近世代数教学PPT

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数学习教材PPT课件

近世代数学习教材PPT课件

§8.2 代数系统常见的一些性质
(3)代数系统常见性质 1)结合律:(a b) c=a (b c) 2)交换律:a b=b a 3)分配律:a (b+c)=(a b)+(a c) 4)单位元:a 1=a 5)逆元:a a-1=1 6)零元:a 0=0
7)生成元
逆元

特殊子环 (两个二元运算:,
单位元,无零因子 整环 理想 商环
)
特殊环
两个运算的结合律、交换律、吸收律
格 两个运算的分配律 分配格 布尔代数 两个运算的单位元、逆元 两个运算有单位元 有界格 两个运算有逆元 有补格
第九章 群论
§9.1 一些群的定义
(7)半群——代数系统满足交换律
§9.2 一些群的理论与半群性质:
半群的子代数也是半群。 循环半群是可换半群。 (19)关于群的基本理论 群方程可解性:a x = b(或x a = b)对x存在唯一解; 群的消去律:a b = a c(或b a = c a)必有b = c; 任一群必与变换群同构; 与一个群同构或满同态的代数系统必为群; 一个代数系统有限群满足结合律及消去律则必为群;
第三篇 近世代数
代数系统是建立在集合论基础上以代 数运算为研究对象的学科。本篇共三章, 第五章代数系统基础介绍代数系统的一般 原理与性质, 第六章群论,主要介绍具有 代表性的代数系统-群,最后第七章其它 代数系统,介绍除群外常见的一些代数系 统,如环、域、格与布尔代数等,这三章 相互配合构成了代数系统的完整的整体。
§8.3 同构与同态
(4)同构:(X, )与(Y,)存在一一对应函
数g : XY使得如x1 , x2X,则有:g(x1 x 2)=g(x1)

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数基础课件

近世代数基础课件
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例

近世代数教学课件

近世代数教学课件

并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A

近世代数基础PPT课件

近世代数基础PPT课件

来说四元数的发现使人们对于数系的代数性质的认识提高了
一大步。四元数代数也成为抽象代数研究的一个新的起点,
它是近世代数的另一个重要理论来源。
返回
16
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一 个非常困难的问题,这一问题被后来的研究者称为 费马问题或费马大定理,此定理直到1995年才被英 国数学家A.Wiles证明。对费马问题的研究在三个半 世纪内从未间断过,欧拉、高斯等著名数学家都对 此作出过重要贡献。但最重大的一个进展是由 E.Kummer作出的。
18
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。
14
加罗华
阿贝尔
返回
15
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发
现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按
(a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行
代数运算,二元数具有直观的几何意义;与平面上的点一一
近 世 代 数
概 述
11
>>
1. 近世代数理论的三个来现 (3) Kummer理想数的发现
下一页
12
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开

《近世代数》PPT课件

《近世代数》PPT课件

定理1.5.1 假设一个集合A的代数运算 同时适合结合
律与交换律,那么在 a1a2 an中,元素的次序 可以调换.
例 判定下列有理数集Q上的代数运算 是否适合结合律,
交换律?
(1) a b a b ab (适合结合律和交换律 )
(2) ab(ab)2 (适合交换律,但不适合结合律)
(3) aba (适合结合律,但不适合交换律 )
定义1.9.2 设 是集合 A的代数运算. 若 是 A到 A的 一个同构映射(同态映射),则称 是 A的一个自 同构 (自同态).
小结
同态是把代数运算考虑在内的映射,即是用来
比较两个代数结构的工具.
返回
在代数学中,两个同构的代数结构一般认为是相同的. 22
§1.10 等价关系与集合的分类
定义1.10.1 A设 是集合,D对,.错 一个 AA 到 D 的映射
注: 变换 是 A到A自身的一个映射.
小结
为了比较两个集合,我们引入了单射,满射,一
一映射和变换的概念.
返回
19
§1.8 同态
定义1.8.1 设 , 分别是集合的代数运算, : A A 是一个映
射,若 a,bA,有 (ab ) (a ) (b ),
则称 是 A到 A 的一个同态.
例1 A=Z (整数集), 是普通加法; A ={1,-1}, 是普通乘法.
定义1.2.2 设 1 , 2是A到B的两个映射,若对 aA,
有 1(a)2(a), 则称 1 与 2 是相等的,记作 1 2.
注: 映射相等 构成映射的三要素(值域、定义域、对
应法则)全相同.
例5 设 AB 为正整数集 .
定义 1 : ; a1 1 ( a ) , a ,

