电机三相绕组变 为 A — U 未变,但 B — W ,C — V。电动机将反转

直流电机原理

直流电机是机械能和直流电能相互转换的旋转机电设备,它可以使机械能和电能之间相互转换; 如果将直流电能转换为机械能时,则为直流电动机,如:用在升降提取物品时,在上升的过程中,直流电机提起物品,电机用力方向与物品的位移方向一致,电机正向用力,进入电动状态;又如冷轧机,主机和卷取机,电机的力矩方向与电机旋转方向一致,电机正向用力,进入电动状态; 电动状态也分正电动状态和反电动状态,即电机正反转; 如果将机械能转换为直流电能时,则为直流发电机,如:用在升降提取物品时,在下降的过程中,直流电机会被重物拖动,电机反向用力,进入发电状态;又如冷轧机,放卷机被主机拖动旋转,放卷机反向用力,进入发电状态; 虽然两者都工作在发电状态,但两者的工作方式也有所不同; (可以插图四象限运行) 电机为什么会转动?为什么电流越大,力矩就越大?电机反电动势?(附图)直流电机的励磁部分简化为两个固定的磁极N-S,磁场方向是从N到S的,如图; 当电机电枢通入直流电时,根据左手定则,电枢上半部分力矩为左,下半部分力矩为右,上下部分配合就使电机电枢,向同一个方向转动,所以通有励磁电流的直流电机,只要电枢上用电流流过,电机就会转动;而电机的力矩与电流是成正比,所以电流越大,力矩就越大; 通有电流的导体在切割磁感线时会产生一个反向的电压,称为反向电动势; 当电机转动时,因为电机电枢部分通有电流,根据电机的旋转方向和磁场方向,再由右手定则,可以确定电机电枢中会产生一个反电动势,其电压方向与外加在电枢的电压方向相反; 1、直流电机的铭牌 电机型号:Z4 电机功率:Pn=500KW 电机电压:Un=440V 电机电流:In=1136A 近似地:Pn=Un*In 电枢电阻:Ra= Un/In 励磁电压:Uf=310V 励磁选择恒压供电时的稳定供电电压 励磁电流:If=20A 励磁选择恒流供电时的稳定供电电流 励磁反馈选择电压模式时,由于电机转动时,定子磁通量会微微减少,且变化不稳定,所以造成电机运转不稳定;且不能进行弱磁升速; 励磁反馈选择电流模式时,由于定子磁通量与励磁电流近似线性变化,所以只要励磁电流稳定不变,定子磁通量就会稳定,所以电机输出力矩也稳定;且可以进行弱磁升速; 电机转速:n=500/1500 R/Min 2、直流电机各公式 电压平衡公式:Un=E+Ia*Ra 反电动势公式:E=Ce*Φ*n 电枢电流:Ia=(Un—E)/Ra 电机转动与不转动情况? 励磁回路:If=Uf/Rf 用电流或电压反馈的不同处; 力矩公式:T=Ce*Φ* Ia T=9.55*Pn/n

关于单相电机正反转的详细接线图讲解

看到部分吧友对这个感兴趣,所以花了点时间做了几个图,给大家分享,如果有兄弟感觉不错,就麻烦出手顶一下,以便让其他兄弟有机会看到。 其实是这样,主线圈的1(2)接副线圈的2(1),这样就正传,反过来 主线圈的1(2)接副线圈的1(2),这样就反转, 以上两个图,一般的常规单相电机都可以用,不论他的主线圈与副线圈的参数一样不一样,另外还有一种单相电机,工作中需要他正反转,但是采用上面的办法,比较麻烦,实现自动控制,器件需要也多,所以就出现了,不分主副线圈的单相电机,就是主副线圈的参数一样,

这种不分主副线圈的单相电机,除了用上面的这个办法外还可以这样 顺便说一下,洗衣机的电机就是不分主副的单相电机 第二个图还可以变形为这样,这样也可以实现反转

单相电机的画法还有一种 哦,再补充一点,5楼的图只适用于不分主副线圈的电机,各位看清楚了。如果单相电机两个线圈的外观上,明显不一样,就不能采用5楼的方法,切记切记 倒顺开关控制的单相电机正反转

