2019通州一模数学试题及答案
2019.4通州初三一模数学试题及答案

通州区2019届初三一模考试数 学2019年4月1. 如图,∠AOB 的角平分线是( )A .射线OBB .射线OEC .射线ODD .射线OC2. 港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( ) A .47.610⨯B .37610⨯C .50.7610⨯D .57.610⨯3. x 的取值范围为( ) A .2x >B .2x ≥C .2x =D .2x ≠4.某几何体的平面展开图如图所示,则该几何体是( ) A .三棱锥 B .三棱柱C .四棱锥D .四棱柱5. 如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( )A .3B .3-C .13D .13-6.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设绳子长x 尺,木条长y 尺,则根据题意所列方程组正确的是( )A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩,B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩, C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩, D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩,7. 2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年—2018年我国研究与试验发展(R&D)经费支出及其增长速度情况. 2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.根据统计图提供的信息,下列说法中合理的是( )A .2014年—2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加B .2014年—2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年C .2014年—2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017年D .2018年,基础研究经费约占该年研究与试验发展( (R&D)经费支出的10%8. 为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图. 如图,y 轴上动点M 的纵坐标m y 表示学生的期中考试成绩,直线10x =上动点N 的纵坐标n y 表示学生的期末考试成绩,线段MN 与直线6x =的交点为P ,则点P 的纵坐标P y 就是这名学生的学期总评成绩. 有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考%亿2014-2018年我国研究与试验发展(R&D )经费支出及其增长速度试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%. 结合这张算图进行判断,其中正确的说法是()A. ①③B. ②③C. ②D. ③二、填空题(本题共8个小题,每小题2分,共16分)9. 实数a,b在数轴上对应点的位置如图所示,若实数c满足ac bc>,那么请你写出一个符合题意的实数c的值:c=________.10. 如图,AB是⊙O的直径,弦CD AB⊥于点E,如果AC CD=,则∠ACD的度数是_________.11. 中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为__________.12. 若多项式2x ax b++可以写成()2x m+的形式,且0ab≠,则a的值可以是_____,b的值可以是_____ .13. 小华同学的身高为170 cm,测得他站立在阳光下的影长为85 cm,紧接着他把手臂竖直举起,测得影长为105 cm,那么小华举起的手臂超出头顶的长度为____________ cm.14. 如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是____________________________.Aba432-4115. 在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后再继续摸出一球……,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 的值最有可能的是 .16.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为__________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:)116tan3012-⎛⎫-︒-+ ⎪⎝⎭18. 解不等式组: 32431.22x x x +<⎧⎪⎨-⎪⎩,≥19.已知:如图1,在△ABC 中,∠ACB =90°.求作:射线CG ,使得CG ∥AB .图1 图2下面是小东设计的尺规作图过程. 作法:如,2,①以点A 为圆心,适当长为半径作弧,分别交AC ,AB 于D ,E 两点; ②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ; ③以点F 为圆心,DE 长为半径作弧,两弧在∠FCB 内部交于点G ; ④作射线CG .所以射线CG 就是所求作的射线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接FG 、DE .∵△ADE ≌ △_________, ∴∠DAE = ∠_________.∴CG ∥AB (__________________________)(填推理的依据).20.关于x 的一元二次方程()2210x x n +--=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.21. 如图,在△ABC 中,∠ACB =90°,D 是BC 边上的一点,分别过点A 、B 作BD 、AD 的平行线交于点E ,且 AB 平分∠EAD .(1)求证:四边形EADB 是菱形;(2)连接EC ,当∠BAC =60°,BC=ECB 的面积.22.如图,在平面直角坐标系xOy 中,直线2y x =与函数()0my x x=>的图象交于点A (1,2). (1)求m 的值;(2)过点A 作x 轴的平行线l ,直线2y x b =+与直线l 交于点B ,与函数()0my x x=>的图象交于点C ,与x 轴交于点D .①当点C 是线段BD 的中点时,求b 的值; ②当BC BD >时,直接写出b 的取值范围.23. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点E ,在弦BC 上取一点F ,使AF =AE ,连接AF 并延长交⊙O 于点D .(1)求证:B CAD ∠=∠;(2)若CE =2,30B ∠=︒,求AD 的长.24. 数学活动课上,老师提出问题:如图1,在Rt △ABC 中,90C ∠=︒,BC =4 cm ,AC =3 cm ,点D 是AB 的中点,点E 是BC 上一个动点,连接AE 、DE . 问CE 的长是多少时,△AED 的周长等于CE 长的3倍.设CE =x cm ,△AED 的周长为y cm (当点E 与点B 重合时,y 的值为10). 小牧根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小牧的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图2; (3)结合画出的函数图象,解决问题:①当CE 的长约为 cm 时,△AED 的周长最小; ②当CE 的长约为 cm 时,△AED 的周长等于CE 的长的3倍.图25. 某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.y/(1)补充完成下列的成绩统计分析表:(2是 组学生;(填“甲”或“乙”)(3)如果学校准备推荐其中一个组参加区级比赛,你推荐____参加,请你从两个不同的角度说明推荐理由.26. 已知二次函数2y x ax b =-+在0x =和4x =时的函数值相等.(1)求二次函数2y x ax b =-+的对称轴;(2)过P (0,1)作x 轴的平行线与二次函数2y x ax b =-+的图象交于不同的两点M 、N .①当2MN =时,求b 的值;②当=4PM PN +时,请结合函数图象,直接写出b 的取值范围.27. 如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F .(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M 为线段AB 上一点. (1)在点()2,1C ,()2,0D ,()1,2E 中,可以与点M 关于直线y x =对称的点是____________; (2)若x 轴上存在点N ,使得点N 与点M 关于直线y x b =+对称,求b 的取值范围.(3)过点O 作直线l ,若直线y x =上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),.请你直接写出点N 横坐标n 的取值范围.数学试题答案一、选择题(本题共8个小题,每小题2分,共16分)二、9. 答案不唯一,如1- 10. 60︒ 11. 40︒ 12. 答案不唯一,如4-,4 13. 40 14. E ,两点之间线段最短 15. 10 16. 4三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17. 解:原式=261--+………………… 4分 =21-+=1 . ………………… 5分18.解:解不等式①,342x x -<-, ………………… 1分2x -<-,2x >. ………………… 2分解不等式②,23x -≥, ………………… 3分 5x ≥ . ………………… 4分∴不等式组的解集为5x ≥. ………………… 5分19. (1)使用直尺和圆规,补全图形;(保留作图痕迹)………………… 2分(2)完成下面的证明. 证明:连接FG 、DE .∵△ADE ≌ △CFG , ………………… 3分 ∴∠DAE = ∠FCG . ………………… 4分 ∴CG ∥AB (同位角相等,两直线平行)(填推理的依据). ………………… 5分20.解:(1)一元二次方程()2210x x n +--=有两个不相等的实数根,∴ △=()22410n -⨯-->⎡⎤⎣⎦, ………………… 1分即4440n +->,∴ 0n >. ………………… 2分 (2)∵ n 为取值范围内的最小整数,∴1n =.………………… 3分∴ 220x x += ∴ ()20x x +=∴ 10x =,22x =-. ………………… 5分 21.(1)证明:∵AD ∥BE ,AE ∥BD ,∴四边形EADB 是平行四边形. ……………… 1分 ∵AB 平分∠EAD , ∴EAB DAB ∠=∠. ∵AE ∥BD , ∴EAB DBA ∠=∠. ∴DAB DBA ∠=∠. ∴AD BD =.∴四边形EADB 是菱形. ……………… 2分(2)解:∵∠ACB =90°,∠BAC =60°,BC=∴tan 60BCAC︒==∴2AC =. ……………… 3分∴11222ACBSAC BC ==⨯⨯=……………… 4分 ∵AE ∥BC , ∴2ECBACBSS==. ……………… 5分22. 解:(1)把A (1,2)代入函数(0)my x x=>中, ∴21m =. ∴2m =. ……………… 1分(2)①过点C 作x 轴的垂线,交直线l 于点E ,交x 轴于点F .当点C 是线段BD 的中点时,1CE CF ==.∴点C 的纵坐标为……………… 2分 把1y =代入函数2y x=中,得2x =.∴点C 的坐标为(2,1). ……………… 3分 把C (2,1)代入函数2y x b =+中,得3b =-. ……………… 4分 ②3b >. ……………… 5分 23. (1)证明:∵AE 是⊙O 的切线,AB 为⊙O 的直径,∴90BAE ∠=︒, 90ACB ∠=︒. ……………… 1分 ∴90BAC CAE ∠+∠=︒ . ∴90BAC B ∠+∠=︒.∴B CAE ∠=∠. ……………… 2分 ∵AF =AE ,90ACB ∠=︒,∴CAD CAE ∠=∠.∴B CAD ∠=∠. ……………… 3分(2)解:连接CD .∵B CAD ∠=∠,∴AC CD =. ……………… 4分 ∴AC CD =.∵90ACE ∠=︒,CE =2,30CAE CAF B ∠=∠=∠=︒, ∴tan CECAE AC∠=. ∴tan 30︒=2AC.∴AC =……………… 5分 过点C 作CG ⊥AD 于点G .∴cos AGCAF AC∠=. ∴cos 30︒∴3AG =. ∵AC =CD ,90ACB ∠=︒,∴ 26AD AG ==. ……………… 6分另解一:连接BD . 先求AB 的长,再求AD . 另解二:连接CD . 先求AE 的长,再证FC =FD .24. (1)补全表格: 7.6 . ……………… 1分(2)描点,画图象. ……………… 3分 (3)结合画出的函数图象,解决问题:①1.5; ……………… 4分 ②画出直线3y x =, ……………… 5分2.6-2.9(在范围内即可) ……………… 6分10987y25. (1)……………… 2分(2)甲 ……………… 3分 (3)甲或乙 ……………… 4分甲组:甲组的合格率、优秀率均高于乙组.(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定.)……………… 6分26. 解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分(2)① 不妨设点M 在点N 的左侧. ∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分 ∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分27. 解:(1)连接AE .∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形,∴AB AC =,60BAC ACB ∠=∠=︒.∴602EAC α∠=︒-,AE AC =. ……………… 1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分 另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形, ∴BC AC =,60ACB ∠=︒. ∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E ,∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .28. (1)解:()2,1C ,()2,0D , ……………… 2分(2)由题意可知,点B 在直线y x =上. ∵直线y x =与直线y x b =+平行.过点A 作直线y x =的垂线交x 轴于点G ,∴点G 是点A 关于直线y x =的对称点. ……………… 3分 ∴()2,0G .过点B 作直线y x =的垂线交x 轴于点H . ∴△OBH 是等腰直角三角形. ∴点G 是OH 的中点.∴直线y x b =+过点G . ……………… 4分 ∴2b =-.∴b 的取值范围是20b -≤≤. ……………… 5分(32n ≤或2n -≤≤……………… 7分。
2019年北京市通州区XX中学中考数学一模试卷(含精品解析)

2019年北京市通州区XX中学中考数学一模试卷一.选择题(共8小题,满分16分,每小题2分)1.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BC C.AC=BD﹣AB D.AC=AD﹣AB2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×1053.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为()A.0B.﹣1C.﹣2D.15.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.为了解某灯管的使用寿命,可以采用普查的方式进行C.两组身高数据的方差分别是S甲2=0.01,S乙2=0.02,那么乙组的身高比较整齐D.一组数据3,5,4,5,6,7的众数、中位数和平均数都是57.以下是某手机店1~4月的两张销售情况统计图,根据统计图,四个同学得出了以下四个结论,其中正确的为()A.4月××手机销售额为60万元B.4月××手机销售额比3月有所上升C.3月××手机销售额比2月有所上升D.3月与4月××手机的销售额无法比较,只能比较该店销售总额8.如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二.填空题(共8小题,满分16分,每小题2分)9.平面直角坐标系中,点A(,﹣)到x轴的距离是.10.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.则甲的速度为每秒米.11.估计与1.5的大小关系是: 1.5(填“>”“=”或“<”)12.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组.13.已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A=,∠B=,∠C=.14.若+=,那么a=,b=.15.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.16.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是.三.解答题(共12小题,满分68分)17.计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.18.解不等式组:,并把解集在数轴上表示出来.19.已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.(1)请问:AB、BD、DC有何数量关系?并说明理由.(2)如果∠B=60°,证明:CD=3BD.20.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A、B,与反比例函数的图象在第四象限交于点C,CD⊥x轴于点D,tan∠OAB=2,OA=2,OD=1.(1)求该反比例函数的表达式;(2)点M是这个反比例函数图象上的点,过点M作MN⊥y轴,垂足为点N,连接OM、AN,如果S△ABN=2S△OMN,直接写出点M的坐标.21.若对任何实数a,关于x的方程x2﹣2ax﹣a+2b=0都有实数根,求实数b的取值范围.22.如图,在△ABC中,AB=AC,D为BC的中点,四边形ABDE是平行四边形.(1)求证:四边形ADCE是矩形;(2)若AC、DE交于点O,四边形ADCE的面积为,CD=4,求∠AOD的度数.23.在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:(1)根据上述数据,将下列表格补充完成.