初三圆的证明专题训练包括答案.docx

合集下载

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

九年级上册圆的证明题及答案

九年级上册圆的证明题及答案

DOBC A EPEECOB P D AOBACDBACDO1.如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,C 为⊙O 上一点,且AC 平分∠PAE ,过点C 作CD ⊥PA 于D . (1) 求证:CD 是⊙O 的切线; (2) 若AD :DC =1:3,AB =8,求⊙O 的半径.(1)证明:连结OC .∵ OC =OA ,∴ ∠OAC = ∠OCA∵ AC 平分∠PAE ,∴ ∠DAC = ∠OAC ,∴ ∠DAC = ∠OCA , ∴ AD ∥OC .∵ CD ⊥PA ,∴ ∠ADC = ∠OCD =90°, 即 CD ⊥OC ,点C 在⊙O 上,∴ CD 是⊙O 的切线. (2)解:过O 作OE ⊥AB 于E .∴ ∠OEA =90°∵ AB =8, ∴ AE =4. 在Rt △AEO 中,∠AEO =90°,∴ AO 2=42+OE 2. ∵ ∠EDC = ∠OEA =∠DCO =90°,∴ 四边形DEOC 是矩形, ∴ OC =DE ,OE =CD .∵ AD:DC =1:3,∴ 设AD =x ,则DC =OE =3x ,OA =OC =DE =DA +AE =x +4, ∴ (x +4)2=42+(3x )2,解得 x 1=0(不合题意,舍去),x 2=1.则 OA =5.∴ ⊙O 的半径是5. 2.如图1和图2,MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM . (1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立若成立,加以证明;若不成立,请说明理由.BA CE DP ONM FB A CE DPNM F解:(1)AB=CD 理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F∵∠APM=∠CPM ∴∠1=∠2 OE=OF 连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE 根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F ∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF 连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF ∴∠1+∠2=∠3+∠4 ∴AB=CD3.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系为什么解:BD=CD 理由是:如图,连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD4. 如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC=( ) A .130° B .100° C .50° D .65° 答案A5.如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB=•∠A . (1)CD 与⊙O 相切吗如果相切,请你加以证明,如果不相切,请说明理由. (2)若CD 与⊙O 相切,且∠D=30°,BD=10,求⊙O 的半径.解:(1)CD 与⊙O 相切 ∵AB 是直径 ∴∠ACB=90°,即∠ACO+∠OCB=90°∵∠A=∠OCA 且∠DCB=∠A ∴∠OCA=∠DCB ∴∠OCD=90° 综上:CD 是⊙O 的切线.(2)在Rt △OCD 中,∠D=30° ∴∠COD=60° ∴∠A=30° ∴∠BCD=30° ∴BC=BD=10 ∴AB=20,∴r=10 答:(1)CD 是⊙O 的切线,(2)⊙O 的半径是10.6.如图,已知正六边形ABCDEF ,其外接圆的半径是a ,•求正六边形的周长和面积.解:如图所示,由于ABCDEF 是正六边形,所以它的中心角等于3606︒=60°,•△OBC 是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的周长为6a 在Rt △OAM 中,OA=a ,AM=12AB=12a 利用勾股定理,可得边心距OM=221()2a a -=123a∴所求正六边形的面积=6×12×AB×OM=6×12×a×32a=323a 27.已知扇形的圆心角为120°,面积为300πcm 2. (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少解:(1)如图所示: ∵300π=2120360R π ∴R=30∴弧长L=12030180π⨯⨯=20π(cm )(2)如图所示: ∵20π=20πr ∴r=10,R=30 AD=900100-=202 ∴S 轴截面=12×BC×AD =12×2×10×202=2002(cm 2) 因此,扇形的弧长是20πcm 卷成圆锥的轴截面是2002cm 2. 8.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交⋂BC 于D . (1)请写出五个不同类型的正确结论; (2)若BC =8,ED =2,求⊙O 的半径. 解:(1)不同类型的正确结论有:①BE =CE ;②弧BD=弧CD ③∠BED =90°④∠BOD =∠A ;⑤AC ∥OD ,⑥AC ⊥BC ; ⑦OE 2+BE 2=OB 2;⑧S △ABC =BC ·OE ;⑨△BOD 是等腰三角形,⑩△BOE ∽△BAC ; (2)∵OD ⊥BC , ∴BE =CE =12BC =4.设⊙O 的半径为R ,则OE =OD -DE=R -2. 在Rt △OEB 中,由勾股定理得 OE 2+BE 2=OB 2,即(R -2)2+42=R 2.解得R =5. ∴ ⊙ O 的半径为59.已知:如图等边ABC △内接于⊙O ,点P 是劣弧PC 上的一点(端点除外),延长BP 至D ,使BD AP =,连FDECBAOM结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形为什么 解:(1)PDC △为等边三角形. 理由:ABC ∵△为等边三角形AC BC =∴,又∵在⊙O 中PAC DBC ∠=∠又AP BD =∵ APC BDC ∴△≌△. PC DC =∴ 又AP ∵过圆心O ,AB AC =,60BAC ∠=°1302BAP PAC BAC ∠=∠=∠=∴° 30BAP BCP ∠=∠=∴°,30PBC PAC ∠=∠=°303060CPD PBC BCP ∠=∠+∠=+=∴°°° PDC ∴△为等边三角形.(2)PDC △仍为等边三角形理由:先证APC BDC △≌△(过程同上) PC DC =∴ 60BAP PAC ∠+∠=∵° 又BAP BCP ∠=∠∵,PAC PBC ∠=∠60CPD BCP PBC BAP PAC ∠=∠+∠=∠+∠=∴° 又PC DC =∵ PDC ∴△为等边三角形.10.(1)如图OA 、OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上任意一点:过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E .求证:CD=CE(2)若将图中的半径OB 所在直线向上平行移动交OA 于F ,交⊙O 于B ,其他条件不变,那么上述结论CD=CE 还成立吗为什么(3)若将图中的半径OB 所在直线向上平行移动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变,那么上述结论CD=CE 还成立吗为什么解:(1)证明:连结OD 则OD ⊥CD ,∴∠CDE+∠ODA=90° 在Rt △AOE 中,∠AEO+∠A=90°在⊙O 中,OA=OD ∴∠A=∠ODA , ∴∠CDE=∠AEO 又∵∠AEO=∠CED ,∠CDE=∠CED ∴CD=CE (2)CE=CD 仍然成立. ∵原来的半径OB 所在直线向上平行移动∴CF ⊥AO 于F , 在Rt △AFE 中,∠A+∠AEF=90°. 连结OD ,有∠ODA+∠CDE=90°,且OA=OD .∠A=∠ODA ∴∠AEF=∠CDE 又∠AEF=∠CED ∴∠CED=∠CDE ∴CD=CE(3)CE=CD 仍然成立.∵原来的半径OB 所在直线向上平行移动.AO ⊥CF 延长OA 交CF 于G ,在Rt △AEG 中,∠AEG+∠GAE=90° 连结OD ,有∠CDA+∠ODA=90°,且OA=OD ∴∠ADO=∠OAD=∠GAE ∴∠CDE=∠CED ∴CD=CEAOCPB图①AOCPB图②11.AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=o,求B ∠的度数.解: PA Q 切⊙O 于A AB ,是⊙O 的直径, ∴90PAO ∠=o.30P ∠=o Q ,∴60AOP ∠=o .∴1302B AOP ∠=∠=o12.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==o,,求BD 的长. (1)证明:连接OA ,DA Q 平分BDE ∠,BDA EDA ∴∠=∠.OA OD ODA OAD =∴∠=∠Q ,.OAD EDA ∴∠=∠.OA CE ∴∥. AE DE ⊥Q ,9090AED OAE DEA ∴∠=∠=∠=o o ,.AE OA ∴⊥.AE ∴是⊙O 的切线.(2)BD Q 是直径,90BCD BAD ∴∠=∠=o.3060DBC BDC ∠=∠=o o Q ,,120BDE ∴∠=o .DA Q 平分BDE ∠,60BDA EDA ∴∠=∠=o .30ABD EAD ∴∠=∠=o .在Rt AED △中,90302AED EAD AD DE ∠=∠=∴=oo,,. 在Rt ABD △中,903024BAD ABD BD AD DE ∠=∠=∴==oo,,. DE Q 的长是1cm ,BD ∴的长是4cm .13.如图,已知在⊙O 中,AB=34,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. 解:连结AD .∵AC ⊥BD ,AC 是直径,∴AC 垂直平分BD 。

中考数学专题复习《圆的证明与计算》检测题(含答案)

中考数学专题复习《圆的证明与计算》检测题(含答案)