落地扇电机接线图 图做的很漂亮,人也很热心. 我没修过电机,我想知道14楼的图上那个调速线圈在下线的时候是怎么做的. 是独立于主副绕组的另一组线圈单独下到线槽里,还是和主绕组或副绕组绕在一起的线圈抽的头. 是和主绕组或副绕组绕在一起的线圈抽的头 这个太专业了,我。。。。。。 不过我可以和你说点别的, 吊扇你拆过吗?他的主副线圈在定子上是按同心园排的,我想说的是。 我在搞维修时,如果发现主线圈其中的冒一个烧了,我就直接跨接,不管这个线圈是顺时针绕的,还是逆时针绕的,主线圈我直接跨接过两个线圈,副线圈也可以适当摘除,电扇还可照常运转,只不过会稍微发热,再多了就没试过了,这样做磁场肯定不均匀了,这个是经过长时间运行验证的,没问题,(当年就靠这个吃饭的,哈哈哈,莫笑,莫拍砖) 再说一个,单相电机的磁场本身就不均匀,他不同于三相电机的磁场, 三相电机的磁场是一个正旋园,理想的情况(排除损耗、涡流)转子在360度的空间上,得到的力是相同的, 而单相电机的磁场是一个类似椭圆的磁场,如果除去启动线圈光说主线圈形成的磁场,在空间上是水平方向的,在90度的地方是有死点的,因为电流交变要过零点的 所以单相电机要靠那个电容把电流移相,然后再加给启动线圈,启动线圈产生的磁场也是在空间上是水平方向的,只不过经过电容移相,这个水平方向的力和主线圈产生的力,有一个夹角,(如果理想这个夹角是90度,因为主线圈的刚好在90度的位置是0,电流过零点造

(完整版)《三相异步电动机的正反转控制线路》教学设计

《三相异步电动机的正反转控制线路》 教学设计

课题:三相异步电动机的正反转控制线路 授课班级:电子中职高一年级下学期 授课时间:2014年4月11日星期五 授课教材: 中国劳动社会保障出版社《电力拖动控制线路与技能训练》 教材分析: 《三相异步电动机的正反转控制线路》这节内容选自第二单元课题三“三相异步电动机的正反转控制线路”第二部分。 正反转控制在现代化生产中属于绝对不可缺少的生产控制环节,如机床工作台的前进与后退、万能铣床主轴的正传与反转、起重机的上升与下降等。它在电动机的基本控制中,前面与电动机的正转控制紧密相连,后面与位置控制、顺序控制、多地控制、启动控制、制动控制等密切相关,对今后进一步进行电工技能实训及培养学生的实际动手操作能力起着举足轻重的作用。 教学目标: 知识与技能: 1)理解三相异步电动机三种正反转控制线路; 2)掌握三相异步电动机正反转的工作原理。 过程与方法: 1)通过分析三种控制电路的渐进过程,培养学生的识图能力以及比较分析和归纳总结的能力。 2)通过引导学生分析工作原理、培养和训练学生综合分析电路的能力。 情感态度与价值观: 培养学生严谨认真的职业工作态度。增强学生发现问题、认识问题、解决问题。 教学重点: 1)接触器联锁的正反转控制线路的组成与工作原理 2)对控制线路的每个元件都要明确其位置和作用。 教学难点: 1)如何改变三相电源相序。 2)引导学生思考如何实现双重联锁。 教法: 提问、启发引导法(重点):先不给出线路图,在教师的步步启发下,学生积极思考,由师生共同画出接触器联锁的正反转控制线路图。这样,便于学生掌握线路的组成与工作原理。

直流电机正反转C程序

//直流电机正反转C程序 #include #define uchar unsigned char #define uint unsigned int sbit dula=P2^6; sbit wela=P2^7; sbit key4=P3^0; sbit key1=P3^1; //sbit set=P3^4; bit flag=0; uchar bai,shi,ge; uint i,count,num; uint disnum;//循环次数 uchar code tabledu[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0}; void delay_12MHZ_s(uint x) { uint j,k,i; for(j=x;j>0;j--) for(k=112;k>0;k--) for(i=1114;i>0;i--); } void delay_ms(uint x) { uint j,k; for(j=x;j>0;j--) for(k=112;k>0;k--); } void display_sm()//三位数码管显示循环次数 { bai=disnum/100; shi=disnum%100/10; ge=disnum%10; dula=1; if(bai==0)//如果百位是0则不显示百位 P0=0xff; else P0=tabledu[bai]; dula=0; P0=0xff; wela=1; P0=0xfe; wela=0; delay_ms(10);

