地灾监测预警系统方案

合集下载

地质灾害监测预警应急系统实施方案

地质灾害监测预警应急系统实施方案

地质灾害监测预警应急系统实施方案目录1.项目概述 (4)1.1.建设背景 (4)1.2.现状描述 (4)1.3.管理目标 (4)1.4.建设目标 (5)1.4.1.实现防控防治管理 (5)1.4.2.实现联动联防管理 (5)1.4.3.实现预警分析 (5)2.建设内容 (6)2.1.建设原则 (6)2.2.建设内容 (7)3.系统设计 (9)3.1.总体设计 (9)3.2.设计方法 (10)3.3.系统架构 (10)3.4.硬件配置 (11)3.4.1.网络硬件 (11)3.4.2.专属设备 (13)4.功能设计 (16)4.1.地质灾害基础信息管理系统 (16)4.1.1.首页展示 (16)4.1.2.地图操作 (17)4.1.3.地灾查询 (17)4.1.4.地灾统计 (18)4.1.5.地灾专题图 (19)4.1.6.隐患点管理 (19)4.1.7.避灾点管理 (20)4.1.8.其他字典表管理 (21)4.1.9.防治工程管理 (21)4.1.10.隐患点巡查管理 (21)4.1.11.预警信息管理 (22)4.1.12.地质灾害点评估专家库管理 (22)4.1.13.地质灾害点评估备案 (22)4.2.地质灾害在线监测预警系统 (22)4.2.1.监测点管理 (23)4.2.2.监测点专题图 (23)4.2.3.监测数据查看 (23)4.2.4.实时监测数据展示 (24)4.2.5.监测数据分析 (24)4.2.6.预警分析处理 (24)4.2.7.预警分析结果审核 (24)4.2.8.预警发布 (24)4.2.9.预警信息处置反馈 (25)4.2.10.在线监测数据解析 (25)4.3.地质灾害气象监测预警系统 (25)4.3.1.气象数据接入 (25)4.3.2.雨量监测点管理 (25)4.3.3.降雨量实时分析 (26)4.3.4.降雨量等值分析 (26)4.3.5.降雨强度报表 (26)4.3.6.降雨强度图表分析 (27)4.3.7.气象预警分析处理 (27)4.3.8.预警分析结果审核 (28)4.3.9.预警发布 (28)4.3.10.预警信息处置反馈 (28)4.4.地质灾害移动应用系统 (28)4.4.1.巡查任务执行 (29)4.4.2.巡查问题上报 (29)4.4.3.问题处置和反馈 (29)4.4.4.防治工程进展记录 (29)4.4.5.预警信息签收 (29)4.4.6.预警信息处置和反馈 (29)4.4.7.现场多媒体信息采集和上报 (30)4.5.地质灾害应急指挥系统 (30)4.5.1.定位灾情 (30)4.5.2.灾情分析 (30)4.5.3.救灾疏离 (30)4.5.4.航拍数据载入 (30)4.5.5.战时指挥 (31)4.5.6.视频接入 (31)4.5.7.灾情评估 (31)4.6.数据互联互通接口 (31)4.6.1.省厅数据汇交 (31)4.6.2.区县数据汇交 (32)4.6.3.数字城市接口 (32)4.6.4.市级应急指挥平台接口 (32)5.实施计划 (32)6.建设预算 (33)1.项目概述1.1.建设背景全球变暖带来的极端气候频现和快速经济发展带来的人为因素对地灾发生推波助澜,使地灾频发、损失加剧,国家省市关注民生重视地灾工作。

地质灾害监测系统建设方案

地质灾害监测系统建设方案

地质灾害监测系统建设方案地质灾害监测系统建设方案第一章:地质灾害滑坡体监测设计的原则、依据和技术指标1.监测的内容和任务在地质灾害监测系统建设方案中,我们需要考虑监测的内容和任务。