专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。

河南中考数学 题型四 与圆有关的证明与计算及答案.docx

河南中考数学 题型四  与圆有关的证明与计算及答案.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】题型四与圆有关的证明与计算(近6年连续考查)【题型解读】近6年连续在解答题中考查,考查的类型有两种:①在2017年中考查与切线性质有关的证明与计算,设问有:证明线段的相等和利用勾股定理求线段长;②其余5年考查的是特殊四边形的动态探究,考查该类型的时候,第二问往往是以两个填空题的形式出现,主要考查内容是菱形、正方形的判定,其中菱形的判定是必考内容.类型一与切线判定有关的证明与计算1.如图,D是⊙O上的一点,C是直径AB延长线上一点,连接BD,CD,且∠A=∠BD C.(1)求证:CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.第1题图2.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=A C.(1)求证:P A是⊙O的切线;(2)若AB=3,BC=2,求⊙O的半径.第2题图3.(2019南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.第3题图4.(2019济宁)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是AC ︵的中点,E 为OD 延长线上一点,且∠CAE =2∠C ,AC 与BD 交于点H ,与OE 交于点F .(1)求证:AE 是⊙O 的切线;(2)若DH =9,tan C =34,求直径AB 的长.第4题图类型二与切线性质有关的证明与计算(2017.18)1.(2019河南定心卷)如图,⊙O为△ABC的外接圆,AB=AC,直线MN与⊙O相切于点C,弦BD∥MN,AC与BD相交于点E,连接AD,C D.(1)求证:△ABE≌△ACD;(2)若AB=5,BC=3,求AE的长.第1题图2.如图,在△ABC中,∠C=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:BC=BH;(2)若AB=5,AC=4,求CE的长.第2题图3.如图,半圆O的直径为AB,D是半圆上的一个动点(不与点A,B重合),连接BD并延长至点C,使CD=BD,过点D作半圆O的切线交AC于点E.(1)求证:DE⊥AC;(2)若BD=2,且AB=3BD,求DE的长.第3题图4.(2019桂林改编)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB 于点E,DE=OE.(1)求证:∠CAE=∠CBA;(2)求证:OA2=OE·DC;(3)求tan∠ACD的值.第4题图类型三特殊四边形的动态探究题(2019、2015、2014.17;2018.19;2016.18)1.如图所示,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE于点F.(1)线段BF与图中哪条线段相等?写出来并加以证明;(2)若AB=12,BC=13,P从E出发沿ED方向运动,Q从C出发向B运动,两点同时出发且速度均为每秒1个单位.填空:①当运动时间为秒时,四边形EPCQ是矩形;②当运动时间为秒时,四边形EPCQ是菱形.第1题图2.如图,已知BC是⊙O的直径,AD与⊙O相切于点A,CD∥OA交⊙O于另一点E.(1)求证:△ACD∽△BCA;(2)若A是⊙O上一动点,则①当∠B=时,以A,O,C,D为顶点的四边形是正方形;②当∠B=时,以A,O,C,E为顶点的四边形是菱形.第2题图3.如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,交AC于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)填空:①当∠BAC=时,△CDE为等边三角形;②连接OD,当∠BAC=时,四边形OBED是菱形.第3题图4.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,过点D作⊙O的切线,交EC于点F.(1)求证:EF=FC;(2)填空:①当∠ACD的度数为时,四边形ODFC为正方形;②若AD=4,DC=2,则四边形ABCD的最大面积是.第4题图5.(2019许昌模拟)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC,AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)填空:①当∠BAC的度数为时,四边形ACDO为菱形;②若⊙O的半径为5,AC=3CE,则BC的长为.第5题图6.如图,已知AB是⊙O的直径,PC与⊙O相切于点P,过点A作直线AC⊥PC交⊙O于另一点D,连接P A,PB,PO.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP=时,以A,O,P,C为顶点的四边形是正方形;②当弧AP=时,以A,D,O,P为顶点的四边形是菱形.第6题图7.(2019新乡模拟)如图,在⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A,PB交⊙O于D,E两点,∠P AB为锐角,连接DE,OD,OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.第7题图8. 如图,点A ,C ,B 是⊙O 上三点,且C 是劣弧AB ︵的中点,点E ,F 是弦AB 上两点,且AF =BE . (1)求证:OE =OF ;(2)填空:若⊙O 的半径为2,①当∠AOB = 时,四边形AOBC 是菱形; ②当∠AOB =90°时,四边形AOBC 的面积是 .第8题图9.(2019开封模拟)如图,在▱ABCD 中,⊙O 是△ABC 的外接圆,CD 与⊙O 相切于点C ,点P 是劣弧BC ︵上的一个动点(点P 不与点B ,C 重合),连接P A ,PB ,P C.(1)求证:CA =CB ;(2)当AP =AC 时,试判断△APC 与△CBA 是否全等,请说明理由; (3)填空:当∠D = 时,四边形ABCD 是菱形.第9题图10.如图,以△ABC一边AB为直径作⊙O,与另外两边分别交于点D、E,且点D为BC的中点,连接DE.(1)证明:△ABC是等腰三角形;(2)填空:①当∠B=时,四边形BDEO是菱形;②当∠B=时,△AOE是直角三角形.第10题图11.如图,△ABC内接于⊙O,AB=AC,连接AO并延长交⊙O于点D,交BC于点E,BF平分∠ABC,交AD于点F,连接BD,C D.(1)求证:△BDE≌△CDE;(2)填空:①连接CF,当∠BAC=时,四边形BDCF是菱形;②当∠FBD=时,四边形ABDC是正方形.第11题图12.如图,已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=O C.(1)求证:四边形OCAD是平行四边形;(2)探究:①当∠B=时,四边形OCAD是菱形;②当∠B满足什么条件时,AD与⊙O相切?请说明理由.第12题图参考答案类型一与切线判定有关的证明与计算1.(1)证明:如解图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC,∴∠BDC+∠ODB=90°,即∠ODC=90°.∵OD是⊙O的半径,∴CD是⊙O的切线;第1题解图(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴在Rt△NDM中,由勾股定理得,MN=DM2+DN2=2 2.2.(1)证明:如解图,连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACO=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A,∵OA为⊙O的半径,∴P A是⊙O的切线;第2题解图(2)解:如解图,过点C 作CE ⊥AB 于点E . 在Rt △BCE 中,∠B =60°,BC =2, ∴BE =BC ·cos B =1,CE =3, ∵AB =3,∴AE =AB -BE =2,∴在Rt △ACE 中,AC =AE 2+CE 2=7, ∴AP =AC =7.∴在Rt △P AO 中,OA =tan30°·7=33×7=213, ∴⊙O 的半径为213. 3. (1)证明:∵AC 是⊙O 的直径, ∴∠ADC =90°. ∴∠A +∠ACD =90°, ∵∠BCD =∠A ,∴∠BCD +∠ACD =∠ACB =90°, ∴OC ⊥BC .又∵OC 为⊙O 的半径, ∴BC 是⊙O 的切线;(2)解:如解图,过点O 作OE ⊥CD 于点E . 在Rt △BCD 中,∵BC =5,BD =3, ∴CD =4.∵∠ADC =∠CDB =90°,∠BCD =∠A , ∴Rt △BDC ∽Rt △CDA . ∴CD AD =BD CD =34, ∴AD =163.∵OE ⊥CD , ∴E 为CD 的中点. 又∵点O 是AC 的中点, ∴OE =12AD =83.∴点O 到CD 的距离为83.第3题解图4. (1)证明:∵D 是AC ︵的中点, ∴OD ⊥AC ,即∠AFO =90°, ∴∠CAB +∠AOF =90°.又∵∠CAE =2∠C =2∠B =∠AOF ,∴∠CAE +∠CAB =∠AOF +∠CAB =90°=∠EAO , ∴EA ⊥AB .又∵AB 为⊙O 的直径, ∴AE 是⊙O 的切线; (2)解:如解图,连接AD ,∵∠C =∠B =∠HDF ,D 是AC ︵的中点, ∴∠C =∠DAH =∠B , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴Rt △ADH ∽Rt △BDA , ∵tan C =34,∴AD BD =DH DA =34, ∵DH =9,∴AD =12,BD =16,在Rt △DAB 中,AB =AD 2+BD 2=20.第4题解图类型二 与切线性质有关的证明与计算1. (1)证明:如解图,连接OC , ∵直线MN 与⊙O 相切于点C , ∴OC ⊥MN . ∵BD ∥MN , ∴OC ⊥BD . ∴BC ︵=CD ︵. ∴∠BAE =∠CAD . 在△ABE 和△ACD 中,⎩⎪⎨⎪⎧∠ABE =∠ACD AB =AC ∠BAE =∠CAD, ∴△ABE ≌△ACD (ASA);第1题解图(2)解:由(1)知∠BAC =∠CAD =∠CBD , ∴△BCE ∽△ACB . ∴BC AC =CECB. ∵AC =AB =5,BC =3, ∴CE =95.∴AE =AC -CE =165.2. (1)证明:如解图,连接OE , ∵AC 与⊙O 相切于点E , ∴OE ⊥AC . ∵∠C =90°, ∴BC ⊥AC . ∴OE ∥BC . ∴∠CBE =∠OEB . ∵OE =OB , ∴∠EBO =∠OEB . ∴∠CBE =∠EBO , ∵CE ⊥BC ,EH ⊥AB , ∴CE =EH .在Rt △EBC 和Rt △EBH 中,∵⎩⎪⎨⎪⎧CE =HE ,BE =BE , ∴Rt △EBC ≌Rt △EBH (HL). ∴BC =BH ;第2题解图(2)解:∵AB =5,AC =4,∴在Rt △ABC 中,根据勾股定理可得BC =AB 2-AC 2=3. ∵BC =BH , ∴BH =3.∴AH =AB -BH =5-3=2. 设CE =EH =x ,则AE =4-x ,在Rt △AEH 中,根据勾股定理可得AH 2+EH 2=AE 2, 即22+x 2=(4-x )2, 解得x =32,∴CE =32.3. (1)证明:如解图,连接OD . ∵DE 是半圆O 的切线,切点为D , ∴OD ⊥DE ,∵BD =CD ,OA =OB , ∴OD 是△ABC 的中位线, ∴OD ∥AC . ∴DE ⊥AC ;第3题解图(2)解:如解图,连接AD , ∵AB 是半圆O 的直径, ∴∠ADB =90°,即AD ⊥BC , 又∵DC =BD =2,∴AD 是BC 的垂直平分线, ∴AB =AC , ∴∠ABD =∠ACD . 又∵DE ⊥AC , ∴∠CED =90°, ∴∠ADB =∠DEC , ∴△ABD ∽△DCE . ∴DE AD =DCAB ,即DE =AD ·DC AB, 在Rt △ABD 中,BD =2,AB =3BD =6, ∴AD =62-22=42,∴DE =42×26=423.4. (1)证明:∵BM 是⊙O 的切线, ∴∠ABM =90°. ∵BC 平分∠ABM , ∴∠ABC =12∠ABM =45°.∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴∠BAC =45°, ∴∠CAE =∠CBA ;(2)证明:如解图,连接OC 和OD . ∵OC =DO ,DE =OE , ∴∠OCD =∠ODC =∠DOE . ∴△OCD ∽△EDO , ∴DO OE =DCOD,即DO 2=OE ·DC . 又∵OA =DO , ∴OA 2=OE ·DC ;第4题解图(3)解:由(1)知,△ACB 为等腰直角三角形, ∴C 为AB ︵的中点,CO ⊥AB , 如解图,过点E 作EF ⊥AC 于点F , 设圆的半径为r ,∠DCO =θ,则有∠EOD =∠CDO =θ,∠CEO =∠EOD +∠CDO =2θ,由θ+2θ=90°,得θ=30°, 在Rt △COE 中,OE =33r ,则AE =r -33r =3-33r ,AC =2r . 在Rt △AEF 中,AF =EF =22×3-33r =32-66r , ∴CF =AC -AF =2r -32-66r =32+66r ,∴tan ∠ACD =EFCF =32-66r 32+66r =2- 3.类型三 特殊四边形的动态探究题1.解:(1)BF =AE . 证明如下:由题意可知∠A =∠BFC =90°,BC =BE . ∵AD ∥BC , ∴∠AEB =∠FBC , 在△ABE 与△FCB 中, ⎩⎪⎨⎪⎧∠EAB =∠BFC ∠AEB =∠FBC BE =CB, ∴△ABE ≌△FCB (AAS). ∴AE =BF ; (2)①8;【解法提示】设运动时间为t 秒,∵四边形EPCQ 是矩形,∴∠APC =90°,∴四边形ABCP 是矩形,∴AP =BC .由勾股定理知AE =5,∴EP =13-5=8,∴t =8.②13.【解法提示】∵四边形EPCQ 是菱形,∴QE =QC ,∴点Q 与点B 重合,∴CQ =CB =13,∴t =13. 2. (1)证明:∵AD 与⊙O 相切于点 A , ∴OA ⊥AD , ∵CD ∥OA , ∴∠ADC =90°, ∵BC 是⊙O 的直径, ∴∠BAC =90°, ∴∠BAC =∠ADC , 又∵CD ∥OA , ∴∠ACD =∠CAO , ∵OA =OC , ∴∠ACO =∠CAO , ∴∠ACD =∠ACO , ∴△ACD ∽△BCA ; (2)解:① 45°;【解法提示】∵四边形AOCD 为正方形,∴∠AOC =90°,∵OA =OC ,∴∠OCA =∠OAC =45°,∵∠BAC =90°,OA =OB ,∴∠B =∠OAB =90°-45°=45°.② 60°.【解法提示】如解图,连接AE ,∵AD 为切线,∴∠DAE =∠ECA ,∠OAD =90°.∵四边形AOCE 为菱形,∴∠OAC =∠EAC ,∴∠DAE =∠ECA =∠OAC =30°,∴∠ACO =30°,∴∠AOB =∠ACO +∠OAC =30°+30°=60°,∵OA=OB,∴∠B=60°.第2题解图3. (1)证明:如解图,连接OD,BD,∵∠ABC=90°,AB是⊙O的直径,∴BC是⊙O的切线.∵DE是⊙O的切线,∴BE=DE.∴∠EBD=∠EDB.∵AB是⊙O的直径,∴∠ADB=90°.∴∠EBD+∠C=90°,∠EDB+∠CDE=90°.∴∠C=∠EDC.∴DE=CE.∴EB=EC;第3题解图(2)解:① 30°;【解法提示】当△CDE为等边三角形时,则∠CDE=∠C=60°,∵∠ABC=90°,∴∠BAC=90°-60°=30°.②45°.【解法提示】当四边形OBED是菱形时,BO=DE,DE∥OB,BE=OD,BE∥OD,∵∠ABC=90°,∴∠BOD=90°,∵OD=OA,∴∠BAC=45°.4. (1)证明:∵AC是⊙O的直径,CE⊥AC,∴CE是⊙O的切线.又∵DF是⊙O的切线,且交CE于点F,∴DF=CF,∴∠CDF=∠DCF,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DCF+∠E=90°,∠CDF+∠EDF=90°,∴∠E=∠EDF,∴DF=EF,∴EF=FC;(2)解:① 45°;【解法提示】如解图,连接OD ,∵四边形ODFC 是正方形,∴∠DOC =90°,又∵OD =OC ,∴∠OCD =∠ODC =45°,∴∠ACD =∠OCD =45°.第4题解图② 9.【解法提示】∵AC 为⊙O 的直径,∴∠ADC =∠ABC =90°,∵AD =4,DC =2,∴AC =AD 2+CD 2=25,∴要使四边形ABCD 的面积最大,则△ABC 的面积最大,∴当△ABC 是等腰直角三角形时,△ABC 的面积最大,∴四边形ABCD 的最大面积=12×4×2+12×25×5=9.5. (1)证明:如解图,连接OD , ∵OA =OD , ∴∠OAD =∠ODA , ∵AD 平分∠EAF , ∴∠DAE =∠DAO , ∴∠DAE =∠ADO , ∴OD ∥AE , ∵AE ⊥EF , ∴OD ⊥EF ,又∵OD 为⊙O 的半径, ∴EF 是⊙O 的切线;第5题解图(2)解:① 60°;【解法提示】如解图,连接CD ,当四边形ACDO 为菱形时,AO ∥CD ,AC ∥OD ,已知AD 为∠BAC 的平分线,∴∠OAD =∠ODA =∠ADC =∠CAD ,又∵∠CDA =∠CBA ,∠ACB =90°,∴∠ABC =30°,∠BAC =60°.②8.【解法提示】如解图,设OD 与BC 交于点G ,∵AB 为直径,∴∠ACB =90°,∵DE ⊥AC ,∴四边形CEDG 是矩形,∴DG =CE ,∵AC =3CE ,∴OG =12AC =32CE ,∴OD =52CE =5,∴CE =2,∴AC =6,∵AB =2×5=10,∴BC =AB 2-AC 2=8.6. (1)证明:如解图,∵PC 与⊙O 相切于点P , ∴OP ⊥PC . ∵AC ⊥PC ,∴AC ∥OP . ∴∠1=∠3. ∵OP =OA , ∴∠2=∠3, ∴∠1=∠2, ∴AP 平分∠CAB ;第6题解图(2)解:① 22;【解法提示】∵AOPC 为正方形,∴OP =OA =2,∠POA =90°,∴AP =OP 2+OA 2=2 2. ②23π或43π. 【解法提示】当AD =AP =OP =OD 时,∵四边形ADOP 为菱形,∴△AOP 和△AOD 为等边三角形,则∠AOP =60°,lAP ︵=60×2π180=23π;当AD =DP =PO =OA 时,∵四边形ADPO 为菱形,∴△AOD 和△DOP为等边三角形,则∠AOP =120°,lAP ︵=120×2π180=43π.综上所述,当弧AP 为23π或43π时,以A ,D ,O ,P为顶点的四边形是菱形.7. (1)证明:如解图,连接AE ,第7题解图∵AB 为⊙O 的直径, ∴∠AEB =90°, ∵P A =AB , ∴E 为PB 的中点, ∵AO =OB , ∴OE ∥P A ,∴∠ADO =∠DOE ,∠A =∠EOB , ∵OD =OA , ∴∠A =∠ADO , ∴∠EOB =∠DOE , ∵OD =OE =OB , ∴∠EDO =∠EBO ; (2)解:① 8;【解法提示】∵AB =8,∴OA =4,当OA 边上的高最大时,△AOD 的面积最大,此时点D 是AB ︵的中点,∴OD ⊥AB ,∴S △AOD =12×4×4=8. ② 4.【解法提示】当四边形OBED 为菱形时,OD =OB =BE =DE =12AB ,∴DE =4. 8. (1)证明:∵OA =OB ,∴∠OAB =∠OBA ,∵AF =BE ,∴AE =BF ,在△OAE 和△OBF 中,⎩⎪⎨⎪⎧OA =OB ∠OAB =∠OBA AE =BF,∴△OAE ≌△OBF (SAS),∴OE =OF ;(2)解:①120°;② 2.【解法提示】①如解图,连接OC ,∵四边形AOBC 是菱形,∴OA =AC =BC =OB ,∵OA =OC ,∴OA =AC =BC =OB =OC ,∴△AOC 和△BOC 都是等边三角形,∴∠AOC =∠BOC =60°,∴∠AOB =∠AOC+∠BOC =60°+60°=120°;②如解图,设OC 与AB 交于点D ,∵点C 是劣弧AB ︵的中点,∴OC ⊥AB ,∵OA =OB ,∴AD =BD ,∠AOC =∠BOC =45°,∴OD =BD ,∵OB =2,∴BD =OD =1,∴AB =2,∴S 四边形AOBC =S △AOB +S △ACB =12AB ·OD +12AB ·CD =12AB ·OC =12×2×2= 2.第8题解图9. (1)证明:如解图,连接CO 并延长交AB 于点E ,∵CD 与⊙O 相切于点C ,∴CE ⊥CD ,∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴CE ⊥AB ,∴AE =BE ,∴CA =CB ;第9题解图(2)解:当AC =AP 时,△APC ≌△CBA .理由如下:∵CA =CB ,AC =AP ,∴∠ABC =∠BAC ,∠APC =∠ACP ,∵∠ABC =∠APC ,∴∠BAC =∠ACP ,在△APC 与△CBA 中,⎩⎪⎨⎪⎧∠APC =∠CBA ∠ACP =∠CAB AC =CA,∴△APC ≌△CBA (AAS);(3)解:60°.【解法提示】∵ABCD 是菱形,∴∠B =∠D ,AB =BC =CD =DA ,由(1)可知,CA =CB ,∴△ABC 是等边三角形,∴∠D =∠B =60°.10. (1)证明:如解图,连接AD ,∵AB 是⊙O 的直径,∴∠BDA =90°.∵D 为BC 的中点,∴BD =DC ,∴AB =AC ,∴△ABC 是等腰三角形;(2)解:① 60°;② 67.5°.【解法提示】①当∠B =60°时,四边形BDEO 是菱形.如解图,连接OD ,∵∠B =60°,∴△ABC 是等边三角形,△OBD 是等边三角形,∴△AOE 是等边三角形,△DOE 是等边三角形,∴OB =BD =DE =EO , ∴四边形BDEO 是菱形;②若△AOE 是直角三角形, 只有一种情况,即∠AOE =90°,∵OA =OE ,∴∠OAE =∠AEO =45°,由(1)知 △ABC 是等腰三角形,∴∠B =∠C =180°-45°2=67.5°.第10题解图11. (1)证明:∵AD 是⊙O 的直径,∴∠ABD =∠ACD =90°.在Rt △ABD 和Rt △ACD 中,∵⎩⎪⎨⎪⎧AB =AC AD =AD , ∴Rt △ABD ≌Rt △ACD (HL),∴∠ADB =∠ADC ,BD =CD ,在△BDE 和△CDE 中,⎩⎪⎨⎪⎧BD =CD ∠ADB =∠ADC DE =DE,∴△BDE ≌△CDE (SAS);(2)解:① 60°;② 67.5°.【解法提示】①∵四边形BDCF 是菱形,∴∠FBC =∠DBC ,∵BF 平分∠ABC ,∴∠ABF =∠FBC =∠DBC ,又∵∠ABD =90°,∴∠ABF =∠FBC =30°,∴∠ABC =60°,又∵AB =AC ,∴△ABC 为等边三角形,∴∠BAC =60°;②∵四边形ABDC 是正方形,∴∠ABC =∠DBC =45°,∵BF 平分∠ABC ,∴∠ABF =∠FBC =22.5°,∴∠FBD =∠FBC +∠DBC =22.5°+45°=67.5°.12. (1)证明:∵OA =OC ,AD =OC ,∴OA =AD ,∠OAC =∠OCA ,∴∠AOD =∠ADO ,∵OD ∥AC ,∴∠OAC =∠AOD ,∴∠OAC =∠OCA =∠AOD =∠ADO ,∴∠AOC =∠OAD ,∴OC ∥AD ,∵OC =AD ,∴四边形OCAD 是平行四边形;(2)解:①30°;【解法提示】∵四边形OCAD 是菱形,∴OC =AC ,又∵OC =OA ,∴OC =OA =AC ,∴∠AOC =60°,∴∠B =12∠AOC =30°. ②当∠B =45°时,AD 与⊙O 相切.理由如下:∵AD 与⊙O 相切,∴∠OAD =90°,∵AD ∥OC ,∴∠AOC =90°,∴∠B =12∠AOC =45°.。