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)

单相电机的倒顺开关接线及原理 有不少电工对单相电机的接线搞不清。我先对单相电机的正反转原理讲一下。单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。启动线圈电阻比运转线圈电阻大些,量下就知了。启动的线圈串了电容器的。也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。 有接线盒的单相电动机内部接线图

上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。 单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组 以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。本人学识粗浅,特建立 QQ群:79694587 以便大家相互学习。

单相电机正反转(参考)

一、单相电机的正反转接线原理 单相电机有两个绕组:主绕组又称工作绕组或运行绕组,副绕组又称启动绕组,有的小负载单相电机这两个绕组完全一样,互相可以交换,但多数单相电机(带较大负载的农用电机)为了增大启动力矩,副绕组线圈细、匝数多、阻值大;副绕组与主绕组之间有一启动电容;只要交换两个绕组中的一个绕组的首尾接线就可反转,交换电源L/N是 无效的。 当两绕组完全一样,电机可能是三端子接线,1,3为两绕组的公共接线端,接交流电源的L,2/4端子之间联有启动电容,如果交流电源的N端接端子2为正转,则N改接端子4为反转;如果是四端子, 见图四接线;

图3:三端子单相电机[两绕组相同] 图四:四端子单相电机[两绕组相同] 农用单相电机的主/副绕组不一样,不能采用上面交换主/副绕组的做法,否则,会烧坏电机,一般应有四个端子:1/2为主绕组,3/4为 副绕组,正转见图五: 图五

如果要反向转动,正确的做法是交换一个绕组的首尾接线,主副绕组的区分很简单,根据阻值就可判断出。 二、没有用接触器的是用电容的

三、给你找找,不知道你准备用什么控制的,给你个倒正开关的吧

四、 回复引用举报明理个人主页给TA发消息加TA为好友发表于:2008-09-26 20:57:18 5楼 非常典型的,请参考。 回复引用举报happy-1437个人主页给TA发消息加TA为好友发表于:2008-09-26 21:30:40 6楼

五、 路图,按此接线即可 其实很简单,和那个吊扇是以个原理,你只要看看吊扇的接线图就会接了,单相的上面只不过加了个电容。单相电机正反转接线图:其实就是用一个单刀双掷的开关就可以实现正反转。

三相异步电机正反转控制教案.

《三相异步电动机按钮、接触器双重联锁正反转控制线路》教案教 师系(部) 任教 班级 (高、 中)职中职教学地点 课 时 课题三相异步电动机按钮、接 触器双重联锁正反转控制 线路 课型 理实 一体 化 教材及出版社《电工电子技术训练》高等教育出版社 教材分析 三相异步电动机的按钮、接触器双重联锁正反控制线路是《电工电子技术训练》一书中项目六中的重点内容。三相异步电动机的按钮、接触器双重联锁正反转控制线路是在按钮联锁正反转控制电

路和接触器联锁正反转控制电路的基础上来讲解的,在教材中具有承上启下的作用。学好这一节对学习后面的工作台自动往返控制电路的安装至关重要。 学生分析 本内容的教学对象是五年制高职数控专业二年级学生,他们已经学习过正反转控制电路中的按钮联锁和接触器联锁的工作原理以及安装,对正反转控制电路有了一定的了解。 教学重点 双重联锁正反转控制线路的工作原理及特点。线路安装的工艺、技巧及检修方法等。 教学难点 线路检修方法及思路。通过典型故障,用举例法、示范法使学生树立

正确的维修思路,掌握常 用的检修方法。 教学 目标知识 掌握按钮、接触器双 重联锁正反转控制线路的 工作原理。 情感 培养学生严谨认真的职业工作态度。增强学生用辩证唯物主义观点来发现问题、认识问题、解决问题。 能力 掌握双重联锁正反转控制线路的正确安装和检修。 教学重点及突出重点的方法双重联锁正反转控制线路的工作原理及特点。线路安装的工艺、技巧及检修方法等。通过几个基本线路的观察、分析,作为学习按纽、接触器双重联锁正反转控制线路内容的突 破。 教学难线路检修方法及思

