径向滑动轴承形成流体动力润滑的过程
滑动轴承

第八章滑动轴承8.1 重点、难点分析本章的重点内容是滑动轴承轴瓦的材料及选用原则;非液体摩擦滑动轴承的设计准则及设计计算;液体动力润滑径向滑动轴承的设计计算。
难点是液体动力润滑径向滑动轴承的设计计算及参数选择。
8.1.1 轴瓦材料及其应用对轴瓦材料性能的要求:具有良好的减摩性、耐磨性和咬粘性;具有良好的摩擦顺应性、嵌入性和磨合性;具有足够的强度和抗腐蚀的能力和良好的导热性、工艺性、经济性等。
常用轴瓦材料:金属材料、多孔质金属材料和非金属材料。
其中常用的金属材料为轴承合金、铜合金、铸铁等。
8.1.2 非液体摩擦滑动轴承的设计计算对于工作要求不高、转速较低、载荷不大、难于维护等条件下的工作的滑动轴承,往往设计成非液体摩擦滑动轴承。
这些轴承常采用润滑脂、油绳或滴油润滑,由于轴承得不到足够的润滑剂,故无法形成完全的承载油膜,工作状态为边界润滑或混合摩擦润滑。
非液体摩擦轴承的承载能力和使用寿命取决于轴承材料的减摩耐磨性、机械强度以及边界膜的强度。
这种轴承的主要失效形式是磨料磨损和胶合;在变载荷作用下,轴承还可能发生疲劳破坏。
因此,非液体摩擦滑动轴承可靠工作的最低要求是确保边界润滑油膜不遭到破坏。
为了保证这个条件,设计计算准则必须要求:p≤[p],pv≤[pv],v≤[v]限制轴承的压强p,是为了保证润滑油不被过大的压力挤出,使轴瓦产生过度磨损;限制轴承的pv值,是为了限制轴承的温升,从而保证油膜不破裂,因为pv值是与摩擦功率损耗成正比的;在p及pv值经验算都符合要求的情况下,由于轴发生弯曲或不同心等引起轴承边缘局部压强相当高,当滑动速度高时,局部区域的pv值可能超出许用值,所以在p较小的情况下还应该限制轴颈的圆周速度v。
8.1.3液体动力润滑径向滑动轴承设计计算液体动力润滑的基本方程和形成液体动力润滑(即形成动压油膜)的条件已在第一章给出,这里不再累述。
1.径向滑动轴承形成动压油膜的过程径向滑动轴承形成动压油膜的过程可分为三个阶段:(1)起动前阶段,见图8-1a;(2)起动阶段,见图8-1b;(3)液体动力润滑阶段,见图8-1c;图8-1 径向滑动轴承形成液体动力润滑的过程对于这一形成过程应掌握如下要点:(1)从轴颈开始转动到轴颈中心达到静态平衡点的过程分析;(2)在给定载荷、轴颈转动方向及偏心距e的大小时,如何确定轴颈的平衡位置;(3)确定轴颈平衡位置后,油膜压力分布的大致情况以及最小油膜厚度h min的位置;(4)影响轴颈静态平衡点位置的主要因素有外载荷F,润滑油粘度η和轴颈转速n。
液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。
(一)流体动力润滑的基本方程流体动力润滑理论的基本方程是流体膜压力分布的微分方程。
它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。
假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。
图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。
再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。
现从层流运动的油膜中取一微单元体进行分析。
作用在此微单元体右面和左面的压力分别为p 及p p dx x ∂⎛⎞+⎜∂⎝⎠⎟,作用在单元体上、下两面的切应力分别为τ及dy y ττ⎛⎞∂+⎜⎟∂⎝⎠。
根据x 方向的平衡条件,得:整理后得根据牛顿流体摩擦定律,得,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。
下面进一步介绍流体动力润滑理论的基本方程。
1.油层的速度分布将上式改写成(a)对y 积分后得(c)根据边界条件决定积分常数C1及C2:当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得:代入(c)式后,即得 (d)由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。
2、润滑油流量当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为:将式(d)代入式(e)并积分后,得(f)设在 p=p max处的油膜厚度为h0(即时当润滑油连续流动时,各截面的流量相等,由此得 :整理后得该式为一维雷诺方程。
液体动压润滑径向轴承油膜压力和特性曲线