2023年中考数学专题训练——圆的计算和证明(附答案)

2023年中考数学专题训练——圆的计算和证明(附答案)

2023年中考专题训练——圆的计算和证明1.AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.(1)求证:DC为⊙O切线;(2) 若AD·OC=8,求⊙O半径.2.如图,四边形ABCD内接于⊙O,∠BAD =90°,AC是对角线.点E在BC的延长线上,且∠CED =∠BAC.(1)判断DE与⊙O的位置关系,并说明理由;(2)BA与CD的延长线交于点F,若DE∥AC,AB=4,AD =2,求AF的长.3.如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=6.(1)求⊙O的面积;(2)若D为⊙O上一点,且△ABD为等腰三角形,直接写出CD的长为.4.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°,且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果精确到0.01)5.如图,△AB .C 内接于⊙0,点D 在半径OB 的延长线上,∠BCD=∠A=30°.(1)判断直线CD 与⊙0的位置关系,并说明理由(2)若⊙0的半径为1,求阴影部分面积.6.如图,已知Rt ABC ∆中,90ACB ∠=︒,E 为AB 上一点,以AE 为直径作O 与BC 相切于点D ,连接ED 并延长交AC 的延长线于点F .(1)求证:AE AF =;(2)若5,4AE AC ==,求BE 的长.7.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC 交⊙O 于点F .(1)AB 与AC 的大小有什么关系?请说明理由;(2)若AB =8,∠BAC =45°,求:图中阴影部分的面积.8.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,BC 的延长线于⊙O 的切线AF 交于点F .(1)求证:∠ABC =2∠CAF ;(2)若AC =10,CE :EB =1:4,求CE 的长.9.如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小10.如图,在等腰ABC 中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F ,(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .11.如图,四边形是平行四边形,以AB 为直径的O 经过点D, E 是O 上一点,且45AED ∠=︒.(1)判断CD与O的位置关系,并说明理由;(2) 若BC=2 .求阴影部分的面积.(结果保留π 的形式).12.如图,AB是⊙O的直径,点D是⊙O外一点,AB=AD,BD交⊙O于点C,AD交⊙O于点E,点P是AC的延长线上一点,连接PB、PD,且PD⊥AD(1)判断PB与⊙O的位置关系,并说明理由;(2)连接CE,若CE=3,AE=7,求⊙O的半径.13.如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O相切于点C,CE与AB交于点F.(1)求证:PC=PF;(2)连接OB,BC,若OB∥PC,BC=tan P=34,求FB的长.14.已知,P A、PB是⊙O的切线,切点分别为A、B,AC是⊙O的直径.(1)如图1,若∠BAC=25°,求∠P的度数;(2)如图2,延长PB、AC相交于点D.若AP=AC,求cos D的值.15.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为3,BC=4,求CE的长.16.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.(1)求∠ACM的度数;(2)在MN上是否存在一点D,使AB•CD=AC•BC,为什么?17.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,AE CE,过点C作CD∥AB 交BE的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求CF的长.18.如图,△ABC内接于⊙O,且AB=AC,D是AC上一点,AD与BC交于E,AF⊥DB,垂足为F.(1)求证:∠ADB=∠CDE;(2)若AF=DC=6,AB=10,求△DBC的面积.19.如图,AB是半圆O的直径,C是AB延长线上一点,CD与半圆O相切于点D,连接AD,BD.(1)求证:∠BAD=∠BDC;(2)若sin∠BDC,BC=2,求⊙O的半径.20.同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:如图,A为⊙O 的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.①求证:DA=DC;②当DF:EF=1:8,且DF AB•AC的值.(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.参考答案:1.(1证明见解析;(2)2.【分析】(1)连接OD ,要证明DC 是 O 的切线,只要证明∠ODC=90°即可.根据题意,可证△OCD ≌△OCB ,即可得∠CDO=∠CBO=90°,由此可证DC 是 O 的切线;(2)连接BD ,OD .先根据两角对应相等的两三角形相似证明△ADB ∽△ODC ,再根据相似三角形对应边成比例即可得到r 的值.【解析】解:(1)证明:连接OD.∵OA=OD ,∴∠A=∠ADO.∵AD ∥OC ,∴∠A=∠BOC ,∠ADO=∠COD ,∴∠BOC=∠COD.∵在△OBC 与△ODC 中,{OB ODBOC DOC OC OC=∠=∠=,∴△OBC ≌△ODC(SAS),∴∠OBC=∠ODC ,又∵BC 是O 的切线,∴∠OBC=90°,∴∠ODC=90°,∴DC 是O 的切线;(2)连接BD.∵在△ADB 与△ODC 中,{90A COD ADB ODC ∠=∠∠=∠=︒∴△ADB ∽△ODC ,∴AD:OD=AB:OC ,∴AD ⋅OC=OD ⋅AB=r ⋅2r=2r²,即2r²=8,故r=2.2.(1)DE与⊙O相切,证明见解析;(2)83 AF .【分析】(1)连接BD,先根据圆周角定理证明BD是⊙O的直径,证明∠BDC+∠CDE=90°,即BD⊥DE,即可得出DE与⊙O相切;(2)先根据平行线的性质得∠BHC=∠BDE=90°,由垂径定理得AH=CH,由垂直平分线的性质得BC=AB=4,CD=AD=2,证明△FAD∽△FCB,列比例式得CF=2AF,设 AF=x,则DF=CF-CD=2x-2,根据勾股定理列方程可解答.【解析】解:(1)DE与⊙O相切,理由是:连接BD,如下图,∵四边形ABCD内接于⊙O,∠BAD=90°,∴BD是⊙O的直径,即点O在BD上,∴∠BCD=90°,∴∠CED+∠CDE=90°.∵∠CED=∠BAC,又∵∠BAC=∠BDC,∴∠CED=∠BDC,∴∠BDC+∠CDE=90°,即∠BDE=90°,∴DE⊥BD于点D,∴DE与⊙O相切.(2)如下图,BD与AC交于点H,∵DE ∥AC ,∴∠BHC=∠BDE=90°.∴BD ⊥AC .∴AH=CH .∴BC=AB=4,CD=AD=2.∵∠FAD=∠FCB=90°,∠F=∠F ,∴△FAD ∽△FCB ,2=4AF AD CF CB ∴=, ∴CF=2AF ,设 AF=x ,则DF=CF-CD=2x-2.在Rt △ADF 中,DF 2=AD 2+AF 2,∴(2x-2)2=22+x 2.解得: 128,03x x ==(舍去), 83AF ∴=. 【点评】本题考查圆周角定理,垂径定理,垂直平分线的性质定理,相似三角形的性质和判定,切线的判定,勾股定理.(1)证明切线最常用的办法,即如果直线与圆有交点,则连接交点与圆心的半径,只有证明这条半径与该直线垂直即可,此问中能依据90°圆周角所对的弦是直径证明BD 是⊙O 的直径是解题关键;(2)中能通过证明△FAD ∽△FCB ,得出CF=2AF 是解题关键.3.(1)25π;(2272【分析】(1)先利用圆周角定理得到90ACB ∠=︒.再利用勾股定理计算出AB ,然后利用圆的面积公式计算;(2)作直径DD AB '⊥,BH CD ⊥于H ,如图,利用垂径定理得到AD BD =,再证明ADB ∆为等腰直角三角形得到252DB AB =,利用BCH ∆为等腰直角三角形得到232CH BH ==42DH =72CD =股定理计算CD '即可.【解析】解:(1)AB 是O 的直径,90ACB ∴∠=︒.8AC ∴=,6BC =,10AB ∴=.O ∴的面积2525ππ=⨯=;(2)作直径DD AB '⊥,BH CD ⊥于H ,如图,则AD BD =,AD BD ∴=,45ACD BCD ∠=∠=︒, AB 是O 的直径,90ADB ∴∠=︒,ADB ∴∆为等腰直角三角形,DB AB ∴== 又∵45BCD BAD ∠=∠=︒,∴BCH ∆为等腰直角三角形,CH BH ∴===在Rt BDH ∆中,DHCD CH DH ∴=+=DD '是O 的直径,90DCD ∴∠'=︒,CD ∴'=综上所述,CD【点评】本题考查了与圆有关的计算,涉及了圆周角定理、垂径定理和勾股定理.解题关键是正确画出图形得出ADB ∆为等腰直角三角形,并用勾股定理求解.4.(1)OE=32;(2)32π. 【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC ,判断出OE 是△ABC 的中位线,就可得出OE 的长;(2)连接OC ,将阴影部分的面积转化为扇形FOC 的面积.【解析】解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB 是⊙O 的直径,∴∠ACB=90°,∵OE ⊥AC ,∴OE ∥BC ,又∵点O 是AB 中点,∴OE 是△ABC 的中位线,∴OE=1232BC =;(2)连接OC ,则易得△COE ≌△AFE ,故阴影部分的面积=扇形FOC 的面积,S 扇形FOC =260333260π⨯=π. 即可得阴影部分的面积为32π. 【点评】此题考查扇形的面积,含30°角的直角三角形的计算及圆周角定理等,解题关键在于将不规则图形转化为规则图形进行求解.5.(1)相切,理由见解析;(236π 【分析】(1)根据“同弧所对的圆周角等于圆心角的一半”求出∠O 的度数,再根据半径相等求出△OCB 为等边三角形,即可得出答案;(2)根据∠O 的度数和半径求出CD 的长度,进而求出△COD 的面积,利用扇形面积公式求出扇形OCB 的面积,三角形的面积减去扇形的面积即可得出答案.【解析】解:(1)∵∠A=30°∴∠O=2∠A=60°又OB=OC∴△OBC 为等边三角形,∠OCB=60°又∠BCD=30°∴∠OCD=∠OCB+∠BCD=90°∴CD 与⊙O 相切(2)由(1)可知△OCD 为直角三角形,∠O=60°又半径为1,即OC=1∴CD OC tan O ∠==∴12OCD S CO CD =⨯⨯=2OCB 601S 3606ππ⨯⨯==扇形∴OCB S S 6OCD S π=-=阴影扇形 【点评】本题考查的是圆的综合,难度适中,牢记圆中的相关定理和性质是解决本题的关键. 6.(1)见解析;(2)53BE =. 【分析】(1)连接OD ,根据切线的性质得到OD ⊥BC ,根据平行线的判定定理得到OD ∥AC ,求得∠ODE=∠F ,根据等腰三角形的性质得到∠OED=∠ODE ,等量代换得到∠OED=∠F ,于是得到结论;(2)根据平行得出BOD BAC ∆∆∽,再由BO OD AB AC=可得到关于BE 的方程,从而得出结论. 【解析】(1)证明:连接OD ,∵BC 切O 于点D ,∴OD BC ⊥.∴90ODC ︒∠=.又90ACB ︒∠=,∴//OD AC ,∴ODE F ∠=∠.∵OE OD ,∴OED ODE ∠=∠,∴OED F ∠=∠.∴AE AF =.(2)解:∵//OD AC ,∴BOD BAC ∆∆∽,∴BO OD AB AC=. ∵5,4AE AC ==,∴ 2.5OE OD ==, ∴ 2.5 2.554BE BE +=+, ∴53BE =. 【点评】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,等腰三角形的判定与性质等知识,正确的作出辅助线是解题的关键.7.(1)AB =AC ;(2)242π-【分析】(1)连接AD ,根据圆周角定理可以证得AD 垂直且平分BC ,然后根据垂直平分线的性质证得AB =AC ;(2)连接OD 、过D 作DH ⊥AB ,根据扇形的面积公式解答即可.【解析】(1)AB =AC .理由是:连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°,即AD ⊥BC ,又∵DC =BD ,∴AB =AC ;(2)连接OD 、过D 作DH ⊥AB .∵AB =8,∠BAC =45°,∴∠BOD =45°,OB =OD =4,∴DH 2∴△OBD 的面积=1422422⨯⨯扇形OBD 的面积=24542360ππ⋅⋅=, 阴影部分面积=242π-【点评】本题考查了圆周角定理以及等腰三角形的性质定理,理解弧的度数和对应 圆心角的度数的关系是关键.8.(1)见解析;(2)CE =2.【分析】(1)首先连接BD ,由AB 为直径,可得∠ADB=90°,又由AF 是⊙O 的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:()2=x2+(3x)2求得答案.【解析】(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠F AB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)解:如图,连接AE,∴∠AEB=90°,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2=x2+(3x)2,∴x=2.∴CE=2.【点评】此题考查了切线的性质,三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解题关键.9.(1)∠ACD=40°;(2)∠ACD=40°或140°.【分析】(1)由AO⊥BD,根据垂径定理可得AD AB,再利用等弧对等角,以及圆周角定理即可求出结果;(2)如图所示,点C 有两个位置,分别利用圆周角定理的推论和圆周角定理求出即可.