点及突出难点的方法路。通过典型故障,用举例法,演示法,实践法使学生树立正确的维修思路,掌握常用的检修方法,使整个教学过程融合在学生参与和交流之中,使学生在学习过程中感受到探索成功的乐趣。 教法及学法指导 总体教学构想突出三点,一是突出知识结构,二是绘图和识图,三是动手操作。将以往的读图发展成为识图、绘图、填图,说图,进而形成“启、绘、议、说、做”的五字教学模式。 课外作业 绘制双重联锁正反转控制线路的原理图、布置图、接线图? 教学过程 教学过程主要教学内容及步骤时间分配引入【新课导入】新课导入

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

单相异步电动机原理及正反转

单相异步电动机原理及正反转 单相异步电动机是指用单相交流电源供电的异步电动机。单相异步电动机具有结构简单、成本低廉、噪声小、使用方便、运行可靠等优点,因此广泛用于工业、农业、医疗和家用电器等方面,最常见于电风扇、洗衣机、电冰箱、空调等家用电器中。但是单相异步电动机与同容量的三相异步电动机相比,体积较大,运行性能较差。因此,单相异步电动机一般只制成小容量的电动机,功率从几瓦到几千瓦。单相异步电动机在家用电器中的应用特别广泛,与人们的生活密切相关。 单行异步电动机的结构如下图: 一、 单相异步电动机的工作原理和机械特性 当单相正弦交流电通入定子单相 绕组时,就会在绕组轴线方向上产生 一个大小和方向交变的磁场,如图1 所示。这种磁场的空间位置不变,其 幅值在时间上随交变电流按正弦规律 变化,具有脉动特性,因此称为脉动 磁场,如图2(a)所示。可见,单相异 步电动机中的磁场是一个脉动磁场,不同于三相异步电动机中的旋转磁场。 图1 单相交变磁场

图3 单相异步电动机的机械特性 (a)交变脉动磁场 (b)脉动磁场的分解 图2 脉动磁场分解成两个方向相反的旋转磁场 为了便于分析,这个脉动磁场可以分解为大小相等,方向相反的两个旋转磁场,如图2(b)所示。它们分别在转子中感应出大小相等,方向相反的电动势和电流。 两个旋转磁场作用于笼型转子的导体中将产生两个方向相反的电磁转矩T + 和 T - ,合成后得到单相异步电动机的机械特性,如图3所示。图中,T + 为正向转矩,由旋转磁场B m1产生;T - 为反向转矩,由反向旋转磁场B m2产生,而T 为单相异步电动机的合成转矩。 从图3可知,单相异步电动机一相绕组通电的机械特性有如下特点: 1.当n=0时, T + =T - ,合成转矩T=0。即单相异步电动机的启动转矩为零,不能自行启动。 2.当n >0时,T >0;n <0时,T <0 。 即转向取决于初速度的方向。当外力给转子 一个正向的初速度后,就会继续正向旋转; 而外力给转子一个反向的初速度时,电机就 会反转。 3.由于转子中存在着方向相反的两个 电磁转矩,因此理想空载转速n 0小于旋转磁 场的转速n 1;与同容量的三相异步电动机相 比,单相异步电动机额定转速略低,过载能 力、效率和功率因数也较低。 二、 单相异步电动机的启动 单相异步电动机由于启动转矩为零,所以不能自行启动。为了解决单相异步电动机的启动问题,可在电动机的定子中加装一个启动绕组。如果工作绕组与启动绕组对称,即匝数相

电机正反转联动控制电路图

按钮联锁正反转控制线路 图2—12 按钮联锁正反转控制电路图 图2-12 按钮联锁正反转控制电路图接触器联锁正反转控制线路

双重联锁正反转控制线路 元件安装图

元件明细表 1、线路的运用场合: 正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;电梯、起重机的上升与下降控制等场所。 2、控制原理分析 (1)、控制功能分析:A、怎样才能实现正反转控制? B、为什么要实现联锁? 这两个问题是本控制线路的核心所在,务必要透彻地理解,否则只会接线安装,那只是知其然而不知其所以然。另外,问题的提出,一方面让学生学会去思考,另一方面也培养学生发现问题、分析问题的能力。教学中,计划先让学生温书预习(5分钟)、寻找答案,再集中讲解。先提问抽查,让学生能各抒己见、充分发挥,最后再总结归纳,解答所提出的问题,进一步统一全班思路。答案如下: A、电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W 相对调。 B、由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。为安全起见,常采用按钮联锁和接触器联锁的双重联锁正反转控制线路(如原理图所示)