整理、描述数据:分析数据:样本数据的平均数、中位数、满分率如表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.24.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm,点D是线段AB上一动点,将线段CD绕点C逆时针旋转50°至CD′,连接BD′.设AD为xcm,BD′为ycm.小夏根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小夏的探究过程,请补充完整.(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD的长度约为cm.26.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.27.如图,在边长为1的正方形ABCD中,M是AD的中点,连接BM,BM的垂直平分线交BC的延长线于F,连接MF交CD于N.(1)求CF的长;(2)求证:BM=EF.28.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A 作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC 于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2019年北京市通州区北关中学中考数学一模试卷参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.【分析】根据线段的和差即可得到结论.【解答】解:∵A、B、C、D四点在一条直线上,AB=CD,∴AC=AD﹣CD=AD﹣AB=AB+BC,故选:C.【点评】本题考查了两点间的距离、线段的中点的定义以及线段的和差.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“5”与“2x﹣3”是相对面,“y”与“x”是相对面,“﹣2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2x﹣3+5=0,x+y=0,解得x=﹣1,y=1,∴2x+y=2×(﹣1)+1=﹣2+1=﹣1.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.【分析】根据图示,判断出在哪两个整数之间,即可判断出数轴上表示实数的点可能是哪个.【解答】解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.【分析】根据一定会发生的事件为必然事件,依次判断即可得出结果.【解答】解:A,B,C选项中,可能发生也可能不发生,是随机事件,不符合题意,是必然事件的是:一组数据3,5,4,5,6,7的众数、中位数和平均数都是5,符合题意,故选:D.【点评】本题主要考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法,比较简单.7.【分析】根据××手机的销售额=当月手机销售总额×对应百分比对各选项逐一判断可得.【解答】解:A、4月××手机销售额为65×17%=11.05万元,此选项错误;B、3月××手机销售额为60×18%=10.8万元,所以4月××手机销售额比3月有所上升,此选项正确;C、2月××手机销售额为80×15%=12万元,3月××手机销售额比2月有所下降,此选项错误;D、3月××手机销售额为10.8万元、4月××手机销售额为11.05万元,此选项错误;故选:B.【点评】本题考查了条形统计图,利用销售总额乘以三星所占的百分比得出三星的销售额是解题关键.8.【分析】作QD ⊥AB ,分点Q 在AC 、CB 上运动这两种情况,由直角三角形的性质表示出QD 的长,利用三角形面积公式得出函数解析式即可判断. 【解答】解:(1)过点Q 作QD ⊥AB 于点D , ①如图1,当点Q 在AC 上运动时,即0≤x ≤3,由题意知AQ =x 、AP =x ,∵∠A =45°,∴QD =AQ =x ,则y =•x •x =x 2;②如图2,当点Q 在CB 上运动时,即3<x ≤6,此时点P 与点B 重合,由题意知BQ =6﹣x 、AP =AB =3,∵∠B =45°,∴QD =BQ =(6﹣x ),则y =×3×(6﹣x )=﹣x +9;故选:D .【点评】本题主要考查动点问题的函数图象,解题的关键是根据题意弄清两点的运动路线,据此分类讨论并得出函数解析式.二.填空题(共8小题,满分16分,每小题2分) 9.【分析】直接利用点的坐标性质得出A 到x 轴的距离.【解答】解:∵点A (,﹣),∴A 点到x 轴的距离是:.故答案为:.【点评】此题主要考查了点的坐标,正确利用点的坐标特点是解题关键.10.【分析】设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,故答案为:6【点评】本题是函数图象的信息题,又是行程问题,首先要明确三个量:路程、时间和速度,题中有三人:甲、乙、丙,正确读出图形中甲、乙相遇及到达目的地的时间是本题的关键;重点理解图象中x与y所表示的含义,也是本题的难点.11.【分析】直接利用估算无理数的大小方法分析得出答案.【解答】解:∵1.5=,+1>3,∴>1.5.故答案为:>.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.12.【分析】设租住三人间x间,租住两人间y间,就可以得出3x+2y=50,3×25x+2×35y=1510,由这两个方程构成方程组.【解答】解:设租住三人间x间,租住两人间y间,由题意,得,故答案是:.【点评】本题考查了列二元一次方程组解实际问题的运用,解答时找到反应全题题意的两个等量关系建立方程组是关键.13.【分析】设:∠A=x°,则:∠B=10°+x°,∠C=20°+x°,根据三角形内角和等于180度即可求解.【解答】解:设:∠A=x°,则:∠B=10°+x°,∠C=20°+x°,而∠B+∠A+∠C=180°,解得:x=50,故:答案是50°,60°,70°.【点评】本题三角形的内角和等于180°求解,是基础题.14.【分析】首先把等号左边通分,进而可得a+b=1,a﹣b=﹣3,再解即可.【解答】解:∵+=+=,∴a+b=1,a﹣b=﹣3,解得:a=﹣1,b=2,故答案为:﹣1;2.【点评】此题主要考查了分式的加减,关键是掌握异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.15.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】利用同位角相等,两直线平行画一条直线与原直线平行.【解答】解:在图中画两个相等的同位角,则可判断所画直线与原直线平行.故答案为同位角相等,两直线平行.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三.解答题(共12小题,满分68分)17.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+﹣1﹣4﹣=﹣4.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣2;由②得,x≥,故此不等式组的解集为:x≥.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.19.【分析】(1)根据线段的垂直平分线的性质得到AE=CE,结合图形解答;(2)根据直角三角形的性质证明.【解答】解:(1)AB+BD=DC,证明:∵AB=AE,AD⊥BC,∴BD=DE,∵点E在AC的垂直平分线上,∴AE=CE,∴AB+BD=AE+DE=CE+DE=DC;(2)证明:∵AB=AE,AD⊥BC,∠B=60°,∴∠BAD=30°,∴2BD=AB,∵DC =AB +BD =2BD +BD =3BD , ∴DC =3BD .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.【分析】(1)由OA =2、OD =1知AD =3,根据tan ∠OAB =2求得CD =6,据此可得答案;(2)设点M (a ,﹣),可得S △OMN =3、S △ABN =×OA ×BN |=|4﹣|,根据S △ABN =2S △OMN 建立方程,解之求得a 的值即可得. 【解答】解:(1)∵AO =2,OD =1, ∴AD =AO +OD =3, ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,CD =AD •tan ∠OAB =6.. ∴C (1,﹣6),∴该反比例函数的表达式是.(2)如图所示,设点M (a ,﹣), ∵MN ⊥y 轴,∴S △OMN =×|﹣6|=3,S △ABN =×OA ×BN =×2×|4﹣|=|4﹣|, ∵S △ABN =2S △OMN ,∴|4﹣|=6,解得:a=﹣3或a=,当a=﹣3时,﹣=2,即M(﹣3,2),当a=时,﹣=﹣10,即M(,﹣10),故点M的坐标为(﹣3,2)或(,﹣10).【点评】本题主要考查一次函数与反比例函数的交点问题,解题的关键是利用三角函数求得点C的坐标及待定系数法求函数解析式、利用三角形面积的关系建立方程.21.【分析】先计算关于x的方程x2﹣2ax﹣a+2b=0的△,把计算出的结果看作二次函数,开口向上,并且恒有△≥0,即函数图象不在x轴下方,因此得到△′≤0,解关于b的不等式即可.【解答】解:∵关于x的方程x2﹣2ax﹣a+2b=0都有实数根,∴△=4a2﹣4(﹣a+2b)=4a2+4a﹣8b,对任何实数a,有△=4a2+4a﹣8b≥0,所以△′≤0,即42﹣4×4×(﹣8b)≤0,解得b≤.所以实数b的取值范围为b≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了二次函数与一元二次方程的关系.22.【分析】(1)已知四边形ABDE是平行四边形,只需证得它的一个内角是直角即可;在等腰△ABC中,AD是底边的中线,根据等腰三角形三线合一的性质即可证得∠ADC是直角,由此得证.(2)根据矩形的性质得出AD的长度,进而得出∠DAC=30°即可求出答案.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AE∥BC,AB=DE,AE=BD.∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形ADCE是平行四边形.∵AB=AC,D为BC中点,∴AD⊥BC,即∠ADC=90°,∴平行四边形ADCE是矩形.(2)解:∵平行四边形ADCE是矩形,四边形ADCE的面积为,CD=4,∴AD•CD=4AD=16,DO=AO=CO=EO,解得:AD=4,∴tan∠DAC===,∴∠DAC=30°,∴∠ODA=30°,∴∠AOD=120°.【点评】此题主要考查了矩形的判定与性质以及等腰三角形三线合一的性质以及锐角三角函数关系等知识,熟练掌握矩形的判定与性质是解题关键.23.【分析】(1)根据中位数的定义求解可得;(2)用初一、初二的总人数分别乘以其满分率,求和即可得;(3)根据平均数和中位数的意义解答可得.【解答】解:(1)由题意知初二年级的分数从小到大排列为69、69、79、79、89、94、95、96、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为97.5分,补全表格如下:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共300×25%+300×20%=135人,故答案为:135;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点评】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.24.【分析】(Ⅰ)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(Ⅱ)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点评】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.【分析】根据题意取点、画图、测量即可.【解答】(1)根据题意取点、画图、测量可得故答案为:2.5(2)根据已知数据画图象得(3)由作图可知,当BD=BD'时,点D和点D′分别在BC两侧,则AD+BD′=6则有当(2)中图象与直线y=﹣x+6相交时,交点横坐标为x.由测量可知x=4.7故答案为:4.7【点评】本题为动点问的函数图象探究题,考查了函数图象的画法以及转化的数学思想.26.【分析】(1)根据直线y=2x求得点M(2,4),由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组,解之可得;(2)作PH⊥x轴,根据三角形的面积公式求得S=﹣m2+4m,根据公式可得K的解析式,再结合点P的位置得出m的范围,利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:,∴;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m,∴K==﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.【点评】本题主要考查抛物线与x轴的交点,解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.27.【分析】(1)如图,过M作MH⊥BC于H,设CF=x.则HF=+x,BF=MF=1+x.在直角△MHF 中,由勾股定理来求x的值;(2)根据AD∥BC推出∠AMB=∠EBC,证△AMB∽△EBF,推出EF=2BE,根据BM=2BE推出即可.【解答】解:(1)解:如图,过M作MH⊥BC于H,设CF=x.则HF=+x,BF=MF=1+x.在直角△MHF中,由勾股定理得12+(+x)2+(1+x)2,解得,x=;(2)证明:证明:∵M为AD的中点,∴AM=DM=AD=AB,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EBF=∠AMB,∵EF⊥BM,∴∠A=∠BEF=90°,∴△EBF∽△AMB,∴==,∴EF=2BE=BM,即BM=EF.【点评】本题考查了相似三角形的性质和判定,勾股定理,正方形性质等知识点,主要考查学生是否熟练运用性质进行推理和计算,题目综合性比较强,有一定的难度.28.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.。
江苏省南通市通州区2019年中考数学一模试卷(含解析)

2019年江苏省南通市通州区中考数学一模试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列各数中,小于﹣4的是()A.﹣3B.﹣5C.0D.12.(5分)下列各式计算的结果为a5的是()A.a3+a2B.a10÷a2C.a•a4D.(﹣a3)23.(5分)2019年3月5日,李克强总理在《政府工作报告》中指出,2018年中国精准脱贫有力推进,农村贫困人口减少1386万.将数据“1386万”用科学记数法表示应为()A.1.386×108B.1.386×103C.13.86×107D.1.386×107 4.(5分)下面的几何图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.圆C.平行四边形D.正六边形5.(5分)如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°6.(5分)如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm27.(5分)若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3C.0<a<3D.0<a≤28.(5分)如图,在平面直角坐标系中,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与直线y=kx交于点C(4,n),则tan∠OCB的值为()A.B.C.D.9.(5分)如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是()A.甲、乙两地之间的距离为200 km B.快车从甲地驶到丙地共用了2.5 hC.快车速度是慢车速度的1.5倍D.快车到达丙地时,慢车距丙地还有50 km 10.(5分)如图,⊙O的直径AB的长为10,点P在BA的延长线上,PC是⊙O的切线,切点为C,∠ACB的平分线交⊙O于点D,交AB于点E,若PE的长为12,则CE的长为()A.2B.C.3D.二、填空题(每题5分,满分40分,将答案填在答题纸上)11.(5分)计算:﹣=.12.(5分)小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是.13.(5分)如图,△ABC中,DE∥BC,DE分别交AB,AC于点D,E.若=,BC=10,则DE=.14.(5分)如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于度.15.(5分)若一元二次方程x2﹣4x+m=0有实数根,则m的取值范围是.16.(5分)如图,△ABC中,AB=AC=4cm,点D在BA的延长线上,AE平分∠DAC,按下列步骤作图.步骤1:分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点F,连接AF,交BC于点G;步骤2:分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点M和点N,作直线MN,交AG于点I;步骤3:连接BI 并延长,交AE于点Q.若=,则线段AQ的长为cm.17.(5分)如图,矩形ABCD的对角线相交于点E,点A(0,4),点B(2,0),若反比例函数y=(x>0)的图象经过C,E两点,则k的值是.18.(5分)平面直角坐标系xOy中,若P(m,m2+4m+3),Q(2n,4n﹣8)是两个动点(m,n为实数),则PQ长度的最小值为.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)(1)计算(﹣1)3+(﹣)﹣2﹣|﹣5|+(﹣2)0;(2)先化简,再求值:5(x+2y)(x﹣2y)﹣(2x+y)2,其中x=2,y=﹣1.20.(10分)甲、乙两人分别从距目的地3km和5km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10min到达目的地.求甲、乙两人的速度.21.(10分)为了更好地开展体育运动,增强学生体质,学校准备购买一批运动鞋,供学生借用,为配合学校工作,学校体育部从全校各个年级随机抽查了若干名学生的鞋号,用表格整理数据(如下).鞋号34353637383940合计频数48131521百分比8%26%30%14%4%2%100%请根据相关信息,解答下列问题:(1)将表格补充完整;(2)在所抽查的鞋号组成的数据中,众数是,中位数是;(3)若该校计划购买300双运动鞋,根据样本数据,鞋号37的运动鞋应购买多少双?22.(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A 的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(10分)在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.24.