【解析】解:(1)∵AO ⊥BD ,∴AD AB =,∴∠AOB =2∠ACD ,∵∠AOB =80°,∴∠ACD =40°;(2)如图,①当点C 1在AB 上时,∠AC 1D =∠ACD =40°;②当点C 2在AD 上时,∵∠AC 2D +∠ACD =180°,∴∠AC 2D =140°. 综上所述,∠ACD =40°或140°.【点评】本题考查了圆周角定理及其推论和垂径定理等知识,熟练掌握上述知识、正确分类是解本题的关键.10.(1)312π;(2)42h =【分析】(1)利用等腰三角形的性质得到AD BC ⊥,BD CD =,则可计算出BD 63=后利用扇形的面积公式,利用由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积ABC EAF =S S -扇形进行计算;(2)设圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到120π62πr 180⋅⋅=,解得r 2=,然后利用勾股定理计算这个圆锥的高h . 【解析】∵在等腰ABC 中,BAC 120∠=︒,∴B 30∠=︒,∵AD 是BAC ∠的角平分线,∴AD BC ⊥,BD CD =, ∴BD 3AD 63== ∴BC 2BD 3==∴由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积2ABC EAF 1120π6=S S 6123312π2360⋅⋅-=⨯⨯=扇形. (2)设圆锥的底面圆的半径为r ,根据题意得120π62πr180⋅⋅=,解得r2=,这个圆锥的高h【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.11.(1)相切,证明见解析(2)3-23π.【分析】(1)连接BD,OD求出∠ABD=∠AED=45°,根据DC∥AB推出∠CDB=45°求出∠ODC=90°根据切线的判定推出即可(2)求出∠AOD=∠BOD=90°,求出AO,OD分别求出△AOD扇形DOB,平行四边形ABCD 的面积相减即可求出答案【解析】(1)解CD与⊙O的位置关系是相切理由是连接BD,OD∵∠AED=45°∴∠ABD=∠AED=45°∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDB=45°∵OD=OB,∴∠ODB=∠OBD=45°∴∠ODC=45°+45°=90°∵OD为半径,∴CD与⊙O的位置关系是相切;(2)解AB∥CD,∠ODC=90°∴∠DOB=90°=∠DOA,∵四边形ABCD是平行四边形,∴AD=BC=2,在△AOD中由勾股定理得:2AO2=222∴S △AOD=12 OA×OD=12×2×2S 扇形BOD=26022=3603⨯ππ S 平行四边形ABCD=AB×2×2∴阴影部分的面积是:4-1-23π=3-23π.【点评】此题考查切线的判定,勾股定理,扇形面积,平行四边形的性质,解题关键在于作辅助线12.(1)PB 与⊙O 相切,理由见解析;(2)⊙O 的半径为4.5.【分析】(1)根据线段垂直平分线的性质可得PB =PD ,通过证明△ABP 与△ADP 全等,根据全等三角形对应角相等可得∠ABP =∠ADP =90°,再根据切线的判定定理即可得证;(2)根据全等三角形的性质得∠BAC =∠DAC ,得到BC =CE =3,然后证明△DCE 与△DAB 相似,然后根据相似三角形的对应边成比可推导得出DC •DB =DE •DA ,代入相关数据即可求得答案.【解析】(1)PB 与⊙O 相切,理由如下:∵AB 是⊙O 的直径,∴AC ⊥BD ,又AB =AD ,∴AP 是线段BD 的垂直平分线,∴PB =PD ,在△ABP 和△ADP 中, AB AD PB PD AP AP =⎧⎪=⎨⎪=⎩,∴△ABP ≌△ADP (SSS),∴∠ABP =∠ADP =90°,∴PB 与⊙O 相切;(2)连接CE ,∵△ABP≌△ADP,∴∠BAC=∠DAC,∴BC CE=,∴BC=CE=3,∵AB=AD,AC⊥BD,∴BC=CD=3,∵四边形ABCE是⊙O的内接四边形,∴∠DBA+∠CEA=180°,∵∠DEC+∠CEA=180°,∴∠DBA=∠DEC,又∵∠CDE=∠ADB,∴△DCE∽△DAB,∴DC:DA=DE:DB,∴DC•DB=DE•DA,即3×6=DE×(DE+7),解得,DE=2,∴DA=2+7=9,∴AB=AD=9,∴⊙O的半径为4.5.【点评】本题考查了切线的判定,圆内接四边形的性质,相似三角形的判定与性质,熟练掌握相关的性质定理与判定定理是解题的关键.13.(1)证明见解析;(2)FB=2【分析】(1)连接OC,根据切线的性质以及OE⊥AB,可知∠E+∠EF A=∠OCE+∠FCP=90°,从而可得∠EF A=∠FCP,继而可推得∠CFP=∠FCP,再根据等角对等边即可证得;(2)过点B作BG⊥PC于点G,由OB∥PC,OB=OC,BC=,从而求得OB=3,继而证得四边形OBGC是正方形,从而有OB=CG=BG=3,从而有34BGPG=,求得PG=4,再利用勾股定理可求得PB长,继而可求出FB长.【解析】解:(1)连接OC,∵PC是⊙O的切线,∴∠OCP=90°,∵OE=OC,∴∠E=∠OCE,∵OE⊥AB,∴∠E+∠EF A=∠OCE+∠FCP=90°,∴∠EF A=∠FCP,∵∠EF A=∠CFP,∴∠CFP=∠FCP,∴PC=PF;(2)过点B作BG⊥PC于点G,∵OB∥PC,∴∠COB=90°,∵OB=OC,BC=2∴OB=3,∵BG⊥PC,∴四边形OBGC是正方形,∴OB=CG=BG=3,∵tan P=34,∴34 BGPG,∴PG=4,∴由勾股定理可知:PB=5,∵PF=PC=7,∴FB=PF﹣PB=7﹣5=2.【点评】本题考查了切线的性质,勾股定理,等腰三角形的判定,正方形的判定,锐角三角函数的定义等,解题的关键是正确添加辅助线,灵活运用相关知识求解.14.(1)50°;(2)cosD=45.【分析】(1)连接OB.根据平行的想得到PA⊥AO,PB⊥OB,根据四边形的内角和即可得到结论;(2)连结OP交AB于点E,再连OB、BC,根据切线的性质得到∠PAC=∠PBO=90°,推出OP是AB的垂直平分线,根据相似三角形的性质即可得到结论.【解析】(1)证明:如图1,连接OB.∵PA、PB分别切⊙O于A、B两点,∴PA⊥AO,PB⊥OB,∴∠PAO=∠PBO=90°.∵∠BAC=25°,OB=OA,∴∠BOA=180°﹣25°﹣25°=130°,∴∠P=360°﹣90°﹣90°﹣130°=50°;(2)解:如图2,连结OP交AB于点E,再连OB、BC,∵PA、PB是⊙O的切线,∴∠PAC=∠PBO=90°,∵AP=AC,AC是⊙O的直径,∴12OAPA=,∵PB=PA,OB=OA,∴OP是AB的垂直平分线,∵∠OAP=90°,AE⊥OP,∴△OEA∽△AEP∽△OAP,∴OA OE OP OA=,设OE=a,可得AE=BE=BC=2a,PE=4a,∴OP=5a,∴OA,PA=PB=,∵∠ABC=∠AEO=90°,∴OP∥BC,∴△DBC∽△DPO,∴CDOD=BDOD=BCOP=25.∴BD 45,OD=535,∴cos D=BDOD=45.【点评】本题考查了切线的性质,四边形的内角和,相似三角形的判定和性质,平行线的判定,正确的作出辅助线是解题的关键.15.(1)DE与⊙O相切,证明详见解析;(2)EC=1.【分析】(1)连接OD,由题意可得∠CBD=∠ODB=∠DBO,可得OD∥BE,可证DE⊥OD,即可证DE与⊙O相切;(2)过点D作DF⊥AB于点F,连接DC,由题意可证Rt△DF A≌Rt△DEC,Rt△DBF≌Rt△DBE,可得AF=EC,BF=BE,即可求EC的长.【解析】解:(1)DE与⊙O相切理由如下:连接OD∵OB=OD∴∠OBD=∠ODB∵∠ABC的平分线交⊙O于点D,∴∠ABD=∠CBD∴∠CBD=∠ODB∴OD∥BE∵DE⊥BC于点E.∴DE⊥OD∴DE与⊙O相切(2)过点D作DF⊥AB于点F,连接DC,∵∠ABD=∠CBD,DE⊥BE,DF⊥AB∴DF=DE,AD DC=∴AD=CD∵AD=CD,DF=DE∴Rt△DF A≌Rt△DEC(HL)∴AF=EC∵DF=DE,DB=DB∴Rt△DBF≌Rt△DBE(HL)∴BF=BE∵BA=BF+AF=BE+AF=BC+EC+CE=6∴4+2CE=6∴EC=1【点评】本题考查了直线与圆的位置关系,圆周角定理,全等三角形判定和性质,添加恰当辅助线构造全等三角形是本题的关键.16.(1)∠ACM=62°;(2)存在符合条件的点D,使AB•CD=AC•BC,理由见解析.【分析】(1)求∠ACM的度数,需求出∠B的度数;在Rt ABC∆中,已知∠A的度数,即可求出∠B、∠ACM的度数;(2)乘积的形式通常可以转化为比例的形式:①AB BCAC CD=,此时需证Rt ABC Rt CBD∆~∆,那么过B作MN的垂线,那么垂足即为符合条件的D点;②AB ACBC CD=,此时需证Rt ABC Rt ACD∆~∆,则过A作MN的垂线,垂足也符合D点的条件.两者的证明过程一致,都是通过弦切角得出一组对应角相等,再加上一组直角得出三角形相似.【解析】(1)∵AB是半圆的直径,∴∠ACB=90°,∴∠B=90°﹣∠A=62°,∵直线MN与以AB为直径的半圆相切于点C,∴∠ACM=∠B=62°;(2)存在符合条件的点D,使AB•CD=AC•BC,①过A作AD⊥MN于D,则AB•CD=AC•BC,证明:∵MN是半圆的切线,且切点为C,∴∠ACD=∠B,∵∠ADC=∠ACB=90°,∴△ABC∽△ACD,∴AB AC BC CD=,即AB•CD=AC•BC;②过B作BD⊥MN于D,则AB•CD=AC•BC,证明过程同①,因此MN上存在至少一点D,使AB•CD=AC•B C.【点评】本题考查了弦切角定理及相似三角形的判定和性质,要求学生能够熟练掌握相似的判断和性质并应用.17.(1)证明见解析;(2)53π【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得:,AB BC=,由一组对边平行且相等可得四边形ABCD是平行四边形,由AB=BC可得结论;(2)先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程得:4x+2x+12(180-3x)=180,求出x的值,接着求CF所对的圆心角和半径的长,根据弧长公式可得结论.【解析】(1)证明:∵AE CE=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴AB BC=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OF A=12(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+12(180﹣3x)=180,x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,∴CF的长=1003180π⨯=53π.【点评】本题考查平行四边形和菱形的判定和性质、等边三角形的判定和性质、弧长公式,平行线的性质等知识,解题的关键是学会设未知数,列方程求角的度数,证明三角形是等边三角形是解题的突破点,属于中考常考题型.18.(1)证明见解析(2)18【分析】(1)根据AB=AC,可得出∠ABC=∠BCA,再根据圆内接四边形的性质可得出∠CDE=∠ABC,从而得出答案;(2)作AM⊥CD于点M,根据题意可得出BF,还可证明△ACM≌△ABF,从而可得出△DBC 的面积.【解析】(1)证明:∵AB=AC,∴∠ABC=∠BCA=∠ADB,∵四边形ABCD是圆内接四边形,∴∠CDE=∠ABC,∴∠ADB=∠CDE;(2)解:作AM⊥CD于点M,∵AB=10,AF=6,∴BF=8,∵AD平分∠BDM,AM=AF=6,∴△ACM≌△ABF,∴CM=BF=8,∴DF=DM=CM﹣CD=2.∴BD=BF+DF=10=AB.∴∠BAD=∠ADB=∠ADM,∴AB∥CD,∴S△DBC=S△ADC=12CD×AM=18.【点评】本题考查了等腰三角形的性质、全等三角形的判定和性质以及圆周角定理,熟练掌握这些性质是解题的关键.19.(1)证明见解析(2)3【分析】(1)连接OD,如图,先由切线的性质得∠ODB+∠BDC=90°,再由圆周角定理得到∠ODB+∠ODA=90°,则∠BDC=∠ODA,加上∠ODA=∠BAD,然后等量代换即可得到结论;(2)利用正弦定义得sin∠A=sin∠BDC=5BDAB设5,AB=5x,则5,然后证明△CBD∽△CDA,则利用相似比可计算出CD和AB,从而得到圆的半径.【解析】(1)证明:连接OD,如图,∵CD与半圆O相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB是半圆O的直径,∴∠BDA=90°,即∠ODB+∠ODA=90°,∴∠BDC=∠ODA,∵OD =OA ,∴∠ODA =∠BAD ,∴∠BAD =∠BDC ;(2)解:∵sin ∠A =sin ∠BDC∴BD AB =设BD ,AB =5x ,则AD ,∵∠BAD =∠BDC ,∠BCD =∠DCA ,∴△CBD ∽△CDA ,∴12BC CD BD CD AC AD ====, 而BC =2,∴CD =4,AC =8,∴AB =AC ﹣BC =6,∴⊙O 的半径位3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解决(2)小题的关键是构建△CBD 与△CDA 相似.20.(1)①见解析②24(2)结论DA =DC 仍然成立【分析】(1)①连接OC ,利用切线的性质则可得到OC ⊥DC ,然后得到∠DCA=90°-∠ACO=90°-∠B=∠DAC ,利用等角对等边得到DA=DC 即可;②利用DF :EF=1:8,然后利用切线长定理求得DC 的长,进而得到DC 、AD 的长,然后利用切线长定理得:AB•AC=AE•AF=24;(2)结论仍然成立,延长BO 交⊙O 于K ,连CK ,利用切线的性质可以得到∠DCA=∠CKB=90°-∠CBK ,从而得到∠DCA=∠BAH ,问题得证.【解析】(1)①证明:连OC ,则OC ⊥DC ,∴∠DCA=90°﹣∠ACO=90°﹣∠B,又∠DAC=∠BAE=90°﹣∠B,∴∠DAC=∠DCA∴DA=DC,②∵DF:EF=1:8,DF2∴EF=8DF=2,又DC为切线,∴DC2=DF•DE22=18,∴DC=2∴AD=DC=2∴AF=AD﹣DF=2∴AE=EF﹣AF=2,∴AB•AC=AE•AF=24;(2)结论DA=DC仍然成立,理由如下:延长BO交⊙O于K,连CK,则∠KCB=90°,又DC为⊙O的切线,∴∠DCA=∠CKB=90°﹣∠CBK,又∠BAH=90°﹣∠HBA,而∠CBK=∠HBA,∴∠DCA=∠BAH,∴DA=DC.【点评】本题考查了切线的性质、垂径定理及切割线定理的内容,是一道比较复杂的切线的性质的综合题,难度较大.。