(2)、工作原理分析 C、停止控制: 按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转 (3)双重联锁正反转控制线路的优点: 接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。双重联锁正反 转控制线路则兼有两种联锁控制线路的优点,操作方便,工作安全可靠。 3、怎样正确使用控制按钮? 控制按钮按用途和触头的结构不同分停止(常闭按钮)、起动按钮(常开按钮)和复合按钮(常开和常闭组合按钮)。按钮的颜色有红、绿、黑等,一般红色表示“停止”,绿色表示“起动”。接线时红色按钮作停止用,绿色或黑色表示起动或通电。 三、注意事项

直流电机正反转控制

(课程设计说明书(2015/2016 学年第二学期) 课程名称:单片机应用技术课程设计 题目:直流电机正反转控制 专业班级:电气工程及其自动化1321班 学生姓名: 学号: 1 指导教师: 设计周数:两周设计成绩: 2016年6月24日 目录 一、课程设计目的-----------------------------------3 二、课程设计任务及要求-----------------------------3 原始数据及主要任务------------------------------------------3 技术要求----------------------------------------------------3 三、单片机简介-------------------------------------3 四、软件设计---------------------------------------4

系统分析及应用种类-------------------------------------------4 系统设计-----------------------------------------------------5 五、电路设计---------------------------------------5 电机驱动电路设计------------- -----------------------------5 显示电路设计-------------------------------------------------6 按键设计-----------------------------------------------------6 Proteus 仿真图-----------------------------------------------6 Protel 99se 原理图-------------------------------------------7 六、程序设计---------------------------------------7 七、操作控制--------------------------------------12 八、心得体会--------------------------------------12 九、参考文献--------------------------------------12 一、课程设计目的 通过长达两周的课程设计,加深对《单片机》课程所学理论知识的理解,运用所学理论知识解决实际问题。结合课程设计的内容,学会利用Protel软件绘制电路原理图,掌握电路的设计与组装方法,进行软硬件联机调试。学会查阅相关专业技术资料及设计手册,提高进行独立设计的能力并完成课程设计相关任务。 二、课程设计任务及要求 原始数据及主要任务 1.设计直流电机控制电路。 2.设计数码管显示电路。 3.设计开关电路。 4.分配地址,编写系统程序。 5.利用Protel设计硬件电路原理图和PCB图。 6.软硬件联机调试。

三相异步电动机正反转控制电路图原理及plc接线与编程

三相异步电动机正反转控制电路图原理及plc接线与编程三相异步电动机正反转控制电路图原理及plc 接线与编程 在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器. 在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。使KM1的线圈通电,电机开始正转运行。按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。 在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。 可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其

实验一 三相异步电动机的正反转控制实验报告

实验一三相异步电动机的正反转控制实验报告 实验目的 ⑴了解三相异步电动机接触器联锁正反转控制的接线和操作方法。 ⑵理解联锁和自锁的概念。 ⑶掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。 实验器材 三相异步电动机(M 3~)、万能表、联动空气开关(QS1)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。实验原理 三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。 实验操作步骤 连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮SB2和反转按钮SB2控制。控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。 当按下正转启动按钮SB1后,电源相通过空气开关QS1,QS2和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转动,在按下SB2时,接触器KM和其他的器件形成自锁反转。安装接线 1在连接控制实验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。 2 在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。 3将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。

单片机控制直流电机正反转

目录 第1章总体设计方案 (1) 1.1 总体设计方案 (1) 1.2 软硬件功能分析 (1) 第2章硬件电路设计 (2) 2.1 单片机最小系统电路设计 (2) 2.2直流电机驱动电路设计 (2) 2.3 数码管显示电路设计 (4) 2.4 独立按键电路设计 (5) 2.5 系统供电电源电路设计 (5) 2.5.1直流稳压电路中整流二极管的选取: (6) 2.5.2直流稳压电路中滤波电容的选取: (6) 第3章系统软件设计 (7) 3.1 软件总体设计思路 (7) 3.2 主程序流程设计 (7) 附录1 总体电路图 (10) 附录2 实物照片 (11) 附录3 C语言源程序 ....................................... 12