(10分)如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=2cm,CO=2cm.(1)求BC的长;(2)求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,AB=6,BC=8,点E在BC边的延长线上,连接DE.过点B作DE的垂线,交CD于点M,交AD边的延长线于点N.(1)连接EN,若BE=BD,求证:四边形BEND为菱形;(2)在(1)的条件下,求BM的长;(3)设CE=x,BN=y,求y关于x的函数解析式,并直接写出x的取值范围.26.(10分)已知抛物线y=ax2+bx+c的顶点为(2,1),且过点(0,5).(1)求抛物线的解析式;(2)将抛物线先向左平移1个单位长度,再向下平移m(m>0)个单位长度后得新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且OB=3OA,求m的值;②若P(x1,y1),Q(x2,y2)是新抛物线上的两点,当n≤x1≤n+1,x2≥4时,均有y1≤y2,求n的取值范围.27.(20分)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.2019年江苏省南通市通州区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列各数中,小于﹣4的是()A.﹣3B.﹣5C.0D.1【分析】利用负数的大小比较方法:负数小于0和正数,两个负数相比较,绝对值大的反而小,比较选择答案即可.【解答】解:比﹣4小的数是﹣5.故选:B.【点评】此题考查有理数的大小比较,掌握比较的方法是解决问题的关键.2.(5分)下列各式计算的结果为a5的是()A.a3+a2B.a10÷a2C.a•a4D.(﹣a3)2【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则分别判断得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a10÷a2=a8,故此选项错误;C、a•a4=a5,正确;D、(﹣a3)2=a6,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘除运算以及合并同类项,正确掌握相关运算法则是解题关键.3.(5分)2019年3月5日,李克强总理在《政府工作报告》中指出,2018年中国精准脱贫有力推进,农村贫困人口减少1386万.将数据“1386万”用科学记数法表示应为()A.1.386×108B.1.386×103C.13.86×107D.1.386×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1386万=1.386×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(5分)下面的几何图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.圆C.平行四边形D.正六边形【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,符合题意;B、圆既是轴对称图形,也是中心对称图形,不合题意;C、平行四边形不是轴对称图形,是中心对称图形,不合题意;D、正六边形既是轴对称图形,也是中心对称图形,不合题意.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(5分)如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=40°,∠BAC=80°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.(5分)如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm2【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为3÷2=1.5m,圆锥的高为200cm,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形的面积公式和矩形的面积公式分别进行计算,然后求它们的和积.【解答】解:根据三视图得圆锥的母线长为2m,底面圆的半径为3÷2=1.5m,所以圆锥的侧面积=×2π×1.5×2=3π,圆柱的侧面积=2π×1.5×2=6π,所以每顶帐篷的表面积=3π+6π=9π(m2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7.(5分)若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3C.0<a<3D.0<a≤2【分析】首先确定不等式的正整数解,则a的范围即可求得.【解答】解:关于x的不等式x<a恰有2个正整数解,则正整数解是:1,2.则a的取值范围:2<a≤3.故选:A.【点评】本题主要考查一元一次不等式组的整数解,根据a的取值范围正确确定a与2和3的关系是关键..8.(5分)如图,在平面直角坐标系中,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与直线y=kx交于点C(4,n),则tan∠OCB的值为()A.B.C.D.【分析】过点O作OG垂直AB于点G,过点C作CD垂直y轴于点D,令x=0求得B (0,4),令y=0求得A(2,0),则tan∠OBA=,,设OG=x,则BG =2x,则有x2+(2x)2=42,解得x=,即OG=,BG=,根据CD=4,DB=8,勾股定理求BC==4,则tan∠OCB==.【解答】解:如图1所示,过点O作OG垂直AB于点G,过点C作CD垂直y轴于点D,令x=0,解得y=4,∴B(0,4),令y=0,解得x=2,∴A(2,0),当x=4时,y=4,∴n=4,C(4,4),∵tan∠OBA=,∴,设OG=x,则BG=2x,则有x2+(2x)2=42,解得x=,∴OG=,BG=,∵CD=4,DB=8,∴BC==4,∴CG=,∴tan∠OCB==.故选:A.【点评】此题考查了一次函数的相关性质以及锐角三角函数的相关性质,构造直角三角形并计算相关长度为解题关键.9.(5分)如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是()A.甲、乙两地之间的距离为200 kmB.快车从甲地驶到丙地共用了2.5 hC.快车速度是慢车速度的1.5倍D.快车到达丙地时,慢车距丙地还有50 km【分析】(1)因为两车同时出发,同向而行,所以A点就是甲、乙两地之间的距离为200千米;(2)图中B点为y=0,即快慢两车的距离为0,所以B点表示快慢两车相遇的时间.由A点为两车的路程差,相遇时间为1小时,可知:快车速度﹣慢车速度=150,再由点D 可知慢车3.5小时从乙地到达丙地;由此求出慢车速度,进一步求出快车速度;(3)C点表示就是当快车到达丙地时,慢车快车的距离即慢车与丙地的距离,由路程除以速度算出慢车到达丙地的时间(就是C点的纵坐标),以及慢车距离丙地的距离(就是C点的纵坐标),得出点C坐标,设出函数解析式,代入求得即可根据坐标求得自变量的取值范围.【解答】解:∵点A(0,200),∴甲、乙两地之间的距离为200km;故A选项正确;∵慢车速度:(500﹣200)÷3=100km/h,快车速度:(100×2+200)÷2=200km/h,∴快车速度是慢车速度的2倍;故C选项不正确;∵快车速度:(100×2+200)÷2=200km/h,∴快车从甲地驶到丙地共用了2.5h;故B选项正确;∵当快车到达丙地时,行驶了2.5h,∴慢车距丙地的距离为:500﹣2.5×100=50km;故D选项正确;故选:C.【点评】此题考查一次函数的综合运用,解答问题的关键是看清图象表示的意义,利用路程、时间、速度三者之间的关系解决问题.10.(5分)如图,⊙O的直径AB的长为10,点P在BA的延长线上,PC是⊙O的切线,切点为C,∠ACB的平分线交⊙O于点D,交AB于点E,若PE的长为12,则CE的长为()A.2B.C.3D.【分析】连接OC,作CH⊥AB于H,如图,利用圆周角定理得到∠ACB=90°,根据切线的性质得到OC⊥PC,证明∠PCA=∠B,再证明∠PCE=∠PEC得到PC=PE=12,利用勾股定理计算出OP=13,则OE=1,接着根据面积法计算出CH=,从而可计算出OH=,则HE=OH﹣OE=,然后利用勾股定理计算CE的长.【解答】解:连接OC,作CH⊥AB于H,如图,∵AB为直径,∴∠ACB=90°,即∠B+∠BAC=90°,∵PC是⊙O的切线,∴OC⊥PC,∴∠ACB=90°,即∠PCA+∠ACO=90°而BAC=∠ACO,∴∠PCA=∠B,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠PCE=∠PCA+45°,∠PEC=∠B+∠BCE=∠B+45°,∴∠PCE=∠PEC,∴PC=PE=12,在Rt△PCO中,OP==13,∴OE=1,∵CH•PO=PC•CO,∴CH==,在Rt△OCH中,OH==,∴HE=OH﹣OE=﹣1=,在Rt△CEH中,CE==.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.二、填空题(每题5分,满分40分,将答案填在答题纸上)11.(5分)计算:﹣=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.12.(5分)小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是小李.【分析】结合图形,成绩波动比较大的就是新手.【解答】解:观察表格可知,小李的成绩波动比较大,故小李是新手.故答案为:小李.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(5分)如图,△ABC中,DE∥BC,DE分别交AB,AC于点D,E.若=,BC=10,则DE=4.【分析】先证明△ADE∽△ABC,根据相似三角形的性质得到()2=,则=,然后把BC=10代入可计算出DE.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,∴DE=×10=4.故答案为4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.14.(5分)如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于60度.【分析】根据正多边形的内角和定义(n﹣2)×180°列方程求出多边形的边数,再根据正多边形内角和为360°、且每个外角相等求解可得.【解答】解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角===60°,故答案为:60.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n ﹣2)•180°,外角和等于360°.15.(5分)若一元二次方程x2﹣4x+m=0有实数根,则m的取值范围是m≤4.【分析】根据关于x的一元二次方程x2+4x+m=0有实数根,可得△≥0,从而可求得m 的取值范围.【解答】解:∵关于x的一元二次方程x2+4x﹣m=0有实数根,∴△=42﹣4×1×m≥0,解得,m≤﹣4,故答案为:m≤﹣4.【点评】本题考查根的判别式,解题的关键是明确一元二次方程有实数根时△≥0.16.(5分)如图,△ABC中,AB=AC=4cm,点D在BA的延长线上,AE平分∠DAC,按下列步骤作图.步骤1:分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点F,连接AF,交BC于点G;步骤2:分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点M和点N,作直线MN,交AG于点I;步骤3:连接BI 并延长,交AE于点Q.若=,则线段AQ的长为cm.【分析】由作法得MN垂直平分AB,AF⊥BC于G,则IA=IB,BG=CG,设AI=5x,则BI=5x,IG=3x,所以BG=4x,在Rt△ABG中聚划算出AB=4x,从而得到x=1,所以BG=4,接着证明AE∥BC,然后了平行线分线段成比例定理可计算出AQ的长.【解答】解:由作法得MN垂直平分AB,则IA=IB;AF⊥BC于G,∵AB=AC,∴BG=CG,∵=,设AI=5x,则BI=5x,IG=3x,∴BG=4x,在Rt△ABG中,AB==4x,∴4x=4,解得x=1,∴BG=4,∵AE平分∠DAC,∴∠DAE=∠CAE,∵AB=AC,∴∠ABC=∠ACB,∴∠DAE=∠ABC,∴AE∥BC,∴==,∴AQ=×4=.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和等腰三角形的性质.17.(5分)如图,矩形ABCD的对角线相交于点E,点A(0,4),点B(2,0),若反比例函数y=(x>0)的图象经过C,E两点,则k的值是.【分析】作CF⊥x轴于F,根据题意设C(2m,),则E(m,),由△AOB∽△BFC,得到=,求得m﹣1=,得到C(2m,m﹣1),由E点是AC的中点,则=+,得到m=k,从而得到C(k,k﹣1),根据反比例函数图象上点的坐标特征列出k•(k﹣1)=k,求得即可.【解答】解:作CF⊥x轴于F,∵点A(0,4),点B(2,0),∴OA=4,OB=2,设C(2m,),则E(m,),∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠CBF,∵∠AOB=∠CFB=90°,∴△AOB∽△BFC,∴=,即=∴m﹣1=,∴C(2m,m﹣1),∵E点是AC的中点,∴=+,解得m=k,∴C(k,k﹣1),∴k•(k﹣1)=k,解得k=.故答案为.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.18.(5分)平面直角坐标系xOy中,若P(m,m2+4m+3),Q(2n,4n﹣8)是两个动点(m,n为实数),则PQ长度的最小值为2.【分析】Q点在直线y=2x﹣8上,当P到直线的距离最小即为所求;【解答】解:Q点在直线l:y=2x﹣8上,P在抛物线y=x2+4x+3上∴直线与x,y标轴交点分别为B(4,0),D(0,8),设与直线y=2x﹣8平行的直线为y=2x+b,当直线为y=2x+b与抛物线y=x2+4x+3有一个交点时,即2x+b=x2+4x+3,∴x2+2x+3﹣b=0,∴△=﹣8+4b=0,∴b=2,此时交点坐标为A(﹣1,0),过A作AC⊥直线l,∵AB=5,DB=4,∴sin∠ABC==,∴AC=2;故答案为2;【点评】本题考查点与直线的位置关系;能够将Q点运动的轨迹找到,将问题转换为点与直线的距离是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)(1)计算(﹣1)3+(﹣)﹣2﹣|﹣5|+(﹣2)0;(2)先化简,再求值:5(x+2y)(x﹣2y)﹣(2x+y)2,其中x=2,y=﹣1.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1+9﹣5=4;(2)原式=5(x2﹣4y2)﹣(4x2+4xy+y2)=5x2﹣20y2﹣4x2﹣4xy﹣y2=x2﹣4xy﹣21y2,当x=2,y=﹣1时,原式=﹣9.【点评】此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)甲、乙两人分别从距目的地3km和5km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10min到达目的地.求甲、乙两人的速度.【分析】设甲的速度为3xkm/h,则乙的速度为4xkm/h,根据时间=路程÷速度结合甲比乙提前10min到达目的地,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲的速度为3xkm/h,则乙的速度为4xkm/h,依题意,得:﹣=,解得x=,经检验,x=是原方程的解,且符合题意,∴3x=,4x=6.答:甲的速度为km/h,乙的速度为6km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(10分)为了更好地开展体育运动,增强学生体质,学校准备购买一批运动鞋,供学生借用,为配合学校工作,学校体育部从全校各个年级随机抽查了若干名学生的鞋号,用表格整理数据(如下).鞋号34353637383940合计频数48131572150百分比8%16%26%30%14%4%2%100%请根据相关信息,解答下列问题:(1)将表格补充完整;(2)在所抽查的鞋号组成的数据中,众数是37,中位数是36.5;(3)若该校计划购买300双运动鞋,根据样本数据,鞋号37的运动鞋应购买多少双?【分析】(1)首先根据34鞋号的有4人占8%求得总人数,然后求得相关数据即可;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)鞋号34353637383940合计频数48131572150百分比8%16%26%30%14%4%2%100%(2)∵在这组样本数据中,37出现了15次,出现次数最多,∴这组样本数据的众数为37;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为(36+37)÷2=36.5;故答案为:37,36.5.(3)37号:300×30%=90(双),答:鞋号37的运动鞋应购买90双.【点评】考查了统计的知识以及用样本估计总体,弄清题意是解本题的关键.22.(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A 的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长.【解答】解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.∵在Rt△BDC中,tan∠BDC=.∴BC=CD=40 m.∵在Rt△ADC中,tan∠ADC=.∴.∴AB≈7.6(m).答:旗杆AB的高度约为7.6 m.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.23.(10分)在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是3;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.【分析】(1)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.75左右得到比例关系,列出方程求解即可.(2)列出树状图,利用概率公式求解即可.【解答】解:(1)解:根据题意得=0.75,解得:m=3,经检验:m=3是分式方程的解,故答案为:3;(2)画树状图如下:从树状图可知,“先从盒子中随机取出一个球,再从剩下的球中再随机摸取一个球”共12种等可能的结果,其中“先摸到黑球,再摸到白球”的结果有3种,∴P(先摸到黑球,再摸到白球)==.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.24.(10分)如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=2cm,CO=2cm.(1)求BC的长;(2)求图中阴影部分的面积.