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)

中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。

中考数学专题训练圆的证明与计算(含答案)

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算1.如图,已知八ABC内接于AO, P是圆外一点,PA为40的切线, = PB,连接0P ,线段AB与线段0P相交于点D.(1)求证:PB为40的切线;- 4⑵ 若PA=4P0, z\0的半径为10,求线段PD的长.5(1)证明:△△△△△0Az\0Bz\ZSPA/SPBA0AA0BA0PA0PA△ 3APz\8BP(SSS) △A210APA210BPA/SPAA210AAAAA210APA90 △A210BPA90 △A0BA210AAAA/SPBA210AAAA_ _ 4_ _ ............(2)解:APA/VP0A210AAAA 10A PA第1题图第1题解图△ △ Rt AOP A Z1OA A A J P O22\21|P O^ A10A人人八人50人A/POA V A3AO OD△ cos AOP/^O P A A O AAODA6A人_ _____ 32APD APOAODA-y.32.AAAAABCA/iAB^CA/lDABCAAAAADADCA/lAAB/SDAAAzOA AEA21OAAAAADE.A 1AAAACA/1OAAAAA2AA C OSA32^C A 24 A A A AE A A.第2题图(1)证明:AABAACAAD ADC △Az^CAz^BAz^DACA^CA△RAC△2△AAZEA21BA△RAC△任△Z^EA/IOAAAAA21ADEA90 △△任△21EAD"0° △A/DACA21EADA90 △△任AC490° △AOAA21OAAAAAACAODAAAA(2)解:AAAAADA DF 丛C△任△第2题解图DAADCCA…1… 人△CF A2ACA12ACF 3ARtzCDFAAA G(C/\C D A5A△DC A 20 △AAD A 20 △ARtzCDFAAAAAAA DF ,CD2-CF216 △A21ADEA21DFCA90 AEA21CAA21ADEA21DFCA噬噜△AE 20A— A20 AA Z^EA25A20 16A21OAA/AEA 25.3.如图,在AABC中,AB=BC,以AB为直径作AO,交BC于点D,交AC 于点E,过点E作AO的切线EF,交BC于点F.(1)求证:EFABC;(2)若 CD=2, tan C=2,求 AO 的半径.第3题图(1)证明:如解图,连接BE, OE.第3题解图AAB为AO的直径,△MEB=90 .AAB=BC,△点E是AC的中点,△点O是AB的中点,AOEABC,△EF是AO的切线,△EF4E.△EFABC;(2)解:如解图,连接AD,八AB为AO的直径,△ AADB=90 ,△CD=2, tan C=AD 2CDAAD=4.设 AB=x,贝U BD=x-2.在 RtAABD 中, 由勾股定理得AB2=AD2+BD2,即 x2=42+ (x— 2) 2, 解得x=5,即AB=5,△ 8的半径为5 .24.AAAAZOWZ1ABAAAAABCAAADA21BCAAAAAE.A 1AAA/SDACA21DCEA..................1人人人人A2A ABA 2A siD △不△ AAE4/X.第4题图(1)证明:Z^DA/IOAAAA△PAB A90 .Z^BA/IOAAAAA21ACBA90 .A/DACA21CABA90 2ICABA/^ABCA 90 △A/DACA/^BC.AOCAOBAA.BCBCOCOCBAAAZDCEAz^OCBAA21DACA21DCEA(2)解:AABA2 △AAOA1.△sinD A ODAODA3ZDC A2 △ARtzDAOAA△△△△△AD △ OD2AOA2A2 2 △A21DACA21DCEA21DA/1DAA21DECA21DCAA A DC A DE A DA A DC 人2人DEA2 ,2 A2△RE △ ,2 △AAEAAD ADE △ 2.5.AAABA21OAAZDAA/DAAAAAADACDAOAA21ABA21EAA/OA1AAACEACBAA2AAAFABFAA/ABFAAAA人人-人人人 DE人5人人…人人人A3A/CDA 15ABE4 1OZ A E A13AAZ O AA A-(:第5题图(1)证明:△△△△△OB4A第5题解图BBCAOJAAAAAOBABCA AzOBCA 90 △A21OBAA21CBEA90 △AOAAOBAA21OABA21OBAAA21OAB+ACBEA 90 △A21CDAOAAA21OABA21DEAA90 △AA/CEBA21DEAAA21CBEA21CEBAACEACBA(2)解:△△△△△/△ADA ADO ACD AOAA AAF AOF △Az^OAAOFAA21AOFAAAAAAA/AOF=60O△」_1 _____ ____ _A21ABFA2^AOFA30 △(3)解:△△△△△C\CG》B△工△△CD AOAAA21ADEA21CGEA900△AA/AEDA21CEGAA21ADEA21CGEA人DE人EG人5人A AE A CE A13AACEABCAACEA13A人 (26)△DE -旌.-------- 24△ △•■△△△△△△" ..AE DE△石△486.AAAA/lABCDAAAzO^BA/lOAAAADADCAAAABAACDAAA EA/®FAECA21ECAAAAA/W\AZBD.△ 1 △△△ ABFC△2DAAA2AAE/^OAA cosADEAA3AAA 2AAAA/BCA6AzBFAA.第6题图(1)证明:Z^BA/IOAAAAA21BDAA90 .ABF /SECAA21BFCA90 △AAAABCDA/1OAAAAAAAA21BCFA21BADAA21BFCA21BDAA(2)解:△△△△△OD3C4A21BFCA21BDAABF BC△BD'^A B'AODA/lOAAAzADACDA AODAAAACAZ^BA/IOAAAA△ AACB=90 △AODABCA △任OD△心X OE ODA BE A BC AZ^E^OA21OEA2OB/SBEA3OBAOD OE 2△■占M—— -ABC BE 3ABC Z^ODA3瑞瑞舄△:△△ 21ADB A 90 △A21ADEA21BDFA90 △A21BDFA21DBFA90 △A21ADEA21DBFAR第6题解图/SRt/SBDFAA cosDBF 混率△ cos ADE2^A4(3)解:ABCz^ODABCA6AAODA4A /^EA4ZBEA12 △ △任OD△心CA 人DE人OD人A CE A BC A…人3 人ACEA2DEA △ △/EDA△八EBC△任△小£△A21AEDA21CEBA 人AE人DE人A C E A BE AADE CEAAE BEAADE 3D E A4X 12 △ /SDEA4V2( AAAA )△ACDA2V2A/^DA2V2AA21BFCA21BDAA 人CF 人AD 人A CF A2_J A△BC△母△造△ 8 △… 3 2ACF A^AARtzBCFAAAAAAAAAABFA . BC2A CF2Z^3~214.7.AAABAA OAAA/ICD^BAAAzHAAAAC△△知作EG3C交CD的延长线于点 G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:z\ECF△&CE;(2)求证:EG是AO的切线;(3)延长AB交GE的延长线于点 M ,若tan工=3 ,AH=3,4求EM的值.第7题图(1)证明:3cAEG,△8=3CG,「AB是AO的直径,ABACD,△A D = A C ,△3EF=AACD,△8=MEF,△任CF=4ECG,△任CF△&CE;(2)证明:如解图,连接OE,第7题解图△GF=GE,△&FE=^GEF=AAFH,△OA=OE,△3AE=4OEA,△AAFH+^FAH=90 ,△&EF+AAEO=90 ,△&EO=90 ,AGEAOE,VOEMAO的半径,△EG是AO的切线;(3)解:如解图,连接OC,设AO的半径为r.在 Rt「AHC 中,一一AH 3tan zACH=tan 应=空=± , HC 4AAH=3,AHC=4.在 Rt^HOC 中,△OC=r, OH=r—3, HC=4, △ (r —3) 2+42=r2,解得r= 25 ,6△GM AAC,△ 3AH=2\M,△ 3EM=AAHC=90 △ AAHC/XNEO,AH HCEM OE ,即高8.如图,AB 为AO 的直径,C 、G 是AO 上两点,过点 C 的直线CD^BG 交BG 的延长线于点D,交BA 的延长线于点E,连接BC,交OD 于点F, 且BC 平分4ABD.(1)求证:CD 是AO 的切线;⑵若OF 2,求4E 的度数; FD 3⑶连接AD,在(2)的条件下,若CD=2V3,求AD 的长.H第8题图(1)证明:如解图,连接OC,△ EM 25 8△OC=OB, BC 平分 AABD, △3CB=z\OBC, AOBC=ADBC,AzX)BC=AOCB,AOC ABD,Az^BDC=AECO,△CD ABD,△ z!BDC=90 ,△任CO=90 ,△OC 是AO 的半径,△CD 是AO 的切线;(2)解:由(1)知,OC^BD, △8CF=4DBF, △COFMBDF,A21OCFA21DBF, △.史FD△器AOC ABD, △任OC △任BD,△如 FD3,设 OE=2a,则 EB=3a,△OB=a,△OC=a,△3CE=90 , OC=1OE, 2△任=30 ;(3)解:△任=30 , ABDE=90 ,△任BD=60 ,VBC 平分 ADBE,/. AOBC=ADBC=1 EBD=30 , 2△CD=2 .3 ,ABC=4 3, BD=6,△空2 , DB 3△OC=4,如解图,过点D作DM3B于点M ,△RMB=90 ,ABD=6, ADBM=60 ,ABM=3, DM=3 3 ,△OC=4,△AB=8,AAM=AB—BM=5,△ RMA=90 , DM=3J3,AAD= VDM 2 AM 2 2V13 .9.如图,在3BC中,八ACB=90°,。

最新整理中考热点7与圆有关的证明问题含答案.doc

最新整理中考热点7与圆有关的证明问题含答案.doc

热点17 与圆有关的证明问题(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A.等腰梯形 B.正方形 C.菱形 D.矩形2.如图1,DE是⊙O的直径,弦AB⊥ED于C,连结AE、BE、AO、BO,则图中全等三角形有()A.3对 B.2对 C.1对 D.0对(1) (2) (3) (4)3.垂径定理及推论中的四条性质:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的弧.由上述四条性质组成的命题中,假命题是()A.①②⇒③④ B.①③⇒②④C.①④⇒②③ D.②③⇒①④4.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心,•2.3cm 长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;•③以点C 为圆心,2.5cm长为半径的圆与AB相交,则上述结论正确的有()A.0个 B.1个 C.2个 D.3个5.在⊙O中,C是AB的中点,D是AC上的任意一点(与A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定6.如图2,梯形ABCD内接于⊙O,AD∥BC,EF切⊙O于点C,则图中与∠ACB相等的角(不包括∠ACB)共有().A.1个 B.2个 C.3个 D.4个7.如图3,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①A D2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个8.如图4,AB是⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F,交⊙O于G.•下面的结论:①EC=DF;②AE+BF=AB;③AE=GF;④FG·FB=EC·ED.其中正确的有()A.①②③ B.①③④ C.②③④ D.①②④9.如图5,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,•垂足是P,DH⊥BH,=;③AP=BH;④DH为圆的切线,其中一定成垂足是H,下列结论:①CH=CP;②AD BD立的是()A.①②④ B.①③④ C.②③④ D.①②③(5) (6) (7) (8)10.如图6,在⊙O中,AB=2CD,那么()A.2AB CD>; B.2AB CD<;C.2AB CD=; D.AD与2CD的大小关系可能不确定二、填空题(本大题共8小题,每小题3分,共24分)11.在⊙O中,若AB⊥MN于C,AB为直径,MN•为弦,•试写出一个你认为正确的结论:_________.12.已知⊙O1和⊙O2的半径分别为10cm,6cm,OO的长为3cm,则⊙O1与⊙O2的位置关系是_________.13.如图7,C是⊙O的直径AB延长线上一点,过点C作⊙O的切线CD,D为切点,连结AD、OD、BD,请你根据图中所给的条件(不再标字母或添辅助线),写出一个你认为正确的结论____________.14.已知⊙O的直径为10,P为直线L上一点,OP=5,那么直线L与⊙O•的位置关系是_______.15.在△ABC中,∠C=90°,AC=3,BC=4,点O是△ABC的外心,现以O为圆心,•分别以2,2.5,3为半径作⊙O,则点C与⊙O的位置关系分别是________.16.以等腰△ABC的一腰AB为直径作圆,交底边BC于D,则∠BAD与∠CAD•的大小关系是∠BAD________∠CAD.17.在△ABC中,AB=5,AC=4,BC=3,以C为圆心,以AB•的位置关系是____________.18.如图8所示,A、B、C是⊙O上的三点,当BC平分∠ABO时得结论_________.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.20.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.21.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.,BF和AD交于E,22.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,AB AF求证:AE=BE.23.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.24.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.(1)求∠ACM的度数.(2)在MN上是否存在一点D,使AB·CD=AC·BC,说明理由.25.如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿CA 移动,当OC 等于多少时,⊙O 与AB 相切?答案: 一、选择题1.D 2.A 3.B 4.D 5.C 6.D 7.B 8.B 9.D 10.A 二、填空题11.BM=BN 等 12.内含 13.∠ADO=∠BDC 等 14.相交或相切 15.在圆外、•在圆上、在圆内 16.= 17.相交 18.OC ∥AB 等 三、解答题19.证明:过点O 作OE ∥AB 于E ,则AE=BE .在△OCD 中,OE ⊥CD ,OC=OD ,∴CE=•DE .•∴AC=BD .20.证明:∵四边形ABDE 是圆内接四边形,∴∠DEC=∠B . 又∵AB=AC ,∴∠B=∠C ,∴∠DEC=∠C ,∴DE=CD . ∴△DEC 为等腰三角形.21.证明:连结BC ,由AB 是直径可知,9030ACB A ∠=︒⎫⎬∠=︒⎭⇒∠ABC=60°.CD 是切线⇒∠BCD=∠A=30°⇒∠D=30°=∠A ⇒AC=CD . 22.证明:连结AB ,AC ,90909090BC BAC ABC ACB AD BC ADB ABC BAD ⇒∠=︒⇒∠+∠=︒⎫⎬⊥⇒∠=︒⇒∠+∠=︒⎭是直径ACB BADAB AF ACB ABF ⇒∠=∠⎫⎪⎬=⇒∠=∠⎪⎭⇒∠BAD=∠ABF ⇒AE=BE .23.证明:(1)连结OD ,AO 是直径90ADO AO CO ⇒∠=︒⎫⇒⎬=⎭AD=DC .(2)连结O 1D ,111O D O A A ADO OA OC A C =⇒∠=∠⎫⎬=⇒∠=∠⎭190C ADO DE CE C CDE ⇒∠=∠⎫⎬⊥⇒∠+∠=︒⎭1119090ADO CDE O DE D O ⇒∠+∠=︒⇒∠=︒⎫⎬⎭在上⇒DE 是切线.24.解:(1)连结BC ,9028AB ACB A ⇒∠=︒⎫⎬∠=︒⎭是直径⇒∠B=62°.MN 是切线⇒∠ACM=∠B=62°.(2)过点B 作BD ⊥MN ,则190BDC ACBMN BCN A ∠=︒=∠⎫⎬⇒∠=∠⎭是切线⇒△ACB ∽△ B⇒1AC ABCD BC=⇒AB ·CD 1=AC ·BC . 过点A 作AD 2⊥MN ,则190AD C ACBMN MCA CBA ∠=︒=∠⎫⎬⇒∠=∠⎭是切线⇒△ABC ∽△ACD 2⇒2CD AC AB CB=⇒CD 2·AB=AC ·CB 25.解:(1)过点C 作CH ⊥AB 于H ,由三角形的面积公式得AB ·CH=AC ·BC ,∴CH=AC BC AB =6013,即圆心到直线的距离d=6013. ∵d=6013>3,∴⊙O 与AB 相离.(2)过点O 作OE ⊥AB 于E ,则OE=3.∵∠AEO=∠C=90°,∠A=∠A ,∴△AOE ∽△ABC , ∵OA=OE AB BC =31313124⨯=∴OC=AC-OA=5-134=74.∴当OC=74时,⊙O与AB相切.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下载试卷文档前说明文档:1.试题左侧二维码为该题目对应解析;2.请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查看解析,杜绝抄袭;3.只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。