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的实数的所组成的集合.
常用的数集: 全体整数的集合,表示为Z 全体有理数的集合,表示为Q
全体实数的集合,表示为R
全体复数的集合,表示为C
设A,B是两个集合,如果A 的每一元素都是B 的
元素,ቤተ መጻሕፍቲ ባይዱ么就说A是B的子集,记作 A B ,或记 作 B A . 根据这个定义,A是B的的子集当且仅当 对于每一个元素x,如果 x A ,就有 x B .
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A
A1 A2 An 和 A1 A2 An
. 我们有
, n)
( x A1
A2
A) ( x至少属于某一Ai , i 1, 2,
( x A1
A2
A) ( x属于每一Ai , i 1, 2,
, n)
差运算: 设A,B是两个集合,令 A B {x | x A但x B} 也就是说,A B 是由一切属于A但不属于B 的元素所 组成的,称为A与B 的差.
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发现 可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行代 数运算,二元数具有直观的几何意义;与平面上的点一一对应。 这是数学家高斯提出的复数几何理论。二元数理论产生的一个 直接问题是:是否存在三元数?经过长时间探索,力图寻求三 元数的努力失败了。但是爱尔兰数学家W.Hamilton(1805-1865) 于1843年成功地发现了四元数。四元数系与实数系、复数系一 样可以作加减乘除四则运算,但与以前的数系相比,四元数是 一个乘法不交换的数系。从这点来说四元数的发现使人们对于 数系的代数性质的认识提高了一大步。四元数代数也成为抽象 代数研究的一个新的起点,它是近世代数的另一个重要理论来 源。
并运算 设A,B是两个集合 . 由A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
阿贝尔
加罗华
被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入 研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、 “伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理 论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透 彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断 几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方 体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代 替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数 学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展 产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构 主义哲学的产生和发展都发生了巨大的影响。
两个集的并与交的概念可以推广到任意n个集合上去, 设 是给定的集合 .由 A1 , A2 ,, A n
A1 , A2 ,, 的一切元素 An
所成的集合叫做
A1 , A2 ,, 的并; An
由 A1 , A2 ,, An的一切公共元素所成的集合叫做
A1 , A2 ,, An 的交. A1 , A2 ,, An 的并和交分别记为:
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为元素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数理论的三个来源
(1) 代数方程的解
(2) Hamilton四元数的发 (3) Kummer理想数的发现
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开 ax2+bx+c=0 方法解二次方程 。16世纪初欧洲 文艺复兴时期之后,求解高次方程成为欧洲代 数学研究的一个中心问题。1545年意大利数学 家 G.Cardano(1501-1576)在他的著作《大术》 (Ars Magna)中给出了三、四次多项式的求根 公式,此后的将近三个世纪中人们力图发现五 次方程的一般求解方法,但是都失败了。
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一个 非常困难的问题,这一问题被后来的研究者称为费马 问题或费马大定理,此定理直到1995年才被英国数学 家A.Wiles证明。对费马问题的研究在三个半世纪内从 未间断过,欧拉、高斯等著名数学家都对此作出过重 要贡献。但最重大的一个进展是由E.Kummer作出的。
Q C Ø 注意:并没有要求B是A的子集. 例如,
积运算: 设A,B是两个集合,令 A B {(a, b) | a A, b B} 称 A B 为A与B的笛卡儿积(简称为积). 是一切元素 对(a, b )所成的集合,其中第一个位置的元素a取自 A,第二个位置的元素b取自B. 可以定义多个集合的笛卡儿积
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也 就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素 的代数运算规律和各种代数结构,完成了古典代数到抽象代数 的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
Kummer的想法是:如果上面的方程有正 整数解,假定η是一个n次本原单位根,那么 xn+yn=zn 的等式两边可以作因子分解 zn=(x+y)(x+ηy)…(x+ηn-1y),象整数中的因子分解 一样,如果等式右边的n个因子两两互素,那么 每个因子都应是另外一个“复整数”的n次方幂 ,进行适当的变换之后有可能得到更小的整数 x1,y1,z1使 xn+yn=zn 成立,从而导致矛盾。如果 上面等式右边的n个因子有公因式,那么同除这 个公因式再进行上面同样的讨论。
直到1824年一位年青的挪威数学家 N.Abel (1802-1829) 才证明五次和五次以上的一般代数方程 没有求根公式。但是人们仍然不知道什么条件之下一 个已知的多项式能借助加、减、乘、除有理运算以及 开方的方法求出它的所有根,什么条件之下不能求根。 最终解决这一问题的是一位法国年青数学家 E.Galois(1811—1832),Galois引入了扩域以及群的 概念,并采用了一种全新的理论方法发现了高次代数 方程可解的法则。在Galois之后群与域的理论逐渐成 为现代化数学研究的重要领域,这是近世代数产生的 一个最重要的来源。
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。 用这种方法 Kummer证明了n≤100时费马大定 理成立,理想数的方法不但能用于费马问题研,实 际上是代数数论的重要研究内容,其后德国数学 家R.Dedekind(1831-1916)把理想数的概念推广为 一般的理想论,使它成为近世代数的一个重要的 研究领域。
, 拟枚 1,2,3,4,5....n..... 拟枚举: 自然数的集合可以记作 举可以用来表示能够排列出来的的集合 , 像 自然数、整数…
描述法:
如果一个集 A 是由一切具有某一性质的元 素所组成的,那么就用记号
A {x | x具有某一性质
来表示.
A {x | 1 x 1, x R } 表示一切大于 -1 且小于 1
近世代数
《近世代数》课程是现代数学的基础,既 是中学代数的继续发展,也是高等代数课程的 继续和发展,同时它又同拓扑学、实变函数与泛 函分析构成现代数学的三大基石,是进入数学 王国的必由之路,是数学与应用数学专业学生 必修的重要基础课。 同学应当具备有初等代数,高等代数的 背景,此外还有初等数论等方面的知识背景。
相关文档
最新文档