【分析】(1)根据切线的性质得到∠OBF=∠EBF,∠OCF=∠GCF,根据平行线的性质得到∠BOC=90°,根据勾股定理即可得到结论;(2)连接OF,根据切线的性质得到OF⊥BC,根据三角形的面积公式得到OF=,根据扇形的面积公式即可得到结论.【解答】解:(1)∵AB,BC,CD分别与⊙O相切于E,F,G,∴∠OBF=∠EBF,∠OCF=∠GCF,∵AB∥CD,∴∠EBF+∠GCF=180°,∴∠OBF+∠OCF=∠EBF+∠GCF=90°,∴∠BOC=90°,∴BC===4cm;(2)连接OF,∵BC与⊙O相切于F,∴OF⊥BC,又∵S△BOC=BO•CO=BC•OF,∴2=×4×OF,∴OF=,∴S阴影=S△BOC﹣S△BOC内扇形=×2×2﹣=(2﹣)cm2.【点评】本题考查了切线的性质,扇形的面积,勾股定理,正确的作出辅助线是解题的关键.25.(10分)如图,矩形ABCD中,AB=6,BC=8,点E在BC边的延长线上,连接DE.过点B作DE的垂线,交CD于点M,交AD边的延长线于点N.(1)连接EN,若BE=BD,求证:四边形BEND为菱形;(2)在(1)的条件下,求BM的长;(3)设CE=x,BN=y,求y关于x的函数解析式,并直接写出x的取值范围.【分析】(1)由BD=BE,BM⊥DE依据三线合一可知∠DBN=∠EBN.由矩形性质可知AD∥BC.易得DN∥BE,DN=BE,所以四边形DBEN是平行四边形.根据菱形的判定定理可得结论.(2)由矩形性质和菱形性质用勾股定理可计算出BD=BE=10,DE=,再由△BCM ∽△DCE,即可计算BM长.(3)由△NAB∽△DCE,可得AN=.再根据勾股定理可得BN=即可得到函数解析式.【解答】解:(1)证明:∵BD=BE,BM⊥DE,∴∠DBN=∠EBN.∵四边形ABCD是矩形,∴AD∥BC.∴∠DNB=∠EBN.∴∠DBN=∠DNB.∴BD=DN.又∵BD=BE,∴BE=DN.又∵AD∥BC.∴四边形DBEN是平行四边形.又∵BD=BE,∴平行四边形DBEN是菱形.(2)∵四边形ABCD是矩形,∴∠A=∠BCD=90°,BC=AD=8,CD=AB=6.∴BE=BD==10.∴CE=BE﹣BC=2.∴在Rt△DCE中,DE==.由题意易得∠MBC=∠EDC,又∠DCE=∠BCD=90°.∴△BCM∽△DCE.∴.∴.∴BM=.(3)由题意易得∠BNA=∠EDC,∠A=∠DCE=90°∴△NAB∽△DCE,∴.∴.∴AN=.∴在Rt△ABN中,y═==.∵N在AD延长线上,∴AN>8,即:,∴综上所述:y═.其中0<x<.【点评】本题主要考查了矩形的性质、相似三角形的判定与性质、解方程等知识,对运算能力的要求比较高,灵活运用相似三角形和勾股定理求线段长是解题关键.26.(10分)已知抛物线y=ax2+bx+c的顶点为(2,1),且过点(0,5).(1)求抛物线的解析式;(2)将抛物线先向左平移1个单位长度,再向下平移m(m>0)个单位长度后得新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且OB=3OA,求m的值;②若P(x1,y1),Q(x2,y2)是新抛物线上的两点,当n≤x1≤n+1,x2≥4时,均有y1≤y2,求n的取值范围.【分析】(1)设抛物线解析式为顶点式y=a(x﹣2)2+1(a≠0),把点(0,5)代入求值;(2)根据二次函数图象几何变换规律得到新抛物线y=(x﹣1)2+1﹣m=x﹣2x+2﹣m.①利用抛物线解析式求得点A、B的坐标,根据抛物线的对称性质和方程思想求得m的值即可;②根据抛物线的对称性质知:当x=4和x=﹣2时,函数值相等.结合图象,得.解该不等式组得到:﹣2≤n≤3.【解答】解:(1)∵顶点为(2,1),∴y=ax2+bx+c=y=a(x﹣2)2+1(a≠0).又∵抛物线过点(0,5),∴a(0﹣2)2+1=5,∴a=1.∴y=(x﹣2)2+1;(2)抛物线y=(x﹣2)2+1先向左平移1个单位长度,再向下平移m个单位长度后得新抛物线y=(x﹣1)2+1﹣m=x2﹣2x+2﹣m.①分情况讨论:如图1,若点A,B均在x轴正半轴上,设A(x,0),则B(3x,0),。
北京市通州区2019年中考一模数学试题

数学试卷通州区初三年级模拟考试数学试卷2019年5 月考1.本试卷共 6 页,共五道大题,25 道小题,满分120 分.考试时间生2.在试卷和答题卡上准确填写学校名称和姓名.须3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.知4.考试结束,将本试卷、答题卡和草稿纸一并交回.120 分钟 .一、选择题(本题共32 分,每小题 4 分)在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求填涂在答题纸第1-8 题的相应位置上.1.3的倒数是A.3B.3C.1D.1332.在下列几何体中,主视图、左视图和俯视图形状都相同的是A B C D3. 2019 年,北京实现地区生产总值约17800 亿元,比2019 年增长百分之七点多. 将 17800用科学记数法表示应为A . 17. 8× 103B. 1. 78× 105C. 0. 178× 105D. 1. 78× 104O B 4.如图, A、 B、C 是⊙ O 上的三个点,∠ABC=32 °,则∠ AOC 的度数是A .32°B. 64°AC C. 16°D. 58°5.端午节吃粽子是中华民族的传统习俗.妈妈买了 2 只红豆粽和 3 只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是A .2B.1C.1D.2 52536.一个扇形的圆心角为 90°,半径为 2,则这个扇形的面积是A .6 πB. 4 πC. 2 πD.π7.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动.为了解学生每天使用零花钱的情况,小明随机调查了10 名同学,结果如下表:每天使用零花钱(单位:元)02345人数12412关于这 10 名同学每天使用的零花钱,下列说法正确的是A .平均数是 2.5B .中位数是 3C .众数是 2D .方差是 48. 如图,在直角坐标系xoy 中,已知 A 0,1 , B 3,0 ,以线段 AB 为边向上作菱形ABCD ,且点 D 在 y 轴上 . 若菱形 ABCD 以每秒 2 个单位长度的速度沿射线AB 滑行,直至顶点 D 落在 x 轴上时停止.设菱形落在 x 轴下方部分的面积为 S ,则表示 S 与滑行时间的函数关系的图象为y yDCDCAAOBxOxB第 8题图( 1)第8题图( 2)第8题图(1)第8题图(2)SSSS4 4 3 3 2 2 1 1O123 tO123 tAB 44 3 3 2 2 11O123 tO123tC D二、填空题(本题共 16 分,每小题 4 分)9.若分式x2的值为零,则 x=.x10.分解因式: x32x2xCD.11.如图, AB ∥ CD ,点 E 在 AB 上,且 DCDE ,EBAEC 70 ,则AD 的度数是 ______.第 11题图12.定义一种对正整数 n 的“ F 运算”:①当 n 为奇数时, 结果为 3n 1;②当 n 为偶数时,结果为 n (其中 k 是使得n为奇数的正整数) ,并且运算重复进行 .例如,取 n6 ,2 k2k则: 6 F ② 3F ① 10F ② 5 ⋯⋯,若 n 1 ,则第 2 次“ F 运算”的结第 次第 次第 次123果是;若 n 13,则第 2019 次“ F 运算”的结果是.三、解答题(本题共 30 分,每小题 5 分)13.计算:213tan30o 2 3012 .x 20,14.解不等式组5x 1 2( x1).15.已知:如图,AB= AC,点 D 、E 分别在 AB、 AC 上,且使AE= AD . 求证:∠ B=∠ C.CEA D B16.化简求值:1y22g x y0 ,且 y 0 .2y,其中 x 3yx x17.已知A( 4,2),B(2,4)是一次函数y kx b 的图象和反比例函数 y m图象的两x个交点.( 1)求反比例函数和一次函数的表达式;( 2)将一次函数y kx b 的图象沿y轴向上平移n 个单位长度,交y 轴于点 C,若 S V ABC 12 ,求 n 的值 .18. 列方程或列方程组解应用题:根据城市发展规划设计, 某市工程队为该城市修建一条长4800 米的公路 . 铺设 600 米后,为了缩短工期,该工程队增加了人力和设备,实际每天修建公路的长度是原计划的2倍,结果共用 9 天完成任务 . 问原计划每天修建公路多少米?四、解答题(本题共 20 分,每小题 5 分)19.某中学组织全校1000 名学生参加了有关“低碳环保”知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为 100 分),并绘制了如图的频数分布表和频数分布直方图(不完整).分组/分 频数 频率 频数50<x ≤60 10 a80 60<x ≤70b7070<x ≤800.26050 80<x ≤90 520.26 403090<x ≤ 1000.3720合计110成绩 /分50 60 70 80 90 100请根据以上提供的信息,解答下列问题:( 1)直接写出频数分布表中a ,b 的值,补全频数分布直方图;( 2)学校将对成绩在 90 分以上(不含 90 分)的学生进行奖励,请估计全校 1000 名学生中约有多少名获奖?20.如图,在矩形 ABCD 中, AB=3, BC =AD3 ,△ DCE 是等边三角形, DE 交 AB 于点 F ,F求△ BEF 的周长.EB C21.已知: 如图, AB 是⊙ O 的直径, AC 是弦.过点 A 作∠ BAC 的角平分线, 交⊙ O 于点 D ,EC过点 D 作 AC 的垂线,交 AC 的延长线于点 E .D( 1)求证:直线 ED 是⊙ O 的切线;ABO( 2)连接 EO ,交 AD 于点 F ,若 5AC=3 AB ,求EO的值.FO22. 如图所示,在 4×4 的菱形斜网格图中(每一个小菱形的边长为1,有一个角是 60°),菱形 ABCD 的边长为 2, E 是 AD 的中点, 沿 CE 将菱形 ABCD 剪成①、 ②两部分, 用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上 .A E D( 1)在下面的菱形斜网格中画出示意图;②①B C(直角三角形)(等腰梯形)(矩形)第22题图第22题图( 2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为S1、S2、S3,周长分别记为l1、l2、l3,判断所拼成的三种图形的面积、周长的大小关系(用“ =”、“>”、“<”、“≤”或“≥”连接):面积关系是;周长关系是.五、解答题(本题共22 分,第23 题7 分,第24 题7 分,第25 题8 分)23.已知二次函数y x2 2 k 1 x4k 的图象与x 轴分别交于点 A x1 ,0、 B x2 ,0,且32< x1 <12.( 1)求k 的取值范围;( 2)设二次函数y x2 2 k 1 x4k 的图象与y 轴交于点M,若OM OB ,求二次函数的表达式;( 3)在 (2) 的条件下,若点N 是x 轴上的一点,以N、A、 M为顶点作平行四边形,该平行四边形的第四个顶点 F 在二次函数y x2 2 k 1 x4k 的图象上,请直接写出满足上述条件的平行四边形的面积.24.已知:AD 2 ,BD 4 ,以AB为一边作等边三角形ABC. 使 C、D 两点落在直线AB的两侧 .( 1)如图,当∠ ADB= 60°时,求AB 及 CD 的长;( 2)当∠ ADB 变化,且其它条件不变时,求CD 的最大值,及相应∠ADB 的大小 .CAD B25.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆” 只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线 . 如图,二次函数y x22x 3 的图象与x轴交于点A、B,与y轴交于点D, AB 为半圆直径,半圆圆心为点M, 半圆与 y 轴的正半轴交于点 C.(1)求经过点 C 的“蛋圆”的切线的表达式;(2)求经过点 D 的“蛋圆”的切线的表达式;( 3)已知点 E 是“蛋圆”上一点(不与点A、点 B 重合),点 E 关于 x 轴的对称点是 F ,y若点 F 也在“蛋圆”上,求点E的坐标.CMA OB xD第25题图通州区初三数学模拟考试参考答案及评分标准2019.5一、选择题:1. C2. C3. D4.B5. A6. D7.B8. A二、填空题:9.x 2 ;10.x x12 ;11. 40;12.1, 4;三、解答题:13.解:原式 =131 2 3 ,⋯⋯⋯⋯⋯⋯4 分;332=112 3 ,32数学试卷=33 .⋯⋯⋯⋯⋯⋯5 分 .2x 2 ,①14.5x 1 2 x 1 . ②解:解不等式①,得x 2 ,⋯⋯⋯⋯⋯⋯1 分;解不等式②,5x 1 2x 2 , ⋯⋯⋯⋯⋯⋯ 2 分;5x 2 x 2 1,⋯⋯⋯⋯⋯⋯3 分;3x3 ,x1,⋯⋯⋯⋯⋯⋯ 4 分;∴这个不等式组的解集是1 x2 .⋯⋯⋯⋯⋯⋯5分 .15. 证明:在△ ABE 和△ ACD 中CAB,ACE∵A ,⋯⋯⋯⋯⋯⋯3 分;AAE AD.ADB∴△ ABE ≌△ ACD ( SAS ) . ⋯⋯⋯⋯⋯⋯ 第 15题图4 分;∴BC .⋯⋯⋯⋯⋯⋯5 分 .x 2 y 2 y 2x y16. 解:原式 =2y 2x 2 y 2 x ,xx 2 y 2xy , ⋯⋯⋯⋯⋯⋯1 分;x 2x(xx 2y) x y , ⋯⋯⋯⋯⋯⋯2 分;y)( xx=x . ⋯⋯⋯⋯⋯⋯3 分;x y由 x3y 0 ,得 x 3y ,⋯⋯⋯⋯⋯⋯ 4 分;∴原式 =3 y = 3y = 3 . ⋯⋯⋯⋯⋯⋯53 y y 4y 4分 .数学试卷17. 解: (1)把 A( 4,2) , B(2, 4) 分别代入 y kx b 和 ym中,x4k b 2,∴2k b4,⋯⋯⋯⋯⋯⋯1 分;-4= m.2k,1 ⋯⋯⋯⋯⋯⋯2 分;解得:,b 2m 8.∴反比例函数的表达式为y8 x2 ; ,一次函数的表达式为 yx( 2)设一次函数 yx2 的图象与 y 轴的交点为 D, 则 D 0,- 2,3分;∵ S ABC 12,∴1CD41 CD2 12, ⋯⋯⋯⋯⋯⋯422分;∴ CD 4, ∴ n4 . ⋯⋯⋯⋯⋯⋯ 5分 .18. 解法一 :解:设原计划每天修建公路x 米, 则实际每天修建公路2x 米,⋯⋯ 1 分;根据题意得:6004800 600⋯⋯⋯⋯⋯⋯3x2x 9 ,分;∴ 27009,x∴ x300 .经检验: x=300 是原方程的解,且符合实际问题的意义.⋯⋯⋯⋯⋯⋯ 4 分; 答: 原计划每天修建公路 300 米 .⋯⋯⋯⋯⋯⋯5 分.解法二:解:设铺设 600 米用 x 天 , 则增加人力和设备后,用9 x 天完成任务 .数学试卷根据题意得: 26004800 600 ,x9 x解得: x2 .经检验: x2是原方程的解,且符合实际问题的意义∴600=300 ,2答:原计划每天修建公路300 米.四、解答题19. ( 1) a0.05, b 24 .补全频数分布直方图正确;( 2) 0.37 1000 370.估计全校 1000 名学生中约有 370 名获奖 .20.解法一:∵矩形 ABCD ,△ DCE 是等边三角形,∴ ADFECB 30o , ED EC 3,在 Rt △ ADF 中,A 90o , AD3 ,1 分;3 分;.⋯⋯⋯⋯⋯⋯ 4 分;5 分.2 分;4 分;5 分 .AF,∴ tan ADFADtan 30oAF3 ,33A DE FG BC∴ AF1, 第20题图∴ FB AB AF 3 1 2 , FD 2 ,⋯⋯⋯⋯⋯⋯ 1 分;∴ EFEDDF3 2 1,⋯⋯⋯⋯⋯⋯ 2 分;过点 E 作EG CB ,交 CB 的延长线于点 G.⋯⋯⋯⋯⋯⋯3 分;在 Rt △ ECG 中,EGC 90o , EC 3,ECG 30o ,1EC 3, cos ECGGC ,∴EG2EC2cos 30o GC 3 ,32数学试卷33 ,∴GC231∴GB GC33 ,BC322由勾股定理得,EB 2 EG 2 GB 2 ,∴ EB3 (舍去负值) ⋯⋯⋯⋯⋯⋯4 分;∴△ BEF 的周长 = EFFB EB3 3 .⋯⋯⋯⋯⋯⋯5 分 .解法二:∵矩形 ABCD ,△ DCE 是等边三角形,∴ EDC ECD 60o , EDEC 3,过点 E 作EHCD 交 CD 于点 H ,交 AB 于点 G.⋯⋯⋯⋯⋯⋯1 分;∴点 H 是 DC 的中点,点 G 是 AB 的中点,FEG30o , GH AD3 ,在 Rt △ EHD 中, EHD 90o , ED3 ,∴ sin EDHEH ,EDsin 60oEH 3 ,3 2∴ EH33 ,233313 .∴EG EH GHA D22FEH 在 Rt △ EGF 中,EGF 90o ,EFG 60o ,G∴ sin EFGEGEF ,BC1 3第 20题图3 o2,sin 60EF2∴ EF 1 ,⋯⋯⋯⋯⋯⋯2 分;∴ FG1EF1 ,22∵点 G 是 AB 的中点, AB 3 ,∴ GB1AB3 ,22数学试卷∴FB FG GB 13,⋯⋯⋯⋯⋯⋯3 分;222由勾股定理得,EB2EG 2GB2,∴ EB 3 (舍去负值)⋯⋯⋯⋯⋯⋯ 4 分;∴△ BEF 的周长 = EF FB EB 3 3 .⋯⋯⋯⋯⋯⋯ 5 分 .解法三:∵矩形ABCD ,△ DCE 是等边三角形,∴ ADFECB30o,ED EC3,在 Rt△ADF中, A 90o, AD3,∴tan ADF AF,ADtan 30o AF 3 ,33∴ AF1,∴ FB AB AF312,FD 2 ,⋯⋯⋯⋯⋯⋯ 1 分;∴ EF ED DF321,⋯⋯⋯⋯⋯⋯ 2 分;过点 B作BG CE ,交CE于点G.⋯⋯⋯⋯⋯⋯ 3 分;在 Rt△BCG中,BGC 90o,BC3,ECB30o,∴ BG 1BC3, cos BCG GC ,22BCA DFcos 30o GC3 ,32E GB C∴ GC 3第 20题图,233∴ GE EC GC,322由勾股定理得, EB 2EG 2GB 2,或BG是线段EC的垂直平分线,∴ EB 3 (舍去负值)或BE=BC ,⋯⋯⋯⋯ 4 分;∴△ BEF 的周长 = EF FB EB 3 3 .E 5 分.⋯⋯⋯⋯⋯⋯21.(1)证明:连接OD.C DA O B第21题图数学试卷∵OD OA,∴OAD ODA ,∵AD 平分BAC ,∴BAD CAD ,∴ODA CAD ,⋯⋯⋯⋯⋯⋯ 1 分;∴AE ∥OD,∵ DE AE ,∴ ED DO ,∵点 D在⊙O上,∴ED 是⊙ O 的切线;(2)解法一:连接 CB, 过点 O 作OG ∵ AB 是⊙ O 的直径,∴ ACB90o,∵ OG AC ,∴OG∥ CB ,AG AC∴,AO AB∵5AC=3AB ,∴ AG3,AO5设 AG 3x,AO 5x ,∵DE AE,ED DO,∴四边形EGOD 是矩形,∴EG OD ,AE∥OD,∴ DO5x , GE5x , AE 8x ,∴△ AEF ∽△ DFO,∴ EF AE ,FO OD∴EF 8, FO5EO 13∴.FO52 分;AC 于点G.⋯⋯⋯⋯⋯ 3 分;EC DGFA BO第21题图4 分;5分.