监测的内容包括滑坡体的形态、位移、速度、裂缝、地下水位等信息,任务则是及时发现、预警和处理地质灾害。

2.监测设计的原则、依据和技术指标监测设计需要遵循以下原则:科学性、可行性、先进性、实用性、经济性和可维护性。

监测的依据包括地质灾害的成因、滑坡体的形态和特征、监测目的和任务等。

技术指标包括监测精度、可靠性、稳定性等。

3.监测依据监测依据需要考虑地质灾害的成因、滑坡体的形态和特征、监测目的和任务等。

根据这些依据,我们可以确定监测的内容和任务,并制定相应的监测方案。

4.系统技术指标系统技术指标需要考虑监测的精度、可靠性、稳定性等因素。

我们需要选择先进的监测技术和设备,确保监测数据的准确性和可靠性。

第二章:滑坡立体监测设计1.拟设计监测的主要的参数滑坡体监测的主要参数包括滑坡体的形态、位移、速度、裂缝、地下水位等信息。

我们需要选择合适的监测设备和技术,确保监测数据的准确性和可靠性。

2.滑坡体监测拓扑图滑坡体监测拓扑图需要绘制滑坡体的形态和特征,以便确定监测点的位置和数量。

我们需要考虑监测的精度和覆盖范围,选择合适的监测点布置方案。

3.现场监测各子系统现场监测各子系统包括高精度GPS自动化监测和滑坡体表面裂缝监测之振弦式裂缝计。

我们需要选择先进的监测设备和技术,确保监测数据的准确性和可靠性。

同时,我们需要定期维护和更新监测设备,确保监测系统的稳定性和可靠性。

2.3.3 拉线式裂缝计监测滑坡体表面裂缝拉线式裂缝计是一种常用的滑坡体表面裂缝监测仪器。

它通过在滑坡体表面设置拉线,并测量拉线两端的距离变化,来判断滑坡体表面裂缝的变化情况。

该仪器具有精度高、响应快等优点,适用于各种类型的滑坡体表面裂缝监测。

2.3.4 固定测斜仪监测滑坡体深部位移固定测斜仪是一种用于监测滑坡体深部位移的仪器。

地质灾害应急监测方案

地质灾害应急监测方案

地质灾害应急监测方案我国幅员辽阔,地质和地理环境复杂,气候条件时空差异大,同时也是由于复杂的地质地貌条件使得我国成为世界上地质灾害最严重的国家之一,我国地质灾害主要包括崩塌、滑坡、泥石流、地面塌陷、沉降、地裂缝等,具有分布广泛、活动频繁、危害严重的特点。

据国土资源部统计,崩塌、滑坡和泥石流,分布范围占国土陆地面积的44.8%,地质灾害对我国人民生命财产及国民经济的威胁极其严重,严重影响我国社会经济的可持续发展。

那么地质灾害应该如何监测?让店铺给大家科普一下具体方法吧。

地质灾害监测任务和监测目标监测任务是在对地质灾害隐患点实地勘查的基础上,结合当地水文、地质情况,依照各项规范要求,在地质灾害的关键点、特殊点上,采用表面位移、雨量、视频、地声/次声、泥(水)位等监测技术,对诱发灾害的各种物理参数进行远程自动实时监测,并与各级应急平台数据中心实时通信,通过专业监测预警软件系统进行预警分析,采用远程报警技术,对灾害体附近受威胁人群及时发布预警信息。

1)实现对地质灾害相关监测数据的实时采集、传输、计算、分析,实时掌握整体运行的安全状态;2)直观显示各项监测、监控信息数据的历史变化过程及当前状态,为管理人员提供简单、明了、直观、有效的信息参考;3)一旦出现紧急异常情况(如位移量或位移速率超过警界值),系统能及时发出预警信息;4)能实现安全监测系统的远程登录、远程访问、远程管理、远程控制和远程维护。

地质灾害监测联动系统采用分层分布式结构第一层,为监测地质环境的具体指标(如:地表形变监测、土体含水率、裂缝位移、地下水水位、大气参数、水雨情等)的前端采集器;第二层,为数据通信模块,支持上、下双向通讯,可选择采用GPRS/SMS/北斗卫星等通讯方式。

采集器所获数据可通过监测预警平台的通信模块,上行发送至监测控制中心后端接收器;第三层,为监测控制系统平台。

通过对各层设备和系统功能的整合,通过与GPRS/SMS/北斗卫星连接,在平台上实现对前端采集器的命令下发,上传监测数据的获取、处理、存储及管理,从而实现监测设备的实时联动。