学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。

4. 自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏-> 我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点。

5.在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优网的支持。

2015 年 04 月 19 日九年级数学组的初中数学组卷(扫描二维码可查看试题解析)一.解答题(共 17 小题)1 .(2014?辽阳)如图,在△ ABC,AB=AC ,以 AB 为直径的⊙O分别交 AC、 BC 于点 D、 E,点 F 在 AC 的延长线上,且∠CBF= ∠CAB.(1)求证:直线 BF 是⊙O 的切线;(2)若 AB=5 , sin ∠ CBF=,求 BC 和 BF 的长.2 .(2014?吉林)如图,四边形 OABC 是平行四边形,以 O 为圆心, OA 为半径的圆交 AB 于点 D,延长 AO 交⊙O于点 E,连接 CD,CE,若 CE 是⊙O的切线,解答下列问题:(1)求证: CD 是⊙O的切线;(2)若 BC=3 , CD=4 ,求平行四边形 OABC 的面积.3 .(2014?天水)如图,点 D 为⊙O上一点,点 C 在直径 BA 的延长线上,且∠CDA= ∠ CBD.(1)判断直线 CD 和⊙O的位置关系,并说明理由.(2)过点 B 作⊙O的切线 BE 交直线 CD 于点 E,若 AC=2 ,⊙O 的半径是 3,求 BE的长.4 .(2013?德州)如图,已知⊙O的半径为 1 , DE 是⊙O的直径,过点 D 作⊙O的切线 AD , C 是 AD 的中点, AE 交⊙O于 B 点,四边形 BCOE 是平行四边形.(1)求 AD 的长;(2) BC 是⊙O的切线吗?若是,给出证明;若不是,说明理由.5 .(2013?菏泽)如图,BC 是⊙O的直径, A 是⊙O 上一点,过点 C 作⊙O的切线,交 BA 的延长线于点D,取 CD 的中点 E, AE 的延长线与BC 的延长线交于点P.(1)求证: AP 是⊙O的切线;(2) OC=CP , AB=6 ,求 CD 的长.6 .(2013?聊城)如图,AB 是⊙O的直径, AF 是⊙O 切线, CD 是垂直于AB 的弦,垂足为 E,过点 C 作 DA 的平行线与AF 相交于点 F, CD=,BE=2.求证:(1)四边形 FADC 是菱形;(2) FC 是⊙O 的切线.7 .(2012?北京)已知:如图, AB 是⊙O 的直径, C 是⊙O上一点, OD⊥ BC于点D,过点 C 作⊙O的切线,交 OD 的延长线于点E,连接 BE.(1 )求证: BE 与⊙O相切;(2 )连接 AD 并延长交BE 于点 F,若 OB=9 , sin∠ ABC=,求BF的长.8 .(2012?济宁)如图,AB 是⊙O的直径, AC 是弦, OD⊥ AC于点 D,过点 A 作⊙O的切线 AP, AP 与 OD 的延长线交于点P,连接 PC、 BC.......(1)猜想:线段 OD 与 BC 有何数量和位置关系,并证明你的结论.(2)求证: PC 是⊙O的切线.9 .(2012?德阳)如图,已知点 C 是以 AB 为直径的⊙O上一点, CH⊥ AB于点 H,过点 B 作⊙O的切线交直线AC 于点 D,点 E 为 CH 的中点,连接 AE 并延长交BD 于点 F,直线 CF 交 AB 的延长线于G.(1)求证: AE?FD=AF?EC ;(2)求证: FC=FB;(3)若 FB=FE=2 ,求⊙O的半径 r 的长.10 .(2012?黔南州)已知:如图,点 C 在以 AB 为直径的⊙O上,点 D 在 AB 的延长线上,∠ BCD=∠A.(1 )求证: CD 为⊙O的切线;(2 )过点 C 作 CE⊥ AB于 E.若 CE=2 ,cosD=,求AD的长.11 .( 2012?广安)如图,在 △ ABC 中,∠ ABC= ∠ ACB 以,AC 为直径的 ⊙O 分别交AB 、 BC 于点 M 、 N ,点 P 在 AB 的延长线上 ,且 ∠ CAB=2 ∠ BCP .( 1 )求证:直线 CP 是⊙O 的切线 .( 2 )若 BC=2, sin ∠ BCP= ,求点 B 到 AC 的距离 .( 3 )在第( 2)的条件下 ,求 △ ACP 的周长 .12 .( 2012?黄冈)如图,在 △ ABC 中, BA=BC ,以 AB 为直径作半圆⊙ O ,交 AC于点 D ,过点 D 作 DE ⊥BC , 垂足为点E .( 1 )求证: DE 为 ⊙O 的切线 ;( 2 )求证: BD 2=AB?BE .13 .(2011?芜湖)如图,已知直线 PA 交⊙O于 A、 B 两点, AE 是⊙O 的直径,点C 为⊙O 上一点,且 AC 平分∠ PAE ,过 C 作 CD 丄 PA,垂足为 D .(1)求证: CD 为⊙O的切线;(2)若 DC+DA=6 ,⊙O 的直径为 10 ,求 AB 的长度.14 .(2011?凉山州)如图,已知△点 F,点 E 为的中点,连接BE交AC于点ABC,以 BC 为直径,O 为圆心的半圆交AC 于M , AD 为△ABC 的角平分线,且 AD⊥BE,垂足为点 H.(1)求证: AB 是半圆 O 的切线;(2)若 AB=3 , BC=4 ,求 BE 的长.15 .(2011?乐山)如图, D 为⊙O上一点,点 C 在直径 BA 的延长线上,且∠CDA= ∠ CBD.(1)求证: CD 是⊙O的切线;(2)过点 B 作⊙O的切线交 CD 的延长线于点 E,若 BC=6 , tan ∠ CDA=,求 BE 的长.16 .(2011?广安)如图所示, P 是⊙O 外一点, PA 是⊙O 的切线,A 是切点, B 是⊙O 上一点,且 PA=PB ,连接 AO 、 BO、 AB,并延长 BO 与切线 PA 相交于点 Q.(1 )求证: PB 是⊙O的切线;(2)求证: AQ?PQ=OQ?BQ ;(3 )设∠ AOQ=α,若,OQ=15,求AB的长.17 .(2012?达州)如图, C是以 AB 为直径的⊙O上一点,过 O 作 OE⊥ AC于点 E,过点 A 作⊙O的切线交OE 的延长线于点F,连接 CF 并延长交BA 的延长线于点P.(1 )求证: PC 是⊙O的切线.(2 )若 AF=1 , OA=,求PC的长.......2015 年 04 月 19 日九年级数学组的初中数学组卷参考答案与试题解析一.解答题(共 17 小题)1.(2014?辽阳)如图,在△ ABC,AB=AC ,以 AB 为直径的⊙O分别交 AC、 BC 于点 D、E,点 F 在 AC 的延长线上,且∠ CBF= ∠ CAB.(1)求证:直线 BF 是⊙O 的切线;(2)若 AB=5 , sin ∠ CBF=,求 BC 和 BF 的长.考切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三点:角形.专几何综合题.题:分( 1)连接 AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三析:角形两锐角相等得到直角,从而证明∠ABF=90°.( 2)利用已知条件证得△ AGC∽△ ABF利,用比例式求得线段的长即可.解( 1)证明:连接 AE,答:∵ AB是⊙O 的直径,......∴∠AEB=90 °,∴∠1+ ∠ 2=90 °.∵AB=AC ,∴∠ 1=∠ CAB.∵∠ CBF=∠ CAB,∴∠1= ∠ CBF∴∠CBF+ ∠ 2=90 °即∠ABF=90°∵AB是⊙O的直径,∴直线 BF 是⊙O的切线.(2)解:过点 C 作 CG⊥ AB于 G.∵ sin ∠ CBF=,∠ 1= ∠ CBF ,∴ sin ∠ 1=,∵在 Rt △ AEB中,∠AEB=90 °AB=5,,∴BE=AB?sin ∠ 1=,∵AB=AC ,∠ AEB=90 °,∴ BC=2BE=2,在 Rt△ABE 中,由勾股定理得AE==2,∴ sin∠ 2===,cos∠ 2= ==,在Rt△CBG 中,可求得 GC=4 ,GB=2 ,∴ AG=3 ,∵GC∥ BF ,∴△AGC∽△ABF ,∴∴ BF==点本题考查常见的几何题型,包括切线的判定,角的大小及线段长度的求法,要求学评:生掌握常见的解题方法,并能结合图形选择简单的方法解题.2.(2014?吉林)如图,四边形 OABC 是平行四边形,以O为圆心,OA为半径的圆交AB 于点 D,延长 AO 交⊙O于点 E,连接 CD, CE,若 CE 是⊙O的切线,解答下列问题:(1)求证: CD 是⊙O的切线;(2)若 BC=3 , CD=4 ,求平行四边形 OABC 的面积.考切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.点:专证明题.题:分( 1)连接 OD ,求出∠ EOC=∠ DOC,根据 SAS 推出△ EOC≌△ DOC,推出析:∠ ODC=∠ OEC=90°根,据切线的判定推出即可;( 2)根据全等三角形的性质求出CE=CD=4 ,根据平行四边形性质求出OA=3 ,根据平行四边形的面积公式求出即可.解( 1)证明:连接 OD ,答:∵ OD=OA,∴∠ODA=∠ A,∵四边形 OABC 是平行四边形,∴OC∥ AB,∴∠EOC=∠ A,∠COD=∠ ODA,∴∠EOC=∠ DOC,在△EOC 和△DOC 中∴△EOC≌△ DOC(SAS),∴∠ODC=∠ OEC=90 °,即OD⊥DC,∴ CD是⊙O的切线;(2)解:∵△ EOC≌△ DOC,∴ CE=CD=4 ,∵四边形 OABC 是平行四边形,∴OA=BC=3 ,∴平行四边形OABC 的面积 S=OA × CE=3 × 4=12 .点本题考查了全等三角形的性质和判定,切线的判定,平行四边形的性质的应用,解评:此题的关键是推出△EOC≌△DOC.3.(2014?天水)如图,点 D 为⊙O 上一点,点 C 在直径 BA 的延长线上,且∠CDA= ∠ CBD.(1)判断直线 CD 和⊙O的位置关系,并说明理由.(2)过点 B 作⊙O的切线 BE 交直线 CD 于点 E,若 AC=2 ,⊙O 的半径是 3,求 BE的长.考切线的判定与性质.点:专几何图形问题.题:分( 1)连接 OD ,根据圆周角定理求出∠ DAB+∠ DBA=90°求,出∠ CDA+∠ ADO=90°,析:根据切线的判定推出即可;( 2)根据勾股定理求出 DC,根据切线长定理求出 DE=EB ,根据勾股定理得出方程,求出方程的解即可.解解:( 1)直线 CD 和⊙O 的位置关系是相切,答:理由是:连接OD,∵AB是⊙O的直径,∴∠ ADB=90 °,∴∠ DAB+ ∠ DBA=90 °,∵∠ CDA= ∠ CBD,∴∠ DAB+ ∠ CDA=90 °,∵OD=OA,∴∠DAB= ∠ ADO,∴∠CDA+ ∠ ADO=90 °,即OD⊥CE,∴直线 CD 是⊙O 的切线,即直线 CD 和⊙O 的位置关系是相切;( 2)∵AC=2 ,⊙O的半径是 3,∴OC=2+3=5 ,OD=3 ,在Rt△CDO 中,由勾股定理得: CD=4 ,∵ CE切⊙O于 D ,EB 切⊙O于 B,∴ DE=EB ,∠ CBE=90 °,设 DE=EB=x ,在 Rt △CBE 中,由勾股定理得 : CE 2 =BE 2+BC 2,则( 4+x ) 2=x 2+ ( 5+3 ) 2,解得 : x=6 ,即 BE=6 .点本题考查了切线的性质和判定 ,勾股定理 ,切线长定理 ,圆周角定理 ,等腰三角形评: 的性质和判定的应用 ,题目比较典型 ,综合性比较强 ,难度适中 .4.( 2013?德州 )如图 ,已知 ⊙O 的半径为 1, DE 是 ⊙O 的直径 ,过点 D 作⊙O 的切线 AD , C 是 AD 的中点 ,AE 交 ⊙O 于 B 点,四边形 BCOE 是平行四边形 .( 1 )求 AD 的长 ;( 2 ) BC 是 ⊙O 的切线吗 ?若是,给出证明 ;若不是 ,说明理由 .考切线的判定与性质 ;直角三角形斜边上的中线 ;平行四边形的性质 .点:专计算题.题:分( 1)连接 BD,由 ED 为圆 O 的直径,利用直径所对的圆周角为直角得到∠ DBE为直析:角,由 BCOE 为平行四边形,得到 BC 与 OE 平行,且 BC=OE=1 ,在直角三角形 ABD 中, C 为 AD 的中点,利用斜边上的中线等于斜边的一半求出AD 的长即可;( 2)连接 OB,由 BC 与 OD 平行, BC=OD ,得到四边形 BCDO 为平行四边形,由AD 为圆的切线,利用切线的性质得到 OD 垂直于 AD ,可得出四边形 BCDO 为矩形,利用矩形的性质得到 OB 垂直于 BC,即可得出 BC 为圆 O 的切线.解解:( 1)连接 BD,∵ DE是直径∴∠ DBE=90°,答:∵四边形 BCOE 为平行四边形,∴BC∥ OEBC=OE=1,,在Rt△ABD 中, C 为 AD 的中点,∴ BC= AD=1 ,则 AD=2 ;( 2)是,理由如下:如图,连接 OB.∵ BC∥OD, BC=OD ,∴四边形 BCDO 为平行四边形,∵AD为圆O 的切线,∴ OD⊥ AD,∴四边形 BCDO 为矩形,∴OB⊥ BC,则 BC 为圆 O 的切线.