数学试卷解法二:连接 CB, 过点 A 作 AH DO 交 DO 的延长线于点 H. ⋯⋯⋯⋯3 分;∵ DEAE , EDDO ,EC∴四边形AHDE 是矩形,DF∴ EA DH,AE HD, AH ∥ ED ,AB∥O ∴CAB AOH ,H∵ AB 是⊙ O 的直径, 第 21题图∴ ACB 90o ,∴ACBAHO ,∴△ AHO ∽△ BCA ,OH AC ∴,AOAB∵ 5AC=3AB ,∴ OH3 , ⋯⋯⋯⋯⋯⋯4 分;AO5设 OH 3x ,AO 5x ,∴ DO5x , AE DH8x ,∵ AE ∥ HD ,∴△ AEF ∽△ DFO ,∴ EFAE ,FO OD∴EF 8, FO 5∴EO 13⋯⋯⋯⋯⋯⋯ 5 分.FO .5解法三:连接 CB , 分别延长 AB 、ED 交于点 G. ⋯⋯⋯⋯3 分;∵ DEAE , ED DO ,∴ AE ∥ OD , ODG 90o ,∴CABDOG ,∵ AB 是⊙ O 的直径,EACB 90o ,C D∴F∴ACB ODG ,AOBG∴△ GDO ∽△ BCA ,第 21题图∴OD AC , OG AB ∵ 5AC=3AB ,∴ OD3 , ⋯⋯⋯⋯⋯⋯4 分;OG5设 OD 3x , OG 5x ,∴ AO5x , AG AO OG 8x ,∵ AE ∥ OD ,∴△ AEG ∽△ ODG ,△ AEF ∽△ DFO ,∴ AGAE, EFAE , OG ODFOOD∴EF 8, FO 5 EO 13⋯⋯⋯⋯⋯⋯5 分.∴.FO522.(1)①②②①① ② ②①(直角三角形)(等腰梯形) (矩形)画图正确;每图各1分,共 3分;(2) 面积关系是S 1=S 2=S 3 ;⋯⋯⋯⋯⋯⋯ 4 分;周长关系是 l 1 > l 2 > l 3 .⋯⋯⋯⋯⋯⋯5 分 .五、解答题:23.解: (1) 令 y 0 ,则 x22 k 1 x4k解方程得: x 2k 或 x2 ,⋯⋯⋯⋯⋯⋯ 1 分;由题意得: A 2k ,0 , B 2,0 ,∴ -3 12k,22∴3k1 ⋯⋯⋯⋯⋯⋯2 分;4.4(2) 令 x0 ,则 y4k ,∴M 0,4k ,∵OM OB,∴4k 2 ,⋯⋯⋯⋯⋯⋯ 3 分;∴ k 1,2∴ y x2x 2 .⋯⋯⋯⋯⋯⋯4分;或∵OM OB,B 2,0 ,∴M 0,-2,把点 M 的坐标分别代入y x2 2 k 1 x 4k 中,∴ 4k 2 ,⋯⋯⋯⋯⋯⋯ 3 分;∴ k 1,2∴ y x2x 2 .⋯⋯⋯⋯⋯⋯4分;(3) 2,517 ,5 17. (每个答案各 1 分)⋯⋯⋯⋯⋯⋯7 分.24.解:( 1)过点 A 作AG BC于点G.C∵∠ ADB= 60°, AD 2 ,∴ DG1, AG 3 ,A∴ GB3,∴ tanAG3 D G B ABG3,第 24题图BG∴ABG 30o,AB23 ,⋯⋯⋯⋯⋯⋯ 1 分;∵ △ ABC 是等边三角形,∴DBC 90o,BC23 ,⋯⋯⋯⋯⋯⋯ 2 分;由勾股定理得: CD DB 2BC 24222 7 .3 分;2 3⋯⋯( 2)作EAD60o,且使 AE AD ,连接ED、 EB.⋯⋯⋯⋯ 4 分;∴△ AED 是等边三角形,数学试卷∴ AE AD ,EAD60o,∵ △ ABC 是等边三角形,∴ AB AC ,BAC60o,C ∴EAD DAB BAC DAB ,A即EAB DAC ,∴△ EAB≌△ DAC .⋯⋯⋯⋯⋯⋯ 5 分;E D第24题图B∴ EB=DC .当点 E、D 、 B 在同一直线上时,EB 最大,∴ EB24 6 ,⋯⋯⋯⋯⋯⋯ 6 分;∴ CD的最大值为6,此时ADB 120o.C⋯⋯⋯⋯⋯⋯7分 .A B另解:作 DBF60o,且使 BF BD ,连接DF、AF.D参照上面解法给分 .第 24题图F25.解:( 1)由题意得:A10,,B3,0, D 0,-3, M10,.yC∴ AM BM CM 2 ,G Mx ∴ OC CM 2OM 2 3 ,A O B∴C 0,3D∵GC 是⊙ M 的切线,第25题图∴ GCM90o∴cos OMC OM MC⋯⋯⋯⋯⋯⋯ 1 分;MC,MG∴ 12 ,2MG∴ MG 4 ,∴ G3,0 ,∴直线 GC 的表达式为y 3 x 3 .⋯⋯⋯⋯⋯⋯ 2 分;3( 2)设过点 D 的直线表达式为y kx3,y kx 3,∴y x2 2x 3,∴x2 2 k x 0 ,或 x1 0,x2 2 k数学试卷[ (2 k )] 20 ,或 x1x2,⋯⋯⋯⋯⋯⋯3分;∴ k2 ,∴过点 D 的“蛋圆”的切线的表达式为y2x 3 .⋯⋯⋯⋯⋯⋯4分;( 3)假设点 E 在 x 轴上方的“蛋圆”上,设 E m,n ,则点F的坐标为m, n .EF 与 x 轴交于点 H,连接 EM .∴ HM 2EH22yEM ,CE∴ m12n2 4 ,⋯⋯①⋯⋯⋯⋯ 5 分; A O M H BxF ∵点 F 在二次函数y x22x 3 的图象上,D第25题图∴ m22m3n ,⋯⋯②解由①②组成的方程组得:m1 3 ; m13.( n 0舍去 )n1n1⋯⋯⋯⋯⋯⋯ 6 分;由对称性可得:m1 3 ; m 1 3 .⋯⋯⋯⋯⋯⋯7 分;n1n1∴E1 1 31,,E2 131,,E3 13,-1 ,E4 1 3,-1 .⋯⋯⋯⋯⋯⋯8分 .。
2019年北京市通州区中考数学一模试卷(解析版)

2019年北京市通州区中考数学一模试卷一、选择题(每小题2分,共16分)1.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104B.1.07×105C.1.7×104D.1.07×1043.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.4.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.5.实数a,b在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0B.a﹣b<0C.D.a2>b26.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数7.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时8.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t 秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④B.①③C.①②③D.②③④二、填空题(每小题2分,共16分)9.请你写出一个位于平面直角坐标系中第二象限内的点的坐标.10.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:.11.已知a,b为两个连续的整数,且a<<b,则b a=.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十,今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买两种酒2斗共付30钱,问买美酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为.13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.14.已知a2+1=3a,则代数式a+的值为.15.完全相同的3个小球上面分别标有数﹣2、﹣1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是.16.尺规作图:过直线外一点作已知直线的平行线.作法如下:请回答:PM平行于l的依据是.三、解答题(第17-25题每题5分,26题7分,27、28题每题8分)17.计算:﹣2cos30°.18.解不等式组,并把它的解集表示在数轴上.19.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数y=的图象于点N,若NM=NP,求n的值.21.关于x的一元二次方程x2+(m﹣1)x﹣(2m+3)=0.(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根.22.如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.23.体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.24.如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.25.如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.26.在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.27.如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.28.在平面直角坐标系xOy中有不重合的两个点Q(x1,y1)与P(x2,y2),若Q、P为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”,记作D PQ,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”,例如在图1中,点P(1,1),点Q(3,2),此时点Q与点P之间的“直距”D PQ=3.(1)①已知O为坐标原点,点A(2,﹣1),B(﹣2,0),则D AO=,D BO=.②点C在直线y=﹣x+3上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=2x+4上一动点,请你直接写出点E与点F之间“直距”D EF的最小值.2018年北京市通州区中考数学一模试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山【分析】分别利用刻度尺测量三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙各点之间的距离,即可得到图上哪两个点之间距离最短.【解答】解:由图可得,三亚﹣﹣永兴岛两个点之间距离最短,故选:A.【点评】本题主要考查了两点间的距离,连接两点间的线段的长度叫两点间的距离.2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104B.1.07×105C.1.7×104D.1.07×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10700=1.07×104,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:A、“祝”的对面是“成”,故本选项错误;B、“祝”的对面是“成”,故本选项错误;C、三个汉字的位置不对应,故本选项错误;D、符合,故本选项正确.故选:D.【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.注意正方体的平面展开图中,相对的两个面中间一定隔着一个小正方形.5.实数a,b在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0B.a﹣b<0C.D.a2>b2【分析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【解答】解:由数轴,得b<﹣1,0<a<1.A、a+b<0,故A错误;B、a﹣b>0,故B不符合题意;C、<0,故C符合题意;D、a2<1<b2,故D不符合题意;故选:C.【点评】本题考查了实数与数轴,利用点在数轴上的位置得出b<﹣1,0<a<1是解题关键,又利用了有理数的运算.6.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【解答】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选:B.【点评】本题考查了随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.7.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时【分析】由折线统计图和条形统计图对各选项逐一判断即可得.【解答】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.8.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t 秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④B.①③C.①②③D.②③④【分析】根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.【解答】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;所有点中,只有点D到A距离为2个单位,故③正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.故选:C.【点评】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.二、填空题(每小题2分,共16分)9.请你写出一个位于平面直角坐标系中第二象限内的点的坐标(﹣2,1)(答案不唯一).【分析】直接利用第二象限点的坐标特点得出答案.【解答】解:平面直角坐标系中第二象限内的点的坐标为:(﹣2,1)(答案不唯一).故答案为:(﹣2,1)(答案不唯一).【点评】此题主要考查了点的坐标,正确掌握每个象限内点的坐标性质是解题关键.10.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:这一天的最高气温约是26°.【分析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:根据图象可得这一天的最高气温约是26°,故答案为:这一天的最高气温约是26°.【点评】本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.11.已知a,b为两个连续的整数,且a<<b,则b a=9.【分析】直接利用的取值范围得出a,b的值,即可得出答案.【解答】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴b a=32=9.故答案为:9.【点评】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十,今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买两种酒2斗共付30钱,问买美酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为.【分析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【解答】解:依题意得:.故答案是:.【点评】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.14.已知a2+1=3a,则代数式a+的值为3.【分析】直接将原式通分变形,进而得出答案.【解答】解:∵a2+1=3a,∴a+=+===3.故答案为:3.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.15.完全相同的3个小球上面分别标有数﹣2、﹣1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是.【分析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【解答】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.尺规作图:过直线外一点作已知直线的平行线.作法如下:请回答:PM平行于l的依据是两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【分析】利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.【解答】解:由作法得PM=AB,BM=PA,∴四边形ABMP为平行四边形,∴PM∥AB.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.三、解答题(第17-25题每题5分,26题7分,27、28题每题8分)17.计算:﹣2cos30°.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=3+1﹣3﹣=4﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组,并把它的解集表示在数轴上.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①,得x≥3,解不等式②,得x≥﹣1.5,∴不等式组的解是x≥3,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.19.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB =EC,根据等腰三角形的性质、三角形内角和定理计算即可;(2)根据勾股定理解答.【解答】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(2)AE2+EB2=AC2.∵∠AEC=90°,∴AE2+EC2=AC2,∵EB=EC,∴AE2+EB2=AC2.【点评】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数y=的图象于点N,若NM=NP,求n的值.【分析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x﹣n可得答案.【解答】解:(1)∵点A的坐标为(4,3),∴OA=5,∵OA=OB,∴OB=5,∵点B在y轴的负半轴上,∴点B的坐标为(0,﹣5),将点A(4,3)代入反比例函数解析式y=中,∴反比例函数解析式为y=,将点A(4,3)、B(0,﹣5)代入y=kx+b中,得:k=2、b=﹣5,∴一次函数解析式为y=2x﹣5;(2)由(1)知k=2,则点N的坐标为(2,6),∵NP=NM,∴点M坐标为(2,0)或(2,12),分别代入y=2x﹣n可得:n=﹣4或n=8.【点评】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.21.关于x的一元二次方程x2+(m﹣1)x﹣(2m+3)=0.(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根.【分析】(1)根据根的判别式列出关于m的不等式,求解可得;(2)取m=﹣3,代入原方程,然后解方程即可.【解答】解:(1)根据题意,△=(m﹣1)2﹣4[﹣(2m+3)]=m2+6m+13=(m+3)2+4,∵(m+3)2+4>0,∴方程总有两个不相等的实数根;(2)当m=﹣3时,由原方程得:x2﹣4x+3=0.整理,得(x﹣1)(x﹣3)=0,解得x1=1,x2=3.【点评】本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.22.如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.【分析】(1)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可.【解答】证明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根据题意,在▱ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四边形BDFG为平行四边形,∵∠BDC=90°,∴四边形BDFG为矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,点E为BC边的中点,∴BE=ED=EC,∵在▱ABCD中,AB=CD,∴△ECD为等边三角形,∠C=60°,∴∠BAE=∠BAD=30°,∴tan∠BAE=.【点评】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.23.体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为61;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.【分析】(1)根据收集的数据整理即可得;(2)①总人数乘以样本中1分钟“仰卧起坐”项目可以得到满分的人数所占比例即可得;②根据平均数和中位数的意义分析,并结合其特点给出相应的建议即可.【解答】解:(1)补充表格如下:(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.【点评】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.24.如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.。