实习报告 第1章总体设计方案 1.1 总体设计方案 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低。随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。所以,本次实习采用了驱动芯片来驱动直流电机,并运用单片机编程控制加以实现。 系统设计采用驱动芯片来控制的,所以控制精度和可靠性有了大幅度的提高,并且驱动芯片具有集成度高、功能完善的特点,从而极的大简化了硬件电路的设计。 图1.1 直流电机定时正反转方案 1.2 软硬件功能分析 本次实习直流电机控制系统以STC89C52单片机为控制核心,由按键输入模块、LED显示模块及电机驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给L293D直流电机驱动芯片发送PWM波形,H 型驱动电路完成电机正,反转控制;同时单片机不停的将变化的定时时间送到LED数码管完成实时显示。

三相异步电动机正反转控制线路教案

阳江市第一职业技术学校 三相异步电动机正反转控制线路教案 电子教研组

课题:三相异步电动机的正反转控制线路教学内容及目的: 知识目标:掌握三相异步电动机正反转控制的设计思路,理解 其工作原理。 技能目标:能够完成三相异步电动机正反转控制的接线。 情感目标:培养学生自主学习能力,树立互帮互助的团队合作 意识。 教学重点: 设计三相异步电动机正反转控制线路。 教学难点: 分析三相异步电动机正反转控制线路的工作原理。 授课类型: 专业实操课 授课方法: 理论与实践一体化 教具准备 接线控制面板、剥线钳、尖嘴钳、一字起、十字起、若干导线。

任务二:电动机反转线路设计 任务三:电动机正反转控制线路设计 、任务分析: )若要一台电动机完成正转和反转,主电路必须用两个接触器来进行切换,完成两种运行状态。 )控制电路按照要求需实现正转、反转和停止功能,因此需要个按钮。 )电动机运行过程中,为了避免电动机过载和断相,所以要有一个热继电器。 )电路通电时,为了避免发生短路故障,造成电路损坏,还需要装有熔断器。 )为了完成电路中电源的控制,还需要配置一个合适的刀开关。

、控制电路的设计 )哪些是可以共用的器件? 如:保护设备、停止按钮等。 )哪些器件是不可共用的? 如:启动按钮等。 )正转时能同时反转吗?如不能,应如何解决该问题(互锁))介绍互锁的作用。 四、合作分析电路(10分钟)

课外作业: 必做题:根据电动机正反转的线路图,试分析电动机正转时如不按停止 按钮而直接按反转启动按钮会有什么现象发生? 选做题:本任务中的正转和反转之间转换必须先按下停止按钮,请设计 电路,使得电动机在正转和反转之间转换时不必按下停止按钮即可转换。

小型直流电机正反转驱动电路

用8550 和ULN2003 驱动小型直流电机正反转 51 单片机的输出能力有限,带动一两个LED 还是可以的,带动电动机、继电器等等,就难以承担了。 一般来说,常用的扩充51 单片机带负载能力的芯片有:75452、MC1413、ULN2003 系列、L298...。 这几种芯片,做而论道都使用过。 在ULN2003 内部,有七个高耐压、大电流NPN 达林顿管构成的反相器,输入5V 的TTL 电平,输出可达500mA/50V。ULN2803 里面有八个反相器,它们的电气性能是相同的。 ULN2003 (及ULN2803) 的输出端是开路结构,只能驱动灌电流负载;它的内部是反相器;所以,它们都是用输入高电平来驱动的。 在网上发现一个题目:https://www.360docs.net/doc/367921730.html,/question/427268344.html 题目要求用ULN2803 和8550,驱动一个直流电机,控制它正反转。 题目中的电路,用了两片2803,且直接放在了单片机引脚和电机之间,这就有些不合适了。 51 单片机刚开机时,在复位阶段,输出的都是高电平。这个时间,有可能会“较长”,几十毫秒都是可能的。 按照题目中电路,在单片机复位期间,受控电路就都导通了,这就会造成不必要的动作,甚至会造成元器件的损坏。这种情况是不允许发生的。 如果利用ULN2003 中的闲置部分,把单片机的输出信号先反一下相,这就可以避免在输出高电平时产生的误动作。 但是,也要注意,这以后,在正常工作期间,千万就不能都输出低电平了。 当然,在必要的时候,令单片机同时输出两个低电平,也可以达到“自毁”的目的。 ULN2003 + 8550 组合,是做而论道常用的电路器件,用它们构成的电机驱动电路,曾经在做而论道的产品中出现过。 下图是做而论道设计的小型直流电机正反转驱动电路。