点此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的评:判定与性质,熟练掌握切线的判定与性质是解本题的关键.5.(2013?菏泽)如图, BC 是⊙O 的直径,A 是⊙O 上一点,过点 C 作⊙O的切线,交 BA 的延长线于点D,取 CD 的中点 E, AE 的延长线与BC 的延长线交于点P.(1)求证: AP 是⊙O的切线;(2) OC=CP , AB=6 ,求 CD 的长.考切线的判定与性质;解直角三角形.点:分( 1)连接 AO , AC(如图).欲证 AP 是⊙O 的切线,只需证明OA⊥ AP 即可;析:(2)利用(1)中切线的性质在Rt △ OAP中利用边角关系求得∠ ACO=60°然.后在Rt △ BAC、 Rt △ ACD中利用余弦三角函数的定义知AC=2,CD=4.解( 1)证明:连接 AO ,AC(如图).答:∵ BC是⊙O 的直径,∴∠BAC= ∠ CAD=90 °.∵E是 CD 的中点,∴CE=DE=AE .∴∠ ECA= ∠ EAC.∵ OA=OC,∴∠ OAC=∠ OCA.∵ CD是⊙O的切线,∴CD⊥ OC.∴∠ECA+ ∠ OCA=90 °.∴∠EAC+ ∠ OAC=90 °.∴OA⊥ AP.∵A是⊙O 上一点,∴AP是⊙O的切线;( 2)解:由( 1)知 OA⊥ AP.在Rt△OAP 中,∵∠ OAP=90°,OC=CP=OA ,即 OP=2OA ,∴ sinP= = ,∴∠P=30 °.∴∠AOP=60 °.∵OC=OA,∴∠ACO=60 °.在Rt△BAC 中,∵∠ BAC=90°,AB=6 ,∠ ACO=60°,∴ AC==2,又∵在 Rt△ACD 中,∠ CAD=90°,∠ ACD=90° ﹣∠ACO=30°,∴ CD===4 .点本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的评:关键是熟记特殊角的锐角三角函数值.6.(2013?聊城)如图, AB 是⊙O的直径, AF 是⊙O切线, CD 是垂直于 AB 的弦,垂足为 E,过点 C 作 DA 的平行线与AF 相交于点F, CD=,BE=2.求证:(1)四边形 FADC 是菱形;(2) FC 是⊙O 的切线.考切线的判定与性质;菱形的判定... . . ..点:专压轴题 .题:分( 1)首先连接 OC ,由垂径定理 ,可求得 CE 的长 ,又由勾股定理 ,可求得半径OC析: 的长 ,然后由勾股定理求得AD 的长 ,即可得 AD=CD ,易证得四边形FADC 是平行四边形 ,继而证得四边形FADC 是菱形 ;( 2)首先连接 OF ,易证得 △ AFO ≌△ CFO ,继而可证得 FC 是 ⊙O 的切线 .解证明 :( 1 )连接 OC ,答: ∵ AB 是 ⊙O 的直径 , CD ⊥ AB ,∴ CE=DE= CD=×4 =2 ,设 OC=x ,∵ BE=2 ,∴ OE=x ﹣2 ,在 Rt △OCE 中, OC 2=OE 2+CE 2,22 + ( 2 2,∴x = ( x ﹣ 2) )解得 : x=4 ,∴ OA=OC=4 ,OE=2 ,∴ AE=6 ,在 Rt △AED 中, AD==4,∴ AD=CD ,∵ AF 是 ⊙O 切线 , ∴ AF ⊥ AB ,......∵CD⊥ AB,∴ AF ∥ CD,∵CF∥ AD,∴四边形 FADC 是平行四边形,∵AD=CD ,∴平行四边形FADC 是菱形;(2)连接 OF, AC,∵四边形 FADC 是菱形,∴ FA=FC ,∴∠ FAC= ∠ FCA ,∵ AO=CO,∴∠ OAC=∠ OCA,∴∠FAC+ ∠ OAC=∠ FCA+ ∠ OCA,即∠OCF=∠OAF=90°,即OC⊥FC,∵点 C 在⊙O 上,∴ FC是⊙O 的切线.......点此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理以及全等评:三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.7.(2012?北京)已知:如图, AB 是⊙O 的直径, C 是⊙O上一点, OD⊥ BC于点 D,过点 C 作⊙O的切线,交 OD 的延长线于点E,连接 BE.(1)求证: BE 与⊙O相切;(2)连接 AD 并延长交 BE 于点 F,若 OB=9 , sin ∠ ABC=,求 BF 的长.考切线的判定与性质;相似三角形的判定与性质;解直角三角形.点:专几何综合题.题:分( 1)连接 OC,先证明△OCE≌△OBE,得出 EB⊥OB,从而可证得结论.析:解答:(2)过点 D 作 DH⊥ AB,根据 sin ∠ ABC=,可求出 OD=6 , OH=4 , HB=5 ,然后由△ADH∽△ AFB,利用相似三角形的性质得出比例式即可解出BF 的长.证明:( 1 )连接 OC,∵OD⊥ BC,∴∠COE=∠ BOE,在△OCE 和△OBE 中,∵,∴△OCE≌△ OBE,∴∠OBE= ∠ OCE=90 即°,OB⊥ BE,∵OB 是⊙O半径,∴ BE与⊙O相切.( 2)过点 D 作 DH⊥ AB,连接 AD 并延长交BE 于点 F,∵∠DOH=∠ BOD,∠DHO=∠ BDO=90 °,∴△ODH∽△OBD,∴==又∵sin ∠ABC= , OB=9 ,∴ OD=6 ,易得∠ABC=∠ODH,∴ sin∠ ODH=,即=,∴ OH=4 ,∴ DH==2,又∵△ ADH∽△ AFB,∴=,=,∴ FB=.点此题考查了切线的判定与性质、相似三角形的判定与性质,解答本题的关键是掌握评:切线的判定定理,在第二问的求解中,一定要注意相似三角形的性质的运用.8.(2012?济宁)如图, AB 是⊙O的直径, AC 是弦, OD⊥ AC于点 D ,过点 A 作⊙O的切线 AP, AP 与 OD 的延长线交于点P,连接 PC、 BC.(1)猜想:线段 OD 与 BC 有何数量和位置关系,并证明你的结论.(2)求证: PC 是⊙O的切线.考点:分析:切的判定与性;全等三角形的判定与性;三角形中位定理;周角定理.(1)根据垂径定理可以得到 D 是 AC 的中点, OD 是△ ABC的中位,根据三角形的中位定理可以得到 OD∥BC, CD= BC;(2)接 OC, OP 与⊙O 交于点 E,可以得△ OAP≌△ OCP,利用全等三角形的角相等,以及切的性定理可以得到:∠ OCP=90°,即OC⊥PC,即可等.解答:( 1)猜想: OD∥ BC,OD= BC.明:∵ OD⊥AC,∴AD=DC∵AB是⊙O的直径,∴ OA=OB⋯2分∴OD是△ ABC的中位,∴OD∥ BC,OD= BC(2)明:接 OC, OP 与⊙O交于点 E.∵ OD⊥ AC,OD 心 O,∴,即∠ AOE=∠ COE在△OAP 和△OCP 中,,∴△OAP≌△O CP,∴∠OCP=∠ OAP∵PA是⊙O的切线,∴∠ OAP=90 °.∴∠ OCP=90 °即,OC⊥ PC∴ PC是⊙O 的切线.点本题考查了切线的性质定理以及判定定理,三角形的中位线定理,证明圆的切线的评:问题常用的思路是根据切线的判定定理转化成证明垂直的问题.9.(2012?德阳)如图,已知点 C 是以 AB 为直径的⊙O上一点, CH⊥ AB于点 H ,过点 B 作⊙O 的切线交直线AC 于点 D,点 E 为 CH 的中点,连接 AE 并延长交 BD 于点 F,直线CF 交 AB 的延长线于G.(1)求证: AE?FD=AF?EC ;(2)求证: FC=FB;(3)若 FB=FE=2 ,求⊙O的半径 r 的长.......考切线的判定与性质;等腰三角形的性质;等腰三角形的判定;直角三角形斜边上的点:中线;勾股定理;圆周角定理;相似三角形的判定与性质.专证明题;几何综合题;压轴题.题:分( 1)由 BD 是⊙O的切线得出∠ DBA=90 °推,出 CH∥ BD,证△ AEC∽△ AFD得,出比析:例式即可;( 2)连接 OC, BC,证△ AEC∽△ AFD ,△ AHE∽△ ABF推出,BF=DF ,根据直角三角形斜边上中线性质得出 CF=DF=BF即可;( 3)求出 EF=FC,求出∠ G=∠ FAG推,出 AF=FG ,求出 AB=BG ,求出∠ FCB= ∠ CAB 推出 CG 是⊙O切线,由切割线定理得出(2+FG)2=BG× AG=2BG2,在Rt△ BFG解答:中,由勾股定理得出BG2=FG2﹣ BF2,推出 FG2﹣ 4FG﹣ 12=0 ,求出 FG 即可.(1)证明:∵BD是⊙O的切线,∴∠ DBA=90 °,∵ CH⊥ AB,∴ CH∥ BD,∴△AEC∽△AFD ,∴=,∴AE?FD=AF?EC .(2)证明:连接 OC, BC,∵ CH∥ BD,∴△ AEC∽△ AFD ,△ AHE∽△ ABF ,∴=,=,∴==,∵CE=EH (E 为 CH 中点),∴BF=DF ,∵ AB为⊙O的直径,∴∠ACB= ∠ DCB=90 °,∵BF=DF ,∴ CF=DF=BF (直角三角形斜边上的中线等于斜边的一半),即CF=BF.(3)解:∵ BF=CF=DF 已(证), EF=BF=2 ,∴ EF=FC ,∴∠ FCE= ∠ FEC ,∵∠AHE= ∠ CHG=90 °,∴∠FAH+ ∠ AEH=90 °,∠G+∠ GCH=90 °,∵∠AEH= ∠ CEF ,∴∠G=∠ FAG,∴AF=FG ,∵ FB ⊥ AG,∴AB=BG ,∵BF切⊙O于 B,∴∠ FBC= ∠ CAB,∵ OC=OA ,CF=BF ,∴∠ FCB= ∠ FBC ,∠ OCA=∠ OAC ,∴∠ FCB= ∠ CAB ,∵∠ ACB=90 °,∴∠ ACO+∠ BCO=90 °,∴∠ FCB+ ∠ BCO=90 °,即 OC ⊥CG ,∴ CG 是 ⊙O 切线 ,∵ GBA 是 ⊙O 割线 , AB=BG (已证 ),FB=FE=2 ,∴由切割线定理得 :( 2+FG ) 2=BG × AG=2BG 2,在 Rt △BFG 中,由勾股定理得 : BG 2=FG 2﹣ BF 2,2,∴ FG ﹣ 4FG ﹣ 12=0 解得 : FG=6 , FG= ﹣ 2(舍去 ),由勾股定理得 :AB=BG==4, ∴⊙O 的半径是 2.点本题考查了切线的性质和判定 ,相似三角形的性质和判定 ,等腰三角形的性质和判......评:定,直角三角形斜边上中线的性质,圆周角定理,勾股定理等知识点的综合运用,题目综合性比较强,有一定的难度.10 .(2012?黔南州)已知:如图,点 C在以 AB 为直径的⊙O上,点 D 在 AB 的延长线上,∠ BCD= ∠ A.(1 )求证: CD 为⊙O的切线;(2 )过点 C 作 CE⊥ AB于 E.若 CE=2 ,cosD=,求AD的长.考切线的判定与性质;圆周角定理;解直角三角形.点:分( 1)先连接 CO,根据 AB 是⊙O直径,得出∠ 1+ ∠ OCB=90 °再,根据 AO=CO ,得析:出∠1=∠A,最后根据∠4=∠A,证出OC⊥CD,即可得出CD 为⊙O的切线;( 2)根据 OC⊥ CD,得出∠ 3+ ∠ D=90 °再,根据 CE⊥ AB,得出∠ 3+ ∠ 2=90 °从,而得出 cos∠2=cosD,再在△OCD 中根据余弦定理得出CO 的值,最后根据⊙O的半径为,即可得出AD 的长.解证明:( 1 )连接 CO,答:∵ AB是⊙O 直径∴∠1+ ∠ OCB=90 °,∵AO=CO,......∴∠1= ∠ A.∵∠4= ∠ A,∴∠4+ ∠ OCB=90 °.即∠OCD=90°.∴OC⊥ CD.又∵OC是⊙O 半径,∴ CD为⊙O的切线.(2)∵ OC⊥ CD于 C,∴∠3+ ∠ D=90 °.∵CE⊥ AB于 E,∴∠3+ ∠ 2=90 °.∴∠2= ∠ D.∴cos ∠ 2=cosD ,在△OCD 中,∠ OCD=90°,∴cos ∠ 2=,∵cosD= , CE=2 ,∴=,tanD==,∴CO= ,∴⊙O的半径为.......∴ OD== =,AD=.点本题考查了切线的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接评:圆心与这点(即为半径),再证垂直即可,同时考查了三角函数的知识.11 .(2012?广安)如图,在△ ABC中,∠ABC= ∠ ACB以,AC 为直径的⊙O分别交 AB、 BC于点 M 、N ,点 P 在 AB 的延长线上,且∠CAB=2∠BCP.(1)求证:直线 CP 是⊙O 的切线.(2)若 BC=2,sin∠ BCP=,求点B到AC的距离.(3)在第( 2)的条件下,求△ ACP的周长.考切线的判定与性质;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解点:直角三角形.专几何综合题;压轴题.......题:分( 1)根据∠ ABC= ∠ ACB且∠析:得到2∠BCP+2∠BCA=180°,CAB=2 ∠ BCP在,△ ABC中∠ ABC+ ∠ BAC+ ∠ BCA=180 °,从而得到∠BCP+∠BCA=90°,证得直线 CP 是⊙O的切线.( 2)作 BD⊥ AC于点 D ,得到 BD∥ PC,从而利用sin∠ BCP=sin∠ DBC==,求得DC=2,再根据勾股定理求得点 B 到 AC 的距离为 4.( 3)先求出 AC 的长度,然后利用BD∥ PC的比例线段关系求得CP 的长度,再由勾股定理求出AP 的长度,从而求得△ACP 的周长.