2019年北京通州高三一模数学理科答案.doc

通州区高三年级第一次模拟考试 数学(理科)试卷参考答案及评分标准第一部分(选择题 共40分)第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.三 10.7 11.112.()()21f x x =-(答案不唯一) 13.48 14. ① ③ , (]0-∞,三、解答题:本大题共6小题,共80分.15.解:(Ⅰ)()()22sin cos 2cos 1f x x xx =π-+-2s i n c o s c o s x x x =+sin 2cos 2x x =+………………3分2222x x ⎫=+⎪⎪⎭………………4分 s i n 24x π⎛⎫=+ ⎪⎝⎭, ………………5分 所以最小正周期22T π==π; ………………6分 (Ⅱ)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦, 2019.4所以2,22x ππ⎡⎤∈-⎢⎥⎣⎦,32,444x πππ⎡⎤+∈-⎢⎥⎣⎦. ………………7分所以当244x ππ+=-,即4x π=-时,sin 24x π⎛⎫+ ⎪⎝⎭有最小值2-10分 所以()f x 有最小值1-. ………………11分 因为当,44x ππ⎡⎤∈-⎢⎥⎣⎦时()f x m ≥恒成立, 所以1m ≤-,即m 的取值范围是(]1-∞-,. …………13分16.解:(Ⅰ)设“职工甲和职工乙微信记步数都不低于10000”为事件A . ..........1分从3月1日至3月7日这七天中,3月2日,3月5日,3月7日这三天职工甲和职工乙微信记步数都不低于10000,所以()37P A =; ..........3分 (Ⅱ)X 的所有可能取值为0,1,2, ..........4分()0P X ==712723=C C ,()1P X ==74C 271314=⋅C C ,()2P X ==722724=C C ...........7分 X 的分布列为..........8分()14280127777E X =⨯+⨯+⨯=;..........10分(Ⅲ)3月3日. ..........13分由直方图知,微信记步数落在[20,25],[15,20),[10,15),[5,10),[0,5)(单位:千步)区间内的人数依次为300.15200=⨯人,500.25200=⨯人,600.3200=⨯人,400.2200=⨯人,人.由甲微信记步数排名第68,可知当天甲微信记步数在15000---20000之间,根据折线图知,这只有3月2日、3月3日和3月7日;而由乙微信记步数排名第142,可知当天乙微信记步数在5000---10000之间,根据折200.1200=⨯线图知,这只有3月3日和3月6日. 所以只有3月3日符合要求.17.(Ⅰ)证明:在菱形ABCD 中,因为DE ⊥AB ,所以DE ⊥AE ,DE ⊥EB .所以 . ………………1分 因为 , , 平面 , 平面 ,所以 平面 . ………………3分 因为 平面 ,所以平面 平面 . ………………4分 (Ⅱ)解:由(Ⅰ)知 , , ,如图建立空间直角坐标系E-xyz ,则 ………………5分 E (0,0,0),B (2,0,0), , ,所以,, . ………………6分 设平面 的法向量 ,由 , ,………………7分 得, ,所以, .令 ,则 , .所以 . ………………8分 所以, 又 , ,所以cos ,A E A E A E '⋅'<>==='⋅n n n………………9分所以直线 与平面 . ………………10分 (Ⅲ)由(Ⅱ)可知, , ,设 ,则 ………………11分. ………………12分 因为EF //平面 ,所以, 即 . ………………13分所以,即.所以1DFFA='. ………………14分 18.解:(Ⅰ)由已知,得,所以3c e a ===. ..........3分 又,所以 ..........4分所以椭圆C 的标准方程为,离心率e = ..........5分 (Ⅱ)设.①当直线l 与x 轴垂直时,点A ,B 的坐标分别为(0,(0. 因为()0,m m MA x y =- ,()0m m MB x y =-,()0,0mmMO x y=--,所以(3,3)m m MA MB MO x y ++=--=0.所以0m x =,0m y =,即点M 与原点重合. ..........6分 ②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+. .......... ..........7分由221321x y y kx ⎧+=⎪⎨⎪=+⎩,, 得()2232630k x kx ++-=, .......... ..........8分()22236123272240k k k ∆=++=+>.所以,1224032y y k +=>+. .......... ..........9分因为,,, 所以1212(03,03)0m m MA MB MO x x x y y y ++=++-++-=.a =1c =222a b c =+b =22132x y +=11(,)m m MA x x y y =--22(,)m m MB x x y y =--(0,0)m m MO x y =--所以12123,3m m x x x y y y +=+=.2232m k x k -=+,243032m y k =>+. .......... ..........11分消去k 得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. .......... ..........12分 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端: 2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称. ......... ......... ......14分19.解: (Ⅰ)当0k =时,()221f x x x -==,()3322f x x x -'=-=-. ..........1分 所以()12f '-=, ()11f -=. .........2分所以曲线()y f x =在点()()11f --,处的切线方程为 ()()()()111y f f x ⎡⎤'--=---⎣⎦, .....................................3分即230x y -+=; .....................................4分 (Ⅱ)0k ≠时,(ⅰ)()f x =,定义域为, ..........................5分所以()f x '==. .......... ........ ..............7分 2xe kx{}0|≠x x 422x x e x ke kx kx ⋅-⋅42)2xx kx e kx -⋅(令()0f x '=,得2x k=. .......... ........ ..........8分 ①当0k >时,在()0-∞,和,()0f x '>;在,()0f x '<. 所以()f x 的单调递增区间为()0-∞,和,单调递减区间为;.........9分 ②当0k <时,在,()0f x '>;在和,()0f x '<. 所以()f x 的单调递增区间为,单调递减区间为2k ⎛⎫-∞ ⎪⎝⎭,和()0+∞,;....10分 (ⅱ)由()f x 在区间()01,内单调递减, ①当0k >时,()01,,有,所以; ..........11分 ②当0k <时, ()f x 在递减,符合题意. ..........12分 综上k 的取值范围是()(]002,,-∞. ..........13分20. 解:(Ⅰ)集合()S S T --的所有元素是:248163264,,,,,; ............................2分 (Ⅱ)当首项是1,末项是100时,公差最大为11,即11D =.这样的数列只有1个:1,12,23,34,45,56,67,78,89,100; ............................4分 当选取的10个数是连续自然数时,公差最小为1,即1d =.这样的数列首项可以是12391,,,,中的任何一个,因此共有91个公差为1的等差数列.......... ......... .......6分S假设存在含有10个元素的集合A ,使得S -A 中不含10个元素组成的等差数列.显然每连续10个元素中必有集合A 中的唯一一个元素,即表的每行、每列中必有集合A 中的唯一一个元素.),2(+∞k)2,0(k),2(+∞k)2,0(k)(0,2k),(k 2-∞),(∞+0)(0,2k⊆)2,0(k12≥k20≤<k ),(∞+0记表中第i行第j列的数为(),i j.若第i(1≤i≤9)行中集合A的唯一元素为(i,j),则第i+1行中(i+1,1),(i+1,2),┈(i+1,j)中必有集合A中元素.若第i(1≤i≤9)行的第一个数在集合A中,则此行余下九个数和下一行第一个数可以组成等差数列,与假设矛盾.因此,第一列中集合A的唯一元素只可能在第十行.同理,若第i(1≤i≤8)行的第二个数在集合A中,则此行余下八个数和下一行前两个数可以组成等差数列,与假设矛盾.因此,第二列中集合A的唯一元素只可能在第九行.依此类推,得A={10,19,28,37,46,55,64,73,82,91}.此时,另一条对角线上的十个元素{1,12,23,34,45,56,67,78,89,100}构成等差数列,与假设矛盾.综上,原命题成立............................13分注:解答题学生若有其它解法,请酌情给分.。
2019年北京市通州区初三一模数学试卷及答案

2019年北京市通州区初三⼀模数学试卷及答案通州区2019年初三第⼀次模拟考试数学试卷参考答案及评分标准⼀、选择题(本题共8个⼩题,每⼩题2分,共16分)⼆、填空题(本题共8个⼩题,每⼩题2分,共16分)9. 答案不唯⼀,如1- 10. 60?11. 40?12. 答案不唯⼀,如4-,4 13. 40 14. E ,两点之间线段最短 15. 10 16. 4三、解答题(本题共68分,第17-22题,每⼩题5分,第23-26题,每⼩题6分,第27,28题,每⼩题7分) 17. 解:原式=261-+ ………………… 4分 =21-+=1 . ………………… 5分18. 解:解不等式①,342x x -<-, ………………… 1分2x -<-,2x >. ………………… 2分解不等式②,23x -≥, ………………… 3分 5x ≥ .………………… 4分∴不等式组的解集为5x ≥. ………………… 5分19.(1)使⽤直尺和圆规,补全图形;(保留作图痕迹)………………… 2分(2)完成下⾯的证明.证明:连接FG 、DE .∵△ADE ≌△CFG , ………………… 3分∴∠DAE = ∠FCG . ………………… 4分∴CG ∥AB (同位⾓相等,两直线平⾏)(填推理的依据). ………………… 5分20.解:(1)⼀元⼆次⽅程()2210x x n +--=有两个不相等的实数根,∴△=()22410n -?-->, ………………… 1分即4440n +->,∴ 0n >. ………………… 2分(2)∵ n 为取值范围内的最⼩整数,∴1n =.………………… 3分∴ 220x x += ∴ ()20x x +=∴ 10x =,22x =-. ………………… 5分 21.(1)证明:∵AD ∥BE ,AE ∥BD ,∴四边形EADB 是平⾏四边形. ……………… 1分∵AB 平分∠EAD ,∴EAB DAB ∠=∠. ∵AE ∥BD ,∴EAB DBA ∠=∠. ∴DAB DBA ∠=∠. ∴AD BD =.∴四边形EADB 是菱形. ……………… 2分(2)解:∵∠ACB =90°,∠BAC =60°,BC=∴tan 60BCAC==∴2AC =. ……………… 3分∴11222ACB S AC BC ==??=V g ……………… 4分∵AE ∥BC ,∴ECB ACB S S ==V V . ……………… 5分22. 解:(1)把A (1,2)代⼊函数(0)my x x=>中,∴21m =. ∴2m =. ……………… 1分(2)①过点C 作x 轴的垂线,交直线l 于点E ,交x 轴于点F .当点C 是线段BD 的中点时,1CE CF ==.∴点C 的纵坐标为1.……………… 2分把1y =代⼊函数2y x=中,得2x =.∴点C 的坐标为(2,1). ……………… 3分把C (2,1)代⼊函数2y x b =+中,得3b =-. ……………… 4分②3b >. ……………… 5分 23.(1)证明:∵AE 是⊙O 的切线,AB 为⊙O 的直径,∴90BAE ∠=?, 90ACB ∠=?. ……………… 1分∴90BAC CAE ∠+∠=? . ∴90BAC B ∠+∠=?.∴B CAE ∠=∠. ……………… 2分∵AF =AE ,90ACB ∠=?,∴CAD CAE ∠=∠.∴B CAD ∠=∠. ……………… 3分(2)解:连接CD .∵B CAD ∠=∠,∴?AC CD =. ……………… 4分∴AC CD =.∵90ACE ∠=?,CE =2,30CAE CAF B ∠=∠=∠=?,∴tan CECAE AC∠=. ∴tan 30?=2AC.∴AC = ……………… 5分过点C 作CG ⊥AD 于点G . ∴cos AGCAF AC∠=. ∴cos 30?.∴3AG =.∵AC =CD ,90ACB ∠=?,∴ 26AD AG ==. ……………… 6分另解⼀:连接BD . 先求AB 的长,再求AD . 另解⼆:连接CD . 先求AE 的长,再证FC =FD .24. (1)补全表格: 7.6 . ……………… 1分(2)描点,画图象. ……………… 3分(3)结合画出的函数图象,解决问题:①1.5; ……………… 4分②画出直线3y x =, ……………… 5分2.6-2.9(在范围内即可) ………………25. (1)10987y组别平均分中位数⽅差合格率优秀率甲 6.7 6 3.41 90% 20% ⼄7.17.51.6980%10%……………… 2分(2)甲 ……………… 3分(3)甲或⼄ ……………… 4分甲组:甲组的合格率、优秀率均⾼于⼄组.(⼄组的平均分、中位数均⾼于甲组,且⼄组的成绩⽐甲组的成绩稳定.)……………… 6分26. 解:(1)∵⼆次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分(2)①不妨设点M 在点N 的左侧. ∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分② 15b <≤. ……………… 6分27. 解:(1)连接AE .∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三⾓形,∴AB AC =,60BAC ACB ∠=∠=?. ∴602EAC α∠=?-,AE AC =. ……………… 1分∴()1 180602602ACE αα∠=--=+. ∴6060BCF ACE ACB αα∠=∠-∠=?+-?=. ……………… 2分另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=?交AD 于点G ,连接BF . ……………… 3分∵BAF BCF α∠=∠=,ADB CDF ∠=∠,∴60ABC AFC ∠=∠=?. ∴△FCG 是等边三⾓形.∴GF = FC . ……………… 4分∵ABC △是等边三⾓形,∴BC AC =,60ACB ∠=?.∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =??∠=∠??=?,,,∴△ACG ≌△BCF .∴AG BF =. ……………… 5分∵点B 关于射线AD 的对称点为E ,∴BF EF =. ……………… 6分∴AF AG GF -=.∴AF EF CF -=. ……………… 7分另⼀种证法:作60FAH ∠=?交FC 的延长线于点H ,连接BF .28. (1)解:()2,1C ,()2,0D , ……………… 2分(2)由题意可知,点B 在直线y x =上. ∵直线y x =与直线y x b =+平⾏.过点A 作直线y x =的垂线交x 轴于点G ,∴点G 是点A 关于直线y x =的对称点. ……………… 3分∴()2,0G .过点B 作直线y x =的垂线交x 轴于点H . ∴△OBH 是等腰直⾓三⾓形. ∴点G 是OH 的中点.∴直线y x b =+过点G . ……………… 4分∴2b =-.∴b 的取值范围是20b -≤≤. ……………… 5分(32n ≤或2n -≤≤ ……………… 7分。
2019年江苏省南通市通州区中考数学一模试卷(解析版)