精品资料推荐液体动压润滑径向轴承油膜压力和特性曲线(二) HZS —I型试验台一.实验目的1. 观察滑动轴承液体动压油膜形成过程。
2. 掌握油膜压力、摩擦系数的测量方法。
3. 按油压分布曲线求轴承油膜的承载能力。
二.实验要求1. 绘制轴承周向油膜压力分布曲线及承载量曲线,求出实际承载量。
2. 绘制摩擦系f与轴承特性的关系曲线。
3. 绘制轴向油膜压力分布曲线三•液体动压润滑径向滑动轴承的工作原理当轴颈旋转将润滑油带入轴承摩擦表面,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。
当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。
这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于液体摩擦润滑状态。
因此这种轴承摩擦小,寿命长,具有一定吸震能力。
液体动压润滑油膜形成过程及油膜压力分布形状如图8-1所示。
滑动轴承的摩擦系数f是重要的设计参数之一,它的大小与润滑油的粘度(Pas)、轴的转速n (r/min)和轴承压力p (MPi)有关,令nP (7)式中:一轴承特性数观察滑动轴承形成液体动压润滑的过程,摩擦系数f随轴承特性数的变化如图8-2所示。
图中相应于f值最低点的轴承特性数c称为临界特性数,且c以右为液体摩擦润滑区,c以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。
因此f值随减小而急剧增加。
不同的轴颈和轴瓦材料、加工情况、轴承相对间隙等,f—曲线不同,c也随之不同。
四.HZS-1型试验台结构和工作原理1•传动装置如图8-7所示,被试验的轴承2和轴1支承于滚动轴承3上,由调速电机6通过V带5 带动变速箱4,从而驱动轴1逆时针旋转并可获得不同的转速。
精品资料推荐(9)21 —轴2—试验轴承3—滚动轴承 4 —变速箱5 — V 带传动6—调速电机图8-7传动装置示意图2.加载装置该试验台采用静压加载装置,如图图8-8所示。
滑动轴承

特
点: 有良好的流动性,可形成动压、静压或边膜界润滑膜。
适用场合:不完全液体滑动轴承和完全液体润滑滑动轴承。 选择原则:主要考虑润滑油的粘度。 转速高、压力小时,油的粘度应低一些;反之,粘度应高一些。 高温时,粘度应高一些;低温时,粘度可低一些。
三、固体润滑剂及其选择
◆
特
点:可在滑动表面形成固体膜。
③ 验算轴承的工作能力 1、平均压力p的验算
F p p Bd
F— 径向载荷, N; B— 轴瓦有效宽度,mm; d— 轴颈直径, mm; [p]— 许用压强,Mpa。 目的:防止p过高,油被挤出,产生 “过度磨损”。 2、 pv的验算 ≧ 轴承发热量∝单位面积摩擦功耗fpv ≨ pv↑→摩擦功耗↑→发热量↑→易胶合 F dn Fn pv [ pv ] MPa· m/s
衬的剥离有些相似,但疲劳剥落周边不规则,结合不良造成的 剥离则周边比较光滑。
4
腐蚀 润滑剂在使用中不断氧化,所生成的酸性物质对轴承材料
有腐蚀性,特别是对铸造铜铅合金中的铅,易受腐蚀而形成点
状的脱落。氧对锡基巴氏合金的腐蚀,会使轴承表面形成一层 由SnO2和SnO混合组成的黑色硬质覆盖层,它能擦伤轴颈表面, 并使轴承间隙变小。此外,硫对含银或含铜的轴承材料的腐蚀, 润滑油中水分对铜铅合金的腐蚀,都应予以注意。
3.根据液体润滑承载机理
液体动力润滑轴承(液体动压轴承):无外部压力源,油 膜靠摩擦面的相对运动而自动形成。
液体静压润滑轴承:外部一定压力的流体进入摩擦面,建 立压力油膜。 本章主要讨论液体动压润滑轴承,工程中一般设计成①或②。
三、滑动轴承的特点和应用
1.优点
①轴颈与轴瓦靠面接触,可用于承受载荷特殊的 情况(重载、振动载荷、冲击载荷等):内燃机、 汽轮机等 ②用于支承刚度要求高的情况:机床 ③用于旋转运动精度高的场合:仪表 ④用于转速特别高的场合:电机
机械设计-滑动轴承PPT课件精选全文

4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。
形成流体动压润滑的必要条件和向心滑动轴承形成动压润滑的过程。

形成流体动压润滑的必要条件和向心滑动轴承形成动压
润滑的过程。
形成流体动压润滑的必要条件:
1. 必须有一定的相对运动速度。
在流体动压润滑中,油膜的支撑力来源于两表面间的速度差所引起的动压力。
因此,润滑剂必须具有必要的流动性以形成一定的相对运动速度。
2. 必须具备一定的流体润滑剂。
润滑剂应具备一定的粘度,且能形成流体动力润滑油膜。
3. 两表面必须具备一定的平行度和平直度。
当两表面平行时,润滑剂可沿轴向顺利流动,并具有良好的润滑效果;而当两表面不平直时,润滑剂则难以在表面间保持一定的油膜厚度,从而影响润滑效果。
4. 必须具备一定的温度和压力。
适当的温度和压力有助于提高润滑剂的流动性,并促进润滑剂在摩擦表面上的均匀分布。
向心滑动轴承形成动压润滑的过程:
1. 当轴承在一定转速下工作时,轴颈与轴承之间的润滑油由于受到剪切作用而产生一定的粘性阻力。
2. 随着转速的增加,轴颈与轴承之间的相对运动速度也增加,导致润滑油被轴颈携带的旋转作用加强。
3. 随着转速和携带旋转作用的增加,润滑油被挤向轴承的两端边缘,从而产生压力升高。
4. 当轴承两端边缘的压力升高到一定程度时,会形成足够强度的油膜支撑力,将轴颈与轴承顶起,从而实现流体动压润滑。
5. 在流体动压润滑状态下,轴承与轴颈之间的摩擦阻力大幅度下降,减小了磨损,提高了轴承的使用寿命和工作稳定性。
以上内容仅供参考,建议查阅关于向心滑动轴承的书籍文献获取更全面和准确的信息。
机械设计滑动轴承