解解:( 1)∵∠ ABC=∠ACB 且∠CAB=2∠BCP,在△ABC中,答:∠ ABC+∠ BAC+∠ BCA=180°∴2 ∠ BCP+2 ∠ BCA=180 °,∴∠ BCP+ ∠ BCA=90 °,又 C 点在直径上,∴直线 CP 是⊙O的切线.(2)如右图,作 BD⊥ AC 于点 D,∵ PC⊥ AC∴BD∥ PC∴∠PCB= ∠ DBC∵BC=2 , sin ∠ BCP= ,∴ sin∠ BCP=sin∠ DBC==,解得: DC=2 ,∴由勾股定理得: BD=4 ,∴点 B 到 AC 的距离为4.(3)如右图,连接 AN ,∵ AC为直径,∴∠ ANC=90 °,∴ Rt △ ACN中,AC==5 ,又CD=2 ,∴AD=AC﹣CD=5 ﹣2=3 .∵BD∥ CP,∴,∴CP= .在 Rt△ACP 中, AP==,AC+CP+AP=5++ =20 ,∴△ACP的周长为20.点本题考查了切线的判定与性质等知识,考查的知识点比较多,难度较大.评:12 .(2012?黄冈)如图 ,在 △ ABC 中, BA=BC ,以 AB 为直径作半圆 ⊙ O ,交 AC 于点 D ,过点 D 作 DE ⊥BC , 垂足为点 E .( 1 )求证: DE 为 ⊙O 的切线 ;( 2 )求证: BD 2=AB?BE .考 切线的判定与性质 ;圆周角定理 ;相似三角形的判定与性质 .点:专 证明题 .题:分 ( 1)连接 OD 、 BD ,根据圆周角定理可得 ∠ ADB=90 °继,而得出点 D 是 AC 中点,析: 判断出 OD 是三角形 ABC 的中位线 ,利用中位线的性质得出∠ODE=90°, 这样可判断出结论 .( 2)根据题意可判断 △ BED ∽△ BDC 从,而可得 BD 2=BC?BE ,将 BC 替换成 AB 即可得出结论 .解证明 :( 1 )连接 OD 、 BD ,则∠ADB=90°( 圆周角定理 ),答: ∵ BA=BC ,∴ CD=AD (三线合一 ),又 ∵AO=OB ,∴ OD 是 △ ABC 的中位线 ,∴ OD ∥ BC ,∵∠ DEB=90 °,∴∠ ODE=90 °即,OD ⊥ DE ,故可得 DE 为 ⊙O 的切线 ;( 2)∵∠ EBD= ∠ DBC ,∠ DEB= ∠ CDB ,∴△ BED ∽△ BDC ,∴= ,又 ∵AB=BC ,∴= ,故 BD 2=AB?BE .点此题考查了切线的判定及性质 、三角形的中位线的判定与性质等腰三角形的性质 ,评: 解答本题的关键是得出点D 是 AC 中点 ,求出 ∠ODE 是直角 ,有一定难度 .13 .( 2011?芜湖)如图 ,已知直线上一点 ,且 AC 平分 ∠PAE ,过 C 作 PA 交 ⊙O 于 A 、 B 两点 ,AE 是 ⊙O 的直径 ,点 C 为⊙O CD 丄 PA ,垂足为 D .(1)求证: CD 为⊙O的切线;(2)若 DC+DA=6 ,⊙O 的直径为 10 ,求 AB 的长度.考切线的判定与性质;勾股定理;矩形的判定与性质;垂径定理.点:专几何综合题.题:分( 1)连接 OC,根据题意可证得∠ CAD+∠ DCA=90°再,根据角平分线的性质,得析:∠ DCO=90°,则CD为⊙O 的切线;( 2)过 O 作 OF⊥ AB,则∠ OCD=∠ CDA= ∠ OFD=90 °得,四边形OCDF 为矩形,设AD=x ,在 Rt △ AOF中,由勾股定理得( 5﹣ x)2+ ( 6﹣ x)2=25 ,从而求得 x 的值,由勾股定理得出AB 的长.解( 1)证明:连接 OC,答:∵ OA=OC,∴∠OCA=∠ OAC,∵ AC平分∠ PAE ,∴∠DAC= ∠ CAO,∴∠DAC= ∠ OCA,∴ PB ∥ OC , ∵ CD ⊥ PA ,∴ CD ⊥ OC ,CO 为 ⊙O 半径,∴ CD 为 ⊙O 的切线 ;( 2)解:过 O 作 OF ⊥ AB ,垂足为 F ,∴∠ OCD=∠ CDA= ∠ OFD=90 °,∴四边形 DCOF 为矩形 ,∴ OC=FD ,OF=CD . ∵DC+DA=6 ,设 AD=x ,则 OF=CD=6 ﹣x , ∵⊙O 的直径为 10 , ∴ DF=OC=5 ,∴ AF=5﹣ x ,在 Rt △AOF 中,由勾股定理得AF 2 +OF 2=OA 2 .即( 5﹣ x )2 + ( 6﹣x )2=25 ,化简得 x 2﹣11x+18=0 ,解得 x 1=2 , x 2=9 .∵ CD=6﹣ x 大于 0,故 x=9 舍去 , ∴ x=2 ,从而 AD=2 , AF=5 ﹣ 2=3 ,∵ OF ⊥ AB ,由垂径定理知 ,F 为 AB 的中点 ,∴AB=2AF=6 .点本题考查了切线的判定和性质、勾股定理、矩形的判定和性质以及垂径定理,是基评:础知识要熟练掌握.14 .(2011?凉山州)如图,已知△ ABC,以 BC 为直径, O 为圆心的半圆交AC 于点 F,点E 为的中点,连接BE交AC于点M,AD为△ ABC的角平分线,且AD⊥ BE,垂足为点H.(1)求证: AB 是半圆 O 的切线;(2)若 AB=3 , BC=4 ,求 BE 的长.考切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质.点:专几何综合题;压轴题.题:分( 1)连接 EC, AD 为△ABC 的角平分线,得∠1=∠2,又 AD⊥BE,可证∠3=∠4,由.. . . ..析: 对顶角相等得 ∠4=∠5,即 ∠3=∠5,由 E 为 的中点 ,得 ∠6=∠7,由 BC 为直径得∠ E=90 °即,∠ 5+ ∠ 6=90 °由,AD ∥ CE 可证 ∠ 2= ∠ 6从,而有 ∠ 3+ ∠ 7=90 °证,明结论 ;( 2)在 Rt △ ABC 中,由勾股定理可求 AC=5 ,由 ∠ 3= ∠4得 AM=AB=3 ,则 CM=AC﹣ AM=2 ,由( 1 )可证 △CME ∽△ BCE , 利用相似比可得 EB=2EC ,在 Rt △BCE 中,根据 BE 2 +CE 2=BC 2,得 BE 2+ () 2=4 2,可求 BE .解( 1)证明 :连接 EC ,答: ∵ AD ⊥ BE 于 H ,∠ 1= ∠ 2 ,∴∠ 3= ∠ 14 (分)∵∠ 4= ∠ 5 ,∴∠ 4= ∠ 5= ∠ 32,分()又 ∵E 为 的中点 ,∴ =,∴∠ 6= ∠ 7 ,3(分),∵ BC 是直径 , ∴∠ E=90 °,∴∠ 5+ ∠ 6=90 °,又 ∵∠ AHM=∠E=90°,∴ AD ∥ CE ,∴∠ 2= ∠ 6= ∠ 1 ,∴∠ 3+ ∠ 7=90 °,又 ∵BC 是直径 ,.学习帮手... . . ..( 2)解:∵ AB=3 ,BC=4 ,由( 1)知,∠ ABC=90°,∴ AC===5 ( 5 分)在 △ABM 中,AD ⊥BM 于 H ,AD 平分 ∠BAC ,∴ AM=AB=3 ,∴ CM=2 (6 分)∵∠ 6= ∠ 7 ,为∠E 公共角 ,∴△ CME ∽△ BCE 得,= = = ,( 7 分)∴ EB=2EC ,在 Rt △ BCE 中, BE 2+CE 2=BC 2,即 BE 2+ () 2 =4 2 ,解得 BE=.( 8 分)点本题考查了切线的判定与性质 ,相似三角形的判定与性质 ,圆周角定理 ,勾股定理评: 的运用 .关键是由已知条件推出相等角,构造互余关系的角推出切线,利用相等角推出相似三角形 ,由相似比得出边长的关系 ,由勾股定理求解 .15 .( 2011?乐山)如图 , D 为⊙O 上一点 ,点 C 在直径 BA 的延长线上 ,且 ∠ CDA= ∠ CBD .(1 )求证: CD 是 ⊙O 的切线 ;(2 )过点 B 作⊙O的切线交CD 的延长线于点E,若 BC=6 , tan ∠ CDA=,求 BE 的长.考切线的判定与性质;圆周角定理;相似三角形的判定与性质.点:专几何综合题;压轴题.题:分( 1)连 OD ,OE,根据圆周角定理得到∠ ADO+∠ 1=90°而,∠ CDA=∠ CBD,析:∠ CBD=∠ 1于,是∠ CDA+∠ ADO=90°;( 2)根据切线的性质得到ED=EB, OE⊥ BD,则∠ ABD= ∠ OEB,到得tan ∠ CDA=tan∠ OEB=,易证Rt△ CDO∽ Rt△ CBE得,到===,求得CD ,然后在 Rt △ CBE中,运用勾股定理可计算出BE 的长.解( 1)证明:连 OD , OE,如图,答:∵ AB为直径,∴∠ADB=90 °即,∠ ADO+∠ 1=90 °,又∵∠ CDA=∠CBD,而∠CBD=∠1,∴∠1= ∠ CDA,∴∠CDA+ ∠ ADO=90 °即,∠ CDO=90 °,∴ CD 是 ⊙O 的切线 ;( 2)解:∵ EB 为⊙O 的切线 , ∴ ED=EB , OE ⊥ DB ,∴∠ ABD+ ∠ DBE=90 °,∠ OEB+ ∠ DBE=90 °, ∴∠ ABD= ∠ OEB ,∴∠ CDA= ∠ OEB .而 tan ∠CDA= ,∴ tan ∠ OEB== ,∵ Rt △ CDO ∽ Rt △ CBE ,∴= = = ,∴ CD= × 6=4 ,在 Rt △CBE 中,设 BE=x ,∴(x+4 )2 =x 2 +6 2,解得 x=.即 BE 的长为.点本题考查了切线的判定与性质 :过半径的外端点与半径垂直的直线是圆的切线;也评: 考查了圆周角定理的推论以及三角形相似的判定与性质.16 .(2011?广安)如图所示, P 是⊙O外一点, PA 是⊙O的切线,A 是切点, B 是⊙ O 上一点,且 PA=PB ,连接 AO 、 BO、 AB,并延长 BO 与切线 PA 相交于点Q .(1)求证: PB 是⊙O的切线;(2)求证: AQ?PQ=OQ?BQ ;(3 )设∠ AOQ=α,若,OQ=15,求AB的长.考切线的判定与性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性点:质;解直角三角形.专几何综合题;压轴题.题:分( 1)连接 OP,与 AB 交于点 C.欲证明 PB 是⊙O 的切线,只需证明∠ OBP=90 即°析:可;( 2)根据相似三角形的判定定理AA 证明△ QAO∽△ QBP,然后由相似三角形的对应边成比例求得= ,即 AQ?PQ=OQ?BQ;( 3)在 Rt △O AQ 中根据勾股定理和三角函数的余弦值的定义解得QB=27 ,利用( 1)的结论求得 PQ=45 ,即 PA=36 ,又由勾股定理知 OP=12;然后由切线的性质求 AB 的长.解( 1)证明:连接 OP,与 AB 交于点 C.答:∵PA=PB,OA=OB,OP=OP,∴△OAP≌△ OBP(SSS),∴∠OBP= ∠ OAP,∵PA是⊙O的切线, A 是切点,∴∠ OAP=90 °,∴∠ OBP=90 °即,PB 是⊙O 的切线;(2)证明:∵∠ Q=∠ Q,∠ OAQ=∠ QBP=90 °,∴△QAO∽△QBP,∴= ,即 AQ?PQ=OQ?BQ ;( 3)连 OP 并交 AB 于点 C,在Rt△OAQ 中,∵ OQ=15,cosα=,∴OA=12 ,AQ=9 ,∴QB=27 ;∵=,∴PQ=45 ,即 PA=36 ,∴OP=12;∵∠APO= ∠ APO,∠PAO= ∠ PCA=90 °∴△PAC∽△POA,∴=,∴ PA?OA=OP?AC ,即 36 × 12=12?AC ,∴ AC=,故AB=.点本题综合考查了切线的判定与性质、相似三角形与全等三角形的判定与性质、解直评:角三角形以及勾股定理.图形中的线段的求法,可以通过特殊角的三角函数值、切线的有关知识及勾股定理求解.17 .(2012?达州)如图, C 是以 AB 为直径的⊙O上一点,过 O 作 OE⊥ AC于点 E,过点A 作⊙O的切线交OE 的延长线于点F,连接 CF 并延长交BA 的延长线于点P.(1 )求证: PC 是⊙O的切线.(2 )若 AF=1 , OA=,求PC的长.考切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质.点:专几何综合题;压轴题.题:分( 1)连接 OC,根据垂径定理,利用等角代换可证明∠ FAC= ∠ FCA然,后根据切线的析:性质得出∠FAO=90°,然后即可证明结论.( 2)先证明△ PAF ∽△ PCO利,用相似三角形的性质得出PC 与 PA 的关系,在Rt △ PCO中,利用勾股定理可得出 x 的值,继而也可得出PC 得长.解( 1)证明:连接 OC,答:∵ OE⊥ AC,∴AE=CE ,FA=FC,∴∠ FAC= ∠ FCA ,∵ OA=OC(圆的半径相等),∴∠ OAC=∠ OCA,∴∠ OAC+∠ FAC= ∠ OCA+∠ FCA即∠,FAO= ∠ FCO,∵ FA与⊙O相切,且 AB 是⊙O的直径,∴FA ⊥ AB,∴∠FCO= ∠ FAO=90 °,∵ CO是半径,∴ PC是⊙O 的切线;( 2)解:∵PC是⊙O的切线,∴∠PCO=90 °,又∵∠ FPA=∠OPC,∠ PAF=90°,∴△PAF ∽△PCO,∴∵ CO=OA=,AF=1,∴ PC=PA,设 PA=x ,则 PC=.在 Rt△PCO 中,由勾股定理得:,解得:,∴ PC=2×=.点此题考查了切线的性质、勾股定理、圆周角定理、相似三角形的判定与性质,涉及评:知识点较多,解答本题要求熟练掌握切线的判定定理及性质,有一定难度.。

相关文档
最新文档