2019年江苏省南通市通州区中考数学一模试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列各数中,小于﹣4的是()A.﹣3B.﹣5C.0D.12.(5分)下列各式计算的结果为a5的是()A.a3+a2B.a10÷a2C.a•a4D.(﹣a3)23.(5分)2019年3月5日,李克强总理在《政府工作报告》中指出,2018年中国精准脱贫有力推进,农村贫困人口减少1386万.将数据“1386万”用科学记数法表示应为()A.1.386×108B.1.386×103C.13.86×107D.1.386×1074.(5分)下面的几何图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.圆C.平行四边形D.正六边形5.(5分)如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°6.(5分)如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm27.(5分)若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3C.0<a<3D.0<a≤28.(5分)如图,在平面直角坐标系中,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与直线y=kx交于点C(4,n),则tan∠OCB的值为()A.B.C.D.9.(5分)如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是()A.甲、乙两地之间的距离为200 kmB.快车从甲地驶到丙地共用了2.5 hC.快车速度是慢车速度的1.5倍D.快车到达丙地时,慢车距丙地还有50 km10.(5分)如图,⊙O的直径AB的长为10,点P在BA的延长线上,PC是⊙O的切线,切点为C,∠ACB的平分线交⊙O于点D,交AB于点E,若PE的长为12,则CE的长为()A.2B.C.3D.二、填空题(每题5分,满分40分,将答案填在答题纸上)11.(5分)计算:﹣=.12.(5分)小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是.13.(5分)如图,△ABC中,DE∥BC,DE分别交AB,AC于点D,E.若=,BC=10,则DE=.14.(5分)如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于度.15.(5分)若一元二次方程x2﹣4x+m=0有实数根,则m的取值范围是.16.(5分)如图,△ABC中,AB=AC=4cm,点D在BA的延长线上,AE平分∠DAC,按下列步骤作图.步骤1:分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点F,连接AF,交BC于点G;步骤2:分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点M和点N,作直线MN,交AG于点I;步骤3:连接BI并延长,交AE于点Q.若=,则线段AQ的长为cm.17.(5分)如图,矩形ABCD的对角线相交于点E,点A(0,4),点B(2,0),若反比例函数y=(x>0)的图象经过C,E两点,则k的值是.18.(5分)平面直角坐标系xOy中,若P(m,m2+4m+3),Q(2n,4n﹣8)是两个动点(m,n 为实数),则PQ长度的最小值为.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)(1)计算(﹣1)3+(﹣)﹣2﹣|﹣5|+(﹣2)0;(2)先化简,再求值:5(x+2y)(x﹣2y)﹣(2x+y)2,其中x=2,y=﹣1.20.(10分)甲、乙两人分别从距目的地3km和5km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前10min到达目的地.求甲、乙两人的速度.21.(10分)为了更好地开展体育运动,增强学生体质,学校准备购买一批运动鞋,供学生借用,为配合学校工作,学校体育部从全校各个年级随机抽查了若干名学生的鞋号,用表格整理数据(如下).鞋号34353637383940合计频数48131521百分比8%26%30%14%4%2%100%请根据相关信息,解答下列问题:(1)将表格补充完整;(2)在所抽查的鞋号组成的数据中,众数是,中位数是;(3)若该校计划购买300双运动鞋,根据样本数据,鞋号37的运动鞋应购买多少双?22.(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(10分)在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.(1)若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是;(2)在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.24.(10分)如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=2cm,CO=2 cm.(1)求BC的长;(2)求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,AB=6,BC=8,点E在BC边的延长线上,连接DE.过点B 作DE的垂线,交CD于点M,交AD边的延长线于点N.(1)连接EN,若BE=BD,求证:四边形BEND为菱形;(2)在(1)的条件下,求BM的长;(3)设CE=x,BN=y,求y关于x的函数解析式,并直接写出x的取值范围.26.(10分)已知抛物线y=ax2+bx+c的顶点为(2,1),且过点(0,5).(1)求抛物线的解析式;(2)将抛物线先向左平移1个单位长度,再向下平移m(m>0)个单位长度后得新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且OB=3OA,求m的值;②若P(x1,y1),Q(x2,y2)是新抛物线上的两点,当n≤x1≤n+1,x2≥4时,均有y1≤y2,求n的取值范围.27.(20分)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.2019年江苏省南通市通州区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】利用负数的大小比较方法:负数小于0和正数,两个负数相比较,绝对值大的反而小,比较选择答案即可.【解答】解:比﹣4小的数是﹣5.故选:B.【点评】此题考查有理数的大小比较,掌握比较的方法是解决问题的关键.2.【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则分别判断得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a10÷a2=a8,故此选项错误;C、a•a4=a5,正确;D、(﹣a3)2=a6,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘除运算以及合并同类项,正确掌握相关运算法则是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1386万=1.386×107,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,符合题意;B、圆既是轴对称图形,也是中心对称图形,不合题意;C、平行四边形不是轴对称图形,是中心对称图形,不合题意;D、正六边形既是轴对称图形,也是中心对称图形,不合题意.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=40°,∠BAC=80°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为3÷2=1.5m,圆锥的高为200cm,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形的面积公式和矩形的面积公式分别进行计算,然后求它们的和积.【解答】解:根据三视图得圆锥的母线长为2m,底面圆的半径为3÷2=1.5m,所以圆锥的侧面积=×2π×1.5×2=3π,圆柱的侧面积=2π×1.5×2=6π,所以每顶帐篷的表面积=3π+6π=9π(m2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.7.【分析】首先确定不等式的正整数解,则a的范围即可求得.【解答】解:关于x的不等式x<a恰有2个正整数解,则正整数解是:1,2.则a的取值范围:2<a≤3.故选:A.【点评】本题主要考查一元一次不等式组的整数解,根据a的取值范围正确确定a与2和3的关系是关键..8.【分析】过点O作OG垂直AB于点G,过点C作CD垂直y轴于点D,令x=0求得B(0,4),令y=0求得A(2,0),则tan∠OBA=,,设OG=x,则BG=2x,则有x2+(2x)2=42,解得x=,即OG=,BG=,根据CD=4,DB=8,勾股定理求BC==4,则tan∠OCB==.【解答】解:如图1所示,过点O作OG垂直AB于点G,过点C作CD垂直y轴于点D,令x=0,解得y=4,∴B(0,4),令y=0,解得x=2,∴A(2,0),当x=4时,y=4,∴n=4,C(4,4),∵tan∠OBA=,∴,设OG=x,则BG=2x,则有x2+(2x)2=42,解得x=,∴OG=,BG=,∵CD=4,DB=8,∴BC==4,∴CG=,∴tan∠OCB==.故选:A.【点评】此题考查了一次函数的相关性质以及锐角三角函数的相关性质,构造直角三角形并计算相关长度为解题关键.9.【分析】(1)因为两车同时出发,同向而行,所以A点就是甲、乙两地之间的距离为200千米;(2)图中B点为y=0,即快慢两车的距离为0,所以B点表示快慢两车相遇的时间.由A点为两车的路程差,相遇时间为1小时,可知:快车速度﹣慢车速度=150,再由点D可知慢车3.5小时从乙地到达丙地;由此求出慢车速度,进一步求出快车速度;(3)C点表示就是当快车到达丙地时,慢车快车的距离即慢车与丙地的距离,由路程除以速度算出慢车到达丙地的时间(就是C点的纵坐标),以及慢车距离丙地的距离(就是C点的纵坐标),得出点C坐标,设出函数解析式,代入求得即可根据坐标求得自变量的取值范围.【解答】解:∵点A(0,200),∴甲、乙两地之间的距离为200km;故A选项正确;∵慢车速度:(500﹣200)÷3=100km/h,快车速度:(100×2+200)÷2=200km/h,∴快车速度是慢车速度的2倍;故C选项不正确;∵快车速度:(100×2+200)÷2=200km/h,∴快车从甲地驶到丙地共用了2.5h;故B选项正确;∵当快车到达丙地时,行驶了2.5h,∴慢车距丙地的距离为:500﹣2.5×100=50km;故D选项正确;故选:C.【点评】此题考查一次函数的综合运用,解答问题的关键是看清图象表示的意义,利用路程、时间、速度三者之间的关系解决问题.10.【分析】连接OC,作CH⊥AB于H,如图,利用圆周角定理得到∠ACB=90°,根据切线的性质得到OC⊥PC,证明∠PCA=∠B,再证明∠PCE=∠PEC得到PC=PE=12,利用勾股定理计算出OP=13,则OE=1,接着根据面积法计算出CH=,从而可计算出OH=,则HE=OH﹣OE=,然后利用勾股定理计算CE的长.【解答】解:连接OC,作CH⊥AB于H,如图,∵AB为直径,∴∠ACB=90°,即∠B+∠BAC=90°,∵PC是⊙O的切线,∴OC⊥PC,∴∠ACB=90°,即∠PCA+∠ACO=90°而BAC=∠ACO,∴∠PCA=∠B,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠PCE=∠PCA+45°,∠PEC=∠B+∠BCE=∠B+45°,∴∠PCE=∠PEC,∴PC=PE=12,在Rt△PCO中,OP==13,∴OE=1,∵CH•PO=PC•CO,∴CH==,在Rt△OCH中,OH==,∴HE=OH﹣OE=﹣1=,在Rt△CEH中,CE==.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.二、填空题(每题5分,满分40分,将答案填在答题纸上)11.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.12.【分析】结合图形,成绩波动比较大的就是新手.【解答】解:观察表格可知,小李的成绩波动比较大,故小李是新手.故答案为:小李.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.【分析】先证明△ADE∽△ABC,根据相似三角形的性质得到()2=,则=,然后把BC=10代入可计算出DE.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,∴DE=×10=4.故答案为4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.14.【分析】根据正多边形的内角和定义(n﹣2)×180°列方程求出多边形的边数,再根据正多边形内角和为360°、且每个外角相等求解可得.【解答】解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角===60°,故答案为:60.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.15.【分析】根据关于x的一元二次方程x2+4x+m=0有实数根,可得△≥0,从而可求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+4x﹣m=0有实数根,∴△=42﹣4×1×m≥0,解得,m≤﹣4,故答案为:m≤﹣4.【点评】本题考查根的判别式,解题的关键是明确一元二次方程有实数根时△≥0.16.【分析】由作法得MN垂直平分AB,AF⊥BC于G,则IA=IB,BG=CG,设AI=5x,则BI =5x,IG=3x,所以BG=4x,在Rt△ABG中聚划算出AB=4x,从而得到x=1,所以BG=4,接着证明AE∥BC,然后了平行线分线段成比例定理可计算出AQ的长.【解答】解:由作法得MN垂直平分AB,则IA=IB;AF⊥BC于G,∵AB=AC,∴BG=CG,∵=,设AI=5x,则BI=5x,IG=3x,∴BG=4x,在Rt△ABG中,AB==4x,∴4x=4,解得x=1,∴BG=4,∵AE平分∠DAC,∴∠DAE=∠CAE,∵AB=AC,∴∠ABC=∠ACB,而∠DAC=∠ABC+∠ACB,∴∠DAE=∠ABC,∴AE∥BC,∴==,∴AQ=×4=.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和等腰三角形的性质.17.【分析】作CF⊥x轴于F,根据题意设C(2m,),则E(m,),由△AOB∽△BFC,得到=,求得m﹣1=,得到C(2m,m﹣1),由E点是AC的中点,则=+,得到m=k,从而得到C(k,k﹣1),根据反比例函数图象上点的坐标特征列出k•(k ﹣1)=k,求得即可.【解答】解:作CF⊥x轴于F,∵点A(0,4),点B(2,0),∴OA=4,OB=2,设C(2m,),则E(m,),∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABO+∠CBF=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠CBF,∵∠AOB=∠CFB=90°,∴△AOB∽△BFC,∴=,即=∴m﹣1=,∴C(2m,m﹣1),∵E点是AC的中点,∴=+,解得m=k,∴C(k,k﹣1),∴k•(k﹣1)=k,解得k=.故答案为.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.18.【分析】Q点在直线y=2x﹣8上,当P到直线的距离最小即为所求;【解答】解:Q点在直线l:y=2x﹣8上,P在抛物线y=x2+4x+3上∴直线与x,y标轴交点分别为B(4,0),D(0,8),设与直线y=2x﹣8平行的直线为y=2x+b,当直线为y=2x+b与抛物线y=x2+4x+3有一个交点时,即2x+b=x2+4x+3,∴x2+2x+3﹣b=0,∴△=﹣8+4b=0,∴b=2,此时交点坐标为A(﹣1,0),过A作AC⊥直线l,∵AB=5,DB=4,∴sin∠ABC==,∴AC=2;故答案为2;【点评】本题考查点与直线的位置关系;能够将Q点运动的轨迹找到,将问题转换为点与直线的距离是解题的关键.三、解答题(本大题共9小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1+9﹣5=4;(2)原式=5(x2﹣4y2)﹣(4x2+4xy+y2)=5x2﹣20y2﹣4x2﹣4xy﹣y2=x2﹣4xy﹣21y2,当x=2,y=﹣1时,原式=﹣9.【点评】此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】设甲的速度为3xkm/h,则乙的速度为4xkm/h,根据时间=路程÷速度结合甲比乙提前10min到达目的地,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲的速度为3xkm/h,则乙的速度为4xkm/h,依题意,得:﹣=,解得x=,经检验,x=是原方程的解,且符合题意,∴3x=,4x=6.答:甲的速度为km/h,乙的速度为6km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.【分析】(1)首先根据34鞋号的有4人占8%求得总人数,然后求得相关数据即可;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)鞋号34353637383940合计频数48131572150百分比8%16%26%30%14%4%2%100%(2)∵在这组样本数据中,37出现了15次,出现次数最多,∴这组样本数据的众数为37;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为(36+37)÷2=36.5;故答案为:37,36.5.(3)37号:300×30%=90(双),答:鞋号37的运动鞋应购买90双.【点评】考查了统计的知识以及用样本估计总体,弄清题意是解本题的关键.22.【分析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长.【解答】解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.∵在Rt△BDC中,tan∠BDC=.∴BC=CD=40 m.∵在Rt△ADC中,tan∠ADC=.∴.∴AB≈7.6(m).答:旗杆AB的高度约为7.6 m.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.23.【分析】(1)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.75左右得到比例关系,列出方程求解即可.(2)列出树状图,利用概率公式求解即可.【解答】解:(1)解:根据题意得=0.75,解得:m=3,经检验:m=3是分式方程的解,故答案为:3;(2)画树状图如下:从树状图可知,“先从盒子中随机取出一个球,再从剩下的球中再随机摸取一个球”共12种等可能的结果,其中“先摸到黑球,再摸到白球”的结果有3种,∴P(先摸到黑球,再摸到白球)==.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.24.【分析】(1)根据切线的性质得到∠OBF=∠EBF,∠OCF=∠GCF,根据平行线的性质得到∠BOC=90°,根据勾股定理即可得到结论;(2)连接OF,根据切线的性质得到OF⊥BC,根据三角形的面积公式得到OF=,根据扇形的面积公式即可得到结论.【解答】解:(1)∵AB,BC,CD分别与⊙O相切于E,F,G,∴∠OBF=∠EBF,∠OCF=∠GCF,∵AB∥CD,∴∠EBF+∠GCF=180°,∴∠OBF+∠OCF=∠EBF+∠GCF=90°,∴∠BOC=90°,∴BC===4cm;(2)连接OF,∵BC与⊙O相切于F,∴OF⊥BC,又∵S△BOC=BO•CO=BC•OF,∴2=×4×OF,∴OF=,∴S阴影=S△BOC﹣S△BOC内扇形=×2×2﹣=(2﹣)cm2.【点评】本题考查了切线的性质,扇形的面积,勾股定理,正确的作出辅助线是解题的关键.25.【分析】(1)由BD=BE,BM⊥DE依据三线合一可知∠DBN=∠EBN.由矩形性质可知AD ∥BC.易得DN∥BE,DN=BE,所以四边形DBEN是平行四边形.根据菱形的判定定理可得结论.(2)由矩形性质和菱形性质用勾股定理可计算出BD=BE=10,DE=,再由△BCM∽△DCE,即可计算BM长.(3)由△NAB∽△DCE,可得AN=.再根据勾股定理可得BN=即可得到函数解析式.【解答】解:(1)证明:∵BD=BE,BM⊥DE,∴∠DBN=∠EBN.∵四边形ABCD是矩形,∴AD∥BC.∴∠DNB=∠EBN.∴∠DBN=∠DNB.∴BD=DN.又∵BD=BE,∴BE=DN.又∵AD∥BC.