交流单相电动机正反转接线示意图

交流单相电动机正反转接线(图) 220V交流单相电机一般都有两个绕组,其中阻值大的是启动绕组(也叫副 绕组),阻值小的是运行绕组(也叫主绕组),如果两绕组阻值相同,则不用区分启动绕组和运行绕组,任一组都可作启动绕组或运行绕组。用万用表找到引出端测量电阻就可以发现了:对于起动绕组与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。电阻最大的是两线圈的串联阻值,最小的是运行绕组,连接电源,阻值在中间的就是启动绕组,串联电容后连接电源。 起动方式一般都是分相起动式,可分为以下几种: 第一种,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电动机,如图1所示。 图1电容运转型接线电路 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开,不参与运行工作,而电动机以运行绕组线圈继续动作。 图2电容起动型接线电路 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方,如图3所示。带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。

三相异步电动机的正反转控制实验报告

实验目的 ⑴了解三相异步电动机接触器联锁正反转控制的接线和操作方法。 ⑵理解联锁和自锁的概念。 ⑶掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。 实验器材 三相异步电动机(M 3~)、万能表、联动空气开关(QS1)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。实验原理 三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。 实验操作步骤 连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮SB2和反转按钮SB2控制。控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。 当按下正转启动按钮SB1后,电源相通过空气开关QS1,QS2和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转动,在按下SB2时,接触器KM和其他的器件形成自锁反转。安装接线 1在连接控制实验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。 2 在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。 3将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)-推荐下载

单相电机的倒顺开关接线及原理 有不少电工对单相电机的接线搞不清。我先对单相电机的正反转原理 讲一下。单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启 动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是 一直工作在电路中的。启动线圈电阻比运转线圈电阻大些,量下就知了。 启动的线圈串了电容器的。也就是串了电容器的启动线圈与运转线圈并联, 再接到220V 电压上,这就是电机的接法。当这个串了电容器的启动线圈 与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。比起三相 电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启 动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动 机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错 就可能烧毁电动机。 有接线盒的单相电动机内部接线图

上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和 U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。 单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组 以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。本人学识粗浅,特建立 以便大家相互学习。 QQ群:79694587

(完整版)三相异步电机正反转控制教案.doc

《三相异步电动机接触器联锁正反转控制线路》教案教师马栋教学部机电部任教班级13 机电 3 教学地点实训楼 201 课时 4 三相异步电动机接触器联锁正反转控制线 课型理论加实操课题 路 教材电力拖动控制线路与技能训练(第四版) 三相异步电动机接触器联锁正反控制线路是《电力拖动控制线路与技能训

练》一书中第二单元课题二中的重点内容。三相异步电动机的接触器联锁正反转教材分析控制线路是按钮联锁正反转控制电路和按钮接触器双重联锁正反转控制电路的基础上。学好这一节对学习后面的按钮联锁正反转控制电路和按钮接触器双重 联锁安装至关重要。 本内容的教学对象是13 级机电专业学生,他们已经学习过电动机的正转 学生分析 控制,以及自锁的原理。 接触器联锁正反转控制线路的工作原理及特点。线路安装的工艺、技巧及 教学重点 检修方法等。 线路检修方法及思路。通过典型故障,用举例法、示范法使学生树立正确教学难点 的维修思路,掌握常用的检修方法。 知识掌握接触器联锁正反转控制线路的工作原理。 教学 目标情感 培养学生严谨认真的职业工作态度。 问题、认识问题、解决问题。 增强学生用辩证唯物主义观点来发现能力掌握接触器联锁正反转控制线路的正确安装和检修。 接触器联锁正反转控制线路的工作原理及特点。线路安装的工艺、技巧及 教学重点及突 检修方法等。通过几个基本线路的观察、分析,作为学习接触器联锁正反转控出重点的方法 制线路内容的突破。 教学难点及突线路检修方法及思路。通过典型故障,用举例法,演示法,实践法使学生出难点的方法树立正确的维修思路,掌握常用的检修方法,使整个教学过程融合在学生参与

相关文档
最新文档