地灾治理工程工作方案

地灾治理工程工作方案

地灾治理工程工作方案一、工程背景地质灾害是指地球表面由于地质因素(如地质构造、地下水、地表水等)引起的,对人类生产、生活和环境造成危害的自然灾害现象。

在地质灾害防治工程中,包括山洪灾害防治、滑坡灾害防治、地面塌陷灾害防治、泥石流灾害防治、地裂缝灾害防治等。

近年来,地质灾害在全球范围内频发,给人民生命财产造成了严重的威胁和损失,因此地质灾害防治工程显得尤为重要。

二、工程目的本工程旨在对目标地区的地质灾害进行有效的治理和防范,减少对人民生命财产的伤害和损失,保障地区的安全和发展。

三、工程范围本工程主要涉及目标地区的山洪灾害、滑坡灾害、地面塌陷灾害、泥石流灾害等地质灾害的治理和防范工作。

四、工程内容1. 山洪灾害治理针对目标地区的山洪灾害,将进行以下工作:- 开展山洪灾害易发区的调查和评估,确定治理重点区域;- 设计和施工山洪灾害治理工程,包括山洪沟整治、堤防加固、山洪溢河道治理等;- 建立山洪灾害监测预警系统,对山洪灾害进行实时监测和预警,为防灾救灾工作提供支持。

2. 滑坡灾害治理针对目标地区的滑坡灾害,将进行以下工作:- 通过地质勘察和评估,确定滑坡灾害易发区,制定治理方案;- 设计和施工滑坡治理工程,包括边坡加固、排水排灌等;- 加强对滑坡灾害原因和发展过程的研究,提高滑坡灾害的预警预报能力。

3. 地面塌陷灾害治理针对目标地区的地面塌陷灾害,将进行以下工作:- 进行地质勘察和评估,确定地面塌陷灾害易发区;- 设计和实施地面塌陷灾害治理工程,包括填方整治、地基加固等;- 加强对地面塌陷灾害的监测和预警,提高对地面塌陷灾害的认识和控制能力。

4. 泥石流灾害治理针对目标地区的泥石流灾害,将进行以下工作:- 进行泥石流易发区的调查和评估,确定治理重点区域;- 设计和施工泥石流治理工程,包括拦石坝、导流沟、排石坝等;- 建立泥石流灾害监测预警系统,对泥石流进行实时监测和预警,为防灾救灾工作提供支持。

五、工程流程1. 前期工作- 制定地质灾害调查评估方案,组织开展地质灾害易发区的调查和评估工作;- 制定地质灾害治理规划,确定治理重点区域和治理方式。

地质灾害监测预警预报平台建设方案

地质灾害监测预警预报平台建设方案

NB-IoT LoRa 、Sigfox蓝牙、zigbee 等短距技术
分别向支持高速率,低延时的5G及低功耗、广覆盖的窄带物联网发展;网络技术的成熟推动物联网业务高速发展!
NB-IoT 技术优势
地质灾害监测预警预报平台
超大连接 支撑海量设备连接的能力, 是现有4G网络能力的80倍+
速率 3 大连接 2 1 0 覆盖增强
北斗系统在地质灾害中的应用优势和应用
优 势: 受环境制约小 同时具备定位与通信功能 自主开发,独立产权
地质灾害监测预警预报平台
应 用: 汶川地震、玉树地震、芦山地震、鲁甸 地震、舟曲特大泥石流灾害等灾害救援
网络连接技术发展-窄带网
市场业务机会
高速率 (>1Mbps)
地质灾害监测预警预报平台
地质灾害监测预警预报平台建设方案
地质灾害监测预警预报平台
目录
Contents
地质灾害理解
地质灾害
以地质动力活动或地质环境异常变化为主要成因的自然
灾害。简称(地灾)地质灾害主要分为:崩塌、滑坡、 泥石流、地面塌陷、地裂缝、地面塌陷等六种类型
《地质灾害防治条例》(国务院令第394号);
《国土资源部关于加强地质灾害危险性评估工作的通知》 (国土资发〔2004〕69号); 《国家突发地质灾害应急预案》(2006年3月16日实施)
北斗基准站
位移
土壤含水率
雨量监测
渗压计
裂缝计
地质灾害监测目的:预警+防治
地质灾害监测预警预报平台
系统技术特点
地质灾害断的三维高精度测量
测站间无需通视,窄带数据传输
量程大,参考站和监测点距离基本不受限制, 可进行大范围监测;大链接、低功耗