∴四边形DBEN是平行四边形.又∵BD=BE,∴平行四边形DBEN是菱形.(2)∵四边形ABCD是矩形,∴∠A=∠BCD=90°,BC=AD=8,CD=AB=6.∴BE=BD==10.∴CE=BE﹣BC=2.∴在Rt△DCE中,DE==.由题意易得∠MBC=∠EDC,又∠DCE=∠BCD=90°.∴△BCM∽△DCE.∴.∴.∴BM=.(3)由题意易得∠BNA=∠EDC,∠A=∠DCE=90°∴△NAB∽△DCE,∴.∴.∴AN=.∴在Rt△ABN中,y═==.∵N在AD延长线上,∴AN>8,即:,∴综上所述:y═.其中0<x<.【点评】本题主要考查了矩形的性质、相似三角形的判定与性质、解方程等知识,对运算能力的要求比较高,灵活运用相似三角形和勾股定理求线段长是解题关键.26.【分析】(1)设抛物线解析式为顶点式y=a(x﹣2)2+1(a≠0),把点(0,5)代入求值;(2)根据二次函数图象几何变换规律得到新抛物线y=(x﹣1)2+1﹣m=x﹣2x+2﹣m.①利用抛物线解析式求得点A、B的坐标,根据抛物线的对称性质和方程思想求得m的值即可;②根据抛物线的对称性质知:当x=4和x=﹣2时,函数值相等.结合图象,得.解该不等式组得到:﹣2≤n≤3.【解答】解:(1)∵顶点为(2,1),∴y=ax2+bx+c=y=a(x﹣2)2+1(a≠0).又∵抛物线过点(0,5),∴a(0﹣2)2+1=5,∴a=1.∴y=(x﹣2)2+1;(2)抛物线y=(x﹣2)2+1先向左平移1个单位长度,再向下平移m个单位长度后得新抛物线y=(x﹣1)2+1﹣m=x2﹣2x+2﹣m.①分情况讨论:如图1,若点A,B均在x轴正半轴上,设A(x,0),则B(3x,0),由对称性可知:=1,∴x=,A(,0).∴()2﹣2×+2﹣m.∴m=.如图2,若点A在x轴负半轴上,点B在x轴正半轴上,设A(x,0),则B(﹣3x,0),由对称性可知:=1,∴x=﹣1,A(﹣1,0).∴(﹣1)2﹣2×(﹣1)+2﹣m=0.∴m=5.综上:m=或m=5;②∵新抛物线开口向上,对称轴为直线x=1,∴当x=4和x=﹣2时,函数值相等.又∵当n≤x1≤n+1,x2≥4时,均有y1≤y2,∴结合图象,得.∴﹣2≤n≤3.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.27.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=﹣3代入y=﹣2x+4,可得x分别为﹣,,点P的坐标为(﹣,7)或(,﹣3);(3)利用“最佳三点矩形”的定义画出图形,有两种可能,可分别求得解析式.【解答】解:(1)①如图1,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(﹣2,3),∴|x M﹣x N|=6,|y M﹣y N|=2.又∵m=1,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=﹣1或5.(2)如图2,①易得点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=﹣2x+4,可得x分别为,;结合图象可知:≤m≤;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=﹣3代入y=﹣2x+4,可得x分别为﹣,;∴点P的坐标为(﹣,7)或(,﹣3);(3)如图3,设抛物线的解析式为y=ax2+bx+c,经过点(﹣1,1),(1,1),(3,3),∴,,∴,同理抛物线经过点(﹣1,3),(1,3),(3,1),可求得抛物线的解析式为y=﹣,∴抛物线的解析式y=x2+或y=﹣x2+.【点评】本题主要考查了二次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通州区2019年初三第一次模拟考试数学试卷2019年4月一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个. 1. 如图,∠AOB 的角平分线是( )A .射线OBB .射线OEC .射线ODD .射线OC2. 港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( ) A .47.610⨯B .37610⨯C .50.7610⨯D .57.610⨯3. x 的取值范围为( ) A .2x >B .2x ≥C .2x =D .2x ≠4.某几何体的平面展开图如图所示,则该几何体是( ) A .三棱锥 B .三棱柱C .四棱锥D .四棱柱5. 如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3B .3-C .13 D .13- 6.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设绳子长x 尺,木条长y 尺,则根据题意所列方程组正确的是( )A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩,B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩,C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩, D . 4.5112x yx y -=⎧⎪⎨-=⎪⎩,7. 2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年—2018年我国研究与试验发展(R&D)经费支出及其增长速度情况. 2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.根据统计图提供的信息,下列说法中合理的是( )A .2014年—2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加B .2014年—2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年C .2014年—2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017年D .2018年,基础研究经费约占该年研究与试验发展( (R&D)经费支出的10%8. 为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图. 如图,y 轴上动点M 的纵坐标m y 表示学生的期中考试成绩,直线10x =上动点N 的纵坐标n y 表示学生的期末考试成绩,线段MN 与直线6x =的交点为P ,则点P 的纵坐标P y 就是这名学生的学期总评成绩. 有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%. 结合这张算图进行判断,其中正确的说法是( )A. ①③B. ②③C. ②D. ③二、填空题(本题共8个小题,每小题2分,共16分)9. 实数a ,b 在数轴上对应点的位置如图所示,若实数c 满足ac bc >,那么请你写出一个符合题意的实数c 的值:c =________.b a 432-4-3-21-10%亿元2014-2018年我国研究与试验发展(R&D )经费支出及其增长速度10. 如图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,如果AC CD =,则∠ACD 的度数是_________.11. 中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为__________.12. 若多项式2x ax b ++可以写成()2x m +的形式,且0ab ≠,则a 的值可以是_____,b 的值可以是_____ .13. 小华同学的身高为170 cm ,测得他站立在阳光下的影长为85 cm ,紧接着他把手臂竖直举起,测得影长为105 cm ,那么小华举起的手臂超出头顶的长度为____________ cm.14. 如图所示,在一条笔直公路l 的两侧,分别有A 、B 两个小区,为了方便居民出行,现要在公路l 上建一个公共自行车存放点,使存放点到A 、B 小区的距离之和最小,你认为存放点应该建在 处(填“C ”“E ”或“D ”),理由是____________________________15. 在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后再继续摸出一球……,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 根据列表,估计出n 的值最有可能的是 .16.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为__________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:)116tan 3012-⎛⎫-︒-⎪⎝⎭A18. 解不等式组: 32431.22x x x +<⎧⎪⎨-⎪⎩,≥19.已知:如图1,在△ABC 中,∠ACB =90°.求作:射线CG ,使得CG ∥AB .图1 图2下面是小东设计的尺规作图过程. 作法:如,2,①以点A 为圆心,适当长为半径作弧,分别交AC ,AB 于D ,E 两点; ②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ; ③以点F 为圆心,DE 长为半径作弧,两弧在∠FCB 内部交于点G ; ④作射线CG .所以射线CG 就是所求作的射线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接FG 、DE .∵△ADE ≌ △_________, ∴∠DAE = ∠_________.∴CG ∥AB (__________________________)(填推理的依据).20.关于x 的一元二次方程()2210x x n +--=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.21. 如图,在△ABC 中,∠ACB =90°,D 是BC 边上的一点,分别过点A 、B 作BD 、AD 的平行线交于点E ,且 AB 平分∠EAD .(1)求证:四边形EADB 是菱形;(2)连接EC ,当∠BAC =60°,BC=ECB 的面积.22.如图,在平面直角坐标系xOy 中,直线2y x =与函数()0my x x=>的图象交于点A (1,2). (1)求m 的值;(2)过点A 作x 轴的平行线l ,直线2y x b =+与直线l 交于点B ,与函数()0my x x=>的图象交于点C ,与x 轴交于点D .①当点C 是线段BD 的中点时,求b 的值; ②当BC BD >时,直接写出b 的取值范围.23. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点E ,在弦BC 上取一点F ,使AF =AE ,连接AF 并延长交⊙O 于点D .(1)求证:B CAD ∠=∠;(2)若CE =2,30B ∠=︒,求AD 的长.ABC24. 数学活动课上,老师提出问题:如图1,在Rt △ABC 中,90C ∠=︒,BC =4 cm ,AC =3 cm ,点D 是AB 的中点,点E 是BC 上一个动点,连接AE 、DE . 问CE 的长是多少时,△AED 的周长等于CE 长的3倍. 设CE =x cm ,△AED 的周长为y cm (当点E 与点B 重合时,y 的值为10). 小牧根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小牧的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2(3)结合画出的函数图象,解决问题:①当CE 的长约为 cm 时,△AED 的周长最小; ②当CE 的长约为 cm 时,△AED 的周长等于CE 的长的3倍.图1 图225. 某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.y/(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)(3)如果学校准备推荐其中一个组参加区级比赛,你推荐____参加,请你从两个不同的角度说明推荐理由.26. 已知二次函数2y x ax b =-+在0x =和4x =时的函数值相等. (1)求二次函数2y x ax b =-+的对称轴;(2)过P (0,1)作x 轴的平行线与二次函数2y x ax b =-+的图象交于不同的两点M 、N .①当2MN =时,求b 的值;②当=4PM PN +时,请结合函数图象,直接写出b 的取值范围.27.如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F .(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M 为线段AB 上一点. (1)在点()2,1C ,()2,0D ,()1,2E 中,可以与点M 关于直线y x =对称的点是____________; (2)若x 轴上存在点N ,使得点N 与点M 关于直线y x b =+对称,求b 的取值范围.(3)过点O 作直线l ,若直线y x =上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),.请你直接写出点N 横坐标n 的取值范围.通州区2019年初三第一次模拟考试 数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 答案不唯一,如1- 10. 60︒ 11. 40︒ 12. 答案不唯一,如4-,4 13. 40 14. E ,两点之间线段最短 15. 10 16. 4三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17. 解:原式=2613-⨯-+………………… 4分=21-+=1 . ………………… 5分18. 解:解不等式①,342x x -<-, ………………… 1分2x -<-,2x >. ………………… 2分解不等式②,23x -≥, ………………… 3分 5x ≥ . ………………… 4分 ∴不等式组的解集为5x ≥. ………………… 5分19. (1)使用直尺和圆规,补全图形;(保留作图痕迹)………………… 2分(2)完成下面的证明. 证明:连接FG 、DE .∵△ADE ≌ △CFG , ………………… 3分 ∴∠DAE = ∠FCG . ………………… 4分 ∴CG ∥AB (同位角相等,两直线平行)(填推理的依据). ………………… 5分20.解:(1)一元二次方程()2210x x n +--=有两个不相等的实数根,∴ △=()22410n -⨯-->⎡⎤⎣⎦, ………………… 1分即4440n +->,∴ 0n >. ………………… 2分 (2)∵ n 为取值范围内的最小整数,∴1n =.………………… 3分∴ 220x x +=∴ ()20x x +=∴ 10x =,22x =-. ………………… 5分21.(1)证明:∵AD ∥BE ,AE ∥BD ,∴四边形EADB 是平行四边形. ……………… 1分 ∵AB 平分∠EAD , ∴EAB DAB ∠=∠. ∵AE ∥BD , ∴EAB DBA ∠=∠. ∴DAB DBA ∠=∠. ∴AD BD =.∴四边形EADB 是菱形. ……………… 2分(2)解:∵∠ACB =90°,∠BAC =60°,BC=∴tan 60BCAC︒==∴2AC =. ……………… 3分∴11222ACBSAC BC ==⨯⨯= ……………… 4分 ∵AE ∥BC ,∴2ECBACBSS== ……………… 5分22. 解:(1)把A (1,2)代入函数(0)my x x=>中, ∴21m=. ∴2m =. ……………… 1分(2)①过点C 作x 轴的垂线,交直线l 于点E ,交x 轴于点F .当点C 是线段BD 的中点时,1CE CF ==.∴点C 的纵坐标为1.……………… 2分 把1y =代入函数2y x=中, 得2x =.∴点C 的坐标为(2,1). ……………… 3分 把C (2,1)代入函数2y x b =+中,得3b =-. ……………… 4分 ②3b >. ……………… 5分 23. (1)证明:∵AE 是⊙O 的切线,AB 为⊙O 的直径,∴90BAE ∠=︒, 90ACB ∠=︒. ……………… 1分 ∴90BAC CAE ∠+∠=︒ . ∴90BAC B ∠+∠=︒.∴B CAE ∠=∠. ……………… 2分 ∵AF =AE ,90ACB ∠=︒,∴CAD CAE ∠=∠.∴B CAD ∠=∠. ……………… 3分 (2)解:连接CD .∵B CAD ∠=∠,∴AC CD =. ……………… 4分 ∴AC CD =.∵90ACE ∠=︒,CE =2,30CAE CAF B ∠=∠=∠=︒, ∴tan CECAE AC∠=. ∴tan 30︒=2AC.∴AC = ……………… 5分 过点C 作CG ⊥AD 于点G . ∴cos AGCAF AC∠=. ∴cos 30︒.∴3AG =. ∵AC =CD ,90ACB ∠=︒,∴ 26AD AG ==. ……………… 6分另解一:连接BD . 先求AB 的长,再求AD . 另解二:连接CD . 先求AE 的长,再证FC =FD .24. (1)补全表格: 7.6 . ……………… 1分(2)描点,画图象. ……………… 3分 (3)结合画出的函数图象,解决问题:①1.5; ……………… 4分②画出直线3y x =, ……………… 5分2.6-2.9(在范围内即可) ………………25. (1) ……………… 2分(2)甲 ……………… 3分 (3)甲或乙 ……………… 4分10987y甲组:甲组的合格率、优秀率均高于乙组.(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定.)……………… 6分26. 解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分(2)① 不妨设点M 在点N 的左侧. ∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分27. 解:(1)连接AE .∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形, ∴AB AC =,60BAC ACB ∠=∠=︒. ∴602EAC α∠=︒-,AE AC =. ……………… 1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形,∴BC AC =,60ACB ∠=︒. ∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E ,∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .28. (1)解:()2,1C ,()2,0D , ……………… 2分(2)由题意可知,点B 在直线y x =上. ∵直线y x =与直线y x b =+平行.过点A 作直线y x =的垂线交x 轴于点G ,∴点G 是点A 关于直线y x =的对称点. ……………… 3分∴()2,0G .过点B 作直线y x =的垂线交x 轴于点H . ∴△OBH 是等腰直角三角形. ∴点G 是OH 的中点.∴直线y x b =+过点G . ……………… 4分 ∴2b =-.∴b 的取值范围是20b -≤≤. ……………… 5分(32n ≤或2n -≤≤ ……………… 7分。