3)铝基合金 —— 耐腐蚀性好,疲劳强度较高摩擦性较好 4)灰铸铁及耐磨铸铁 —— 具有减磨性、耐磨性,性脆、磨合性差, 轻载、低速 5)多孔质金属材料 —— 不同金属粉末压制、烧结而成 —— 吸油 (自润滑性)——含油轴承 韧性小,平稳、无冲击 中低速 6)非金属材料 塑料、碳— 石墨、橡胶、木材等
p 6ηV = 3 (h h0 ) x h
A< 0
不能承载
4、形成流体动力润滑的必要条件 1)两运动表面间具有楔形间隙; 2)两表面应有相对速度,速度的方向是将油 由大口带向小口; 3)润滑油应有一定的粘度,且要充分
二、径向滑动轴承形成流体动力润滑的过程 F F F n n
n=0
n≈0 Ff与 n反相
4、润滑油的粘-温特性
粘 -温 曲 线
5、零件润滑方法 旋 套 式
油 环 润 滑
油 芯 油 杯 旋 盖 式 油 脂 杯
针 阀 油 杯
§2 滑动轴承类型、轴瓦结构及材料
一、 滑动轴承类型
承载形式: 径向轴承(承受径向载荷)
止推轴承(承受轴向载荷)
滑 动 轴 承
润滑状态:不完全液体润滑轴承(不许干摩擦)
2、失效形式与设计准则 失效形式: 承载油膜破裂。 设计准则: 保证液体润滑,hmin≥[h] 同时,因Δt↑→η↓→油膜破裂:限制Δt 3、承载能力计算 推导思路 1)将直角坐标系的雷诺方程转换极坐标系 2)求任意位置的油膜压力 3)pφ 在 F 方向上的分量 pφy 4)求单位宽度上的油膜承载能力 5)考虑轴承端泄,进行修正 承载能力
y
η——动力粘度 y 长、宽、高各1米的液体,上下板相对滑动速度 1 m/s ,需要的切向力为 1 N 时,即 η=1 Ns/m2 (1Pa s — 帕 秒) 动力粘度国际制单位(SI):
濮良贵《机械设计》(第10版)教材辅导书(滑动轴承)【圣才出品】

第12章滑动轴承12.1 复习笔记【知识框架】【通关提要】本章主要介绍了滑动轴承的失效形式及材料、不完全流体润滑滑动轴承的设计计算以及流体动力润滑的形成条件。
学习时需要重点掌握以上内容。
本章主要以选择题、填空题和简答题的形式考查,判断题和计算题较少。
复习本章时以理解记忆为主,计算为辅。
【重点难点归纳】一、概述(见表12-1-1)表12-1-1 滑动轴承的类型及主要内容二、滑动轴承的主要结构形式、失效形式及常用材料(见表12-1-2)表12-1-2 滑动轴承的主要结构形式、失效形式及常用材料三、轴瓦结构(见表12-1-3)表12-1-3 轴瓦结构四、滑动轴承润滑剂的选用1.润滑脂及其选择润滑脂常用在要求较低、难以经常供油,或者低速重载以及作摆动运动之处的轴承中。
选择润滑脂品种的一般原则为:①当压力高和滑动速度低时,选择针入度小的。
②所用润滑脂的滴点,一般应比轴承的工作温度高约20~30℃。
③不同工作环境选用合适的润滑脂,如在潮湿的环境下,应选择防水性强的钙基或铝基润滑脂。
2.润滑油及其选择当液体动压轴承转速高、压力小时,应选粘度较低的油,在高温条件下工作的轴承,润滑油的粘度应比常温轴承的高一些。
3.固体润滑剂固体润滑剂可以在接触面上形成固体膜以减小摩擦阻力,通常只用于一些有特殊要求的场合。
五、不完全流体润滑滑动轴承设计计算(见表12-1-4)表12-1-4 不完全流体润滑滑动轴承设计计算六、流体动力润滑径向滑动轴承设计计算1.流体动力润滑的基本方程流体动力润滑滑动轴承的基本方程(一维雷诺方程)∂p/∂x=6ηυ(h-h0)/h3式中,p为两板间油膜压力;η为润滑油的动力粘度;v为表面滑动速度;h为油膜厚度;h0为∂p/∂x=0时的油膜厚度。
从上式中可以得知,形成动压油膜的必要条件如下:(1)两工件之间的间隙必须有楔形间隙。
(2)两工件表面之间必须连续充满润滑油或其他液体。
(3)两工件表面必须有相对滑动速度。