地灾监测预警系统设计

地灾监测预警系统设计

华测地质灾害监测系统上海华测导航技术有限公司2013年7月目录第一章地质灾害滑坡体监测设计的原则、依据和技术指标 (1)2.1监测的内容和任务 (1)2.2监测设计的原则、依据和技术指标 (1)2.3监测依据 (3)2.4系统技术指标 (4)第二章滑坡立体监测设计 (5)2.1 拟设计监测的主要的参数 (5)2.2 滑坡体监测拓扑图 (6)2.3 现场监测各子系统 (8)2.3.1 高精度GPS自动化监测 (8)2.3.2 滑坡体表面裂缝监测之振弦式裂缝计 (24)2.3.3 滑坡体表面裂缝监测之拉线式裂缝计 (28)2.3.4滑坡体固定测斜深部位移监测 (30)2.3.5 孔隙水渗压计水位监测 (36)2.3.6土压力计 (39)2.3.7 土壤温湿度监测 (43)2.3.8气象监测站 (44)2.4北斗传输 (45)第三章、软件介绍 (46)第四章、服务体系 (50)4.1 保修、维修和升级服务 (50)4.2 技术培训 (51)4.3 技术服务 (51)第一章地灾监测技术指标2.1监测的内容和任务1)针对不同地质灾害点具体特征、影响因素,建立较完整的监测剖面和监测网,使之成为系统化、立体化的监测系统;2)及时快速的对不同地质灾害点的现状做出评价,并进行预测预报,将可能发生的危害降到最低限度;3)能够为各个滑坡体建立起地表位移变化、内部位移变化和水位变化的系统监测网络,建立管理平台,各级地质环境监测主管部门都能实时的了解滑坡体的安全状况,以便及时采用相应的管理措施。

4)监测滑坡体地表形变区的位移变化动态,内部位移变化的动态和滑坡体内部水位变化动态对其发展趋势做出预测预报;5)对比评价不同条件下的监测数据,进一步预测地表形变区域变形的趋势,指导场地规划建设。

6)及时反应出地表形变区的安全情况,为地质环境监测主管部门提供可靠的依据。

2.2监测设计的原则、依据和技术指标本监测系统是一个集结构分析计算、计算机技术、通信技术、网络技术、传感器技术等高新技术于一体的综合系统工程。

1 四川—地质灾害监测预警体系建设案例

1 四川—地质灾害监测预警体系建设案例

地质灾害监测预警体系建设案例 地质灾害监测预警体系建设案例中国移动四川公司 2010年 2010年9月1目 录1前言 前期开展项目简述 建设方案说明 项目合作模式 下一步推广建议22 3 45国家高度重视地质灾害的防治工作在全国地质灾害防治“十一五”规划中,国家明确提出了今后地质灾 害防治四个方面的重点工作内容:• 建立监测信息系统、预警预报系统、远程会商和应急指挥系统; • 实施地灾防治科技专项工程: • 地灾调查与监测关键技术研究,重大地灾应急救灾关键技术研究,地 灾防治的标准体系研究以及滑坡泥石流治理试验研究; • 建立以3S技术、自动监测技术和数据远程传输为一体的地灾调查评 价和监测预报技术平台,建立完善的地灾防治标准体系; • 开发针对我国地灾发育特点的地灾防治方法和技术装备。

在2006年5月22日福建泉州举行的全国地质灾害群防群测现场会议上 ,会议要求各国土部门全面建设地灾专业监测网和群测群防体系,建 立监测信息系统、预警预报系统、远程会商和应急指挥系统,以加强 地质灾害的防治,保障人民群众的生命财产。

3中国移动四川公司打造地质灾害预警监测平台随着近年泥石流、山洪滑坡等地质灾害频频发生,政府对民生安全问题日 趋关注,作为具有强烈社会责任感的国有企业,中国移动四川公司高度关注 “民生安全”,结合政府及行业主管部门的现实需求,积极利用自身优势资 源与各级政府部门建立地质灾害防治建设战略合作关系,助力省内各地地质 灾害预警监测各项工作的开展。

中国移动四川公司的目标: ■构筑一个平台,助力政府预警监测工作更加高效、便捷。

■树立一面旗帜,打造中西部地质灾害预警监测信息化工作标杆。

■搭建一座桥梁,聚合中西部地质灾害预警监测信息产业链。

4我国地质灾害监测现状■专业监测: – 监测参数多,精度高,设备投资大,适用于三峡库区、西气东输、 南水北调等国家重大工程项目建设区。

目前主要还处于试验阶段。

■群测群防监测: – 人工巡视巡查,以定期巡测和汛期强化监测相结合的方式进行。

地质灾害监测方案

地质灾害监测方案

地质灾害监测方案1. 引言地质灾害是指在地质过程中,由于自然因素或人类活动引发的导致人员伤亡、财产损失及环境破坏的现象。

地质灾害的监测对于及早发现、预警和采取应对措施具有重要意义。

本文将介绍地质灾害监测方案,包括监测目标、监测方法和监测体系等内容。

2. 监测目标地质灾害监测的目标是及早发现地质灾害的迹象,预测和预警地质灾害的发生,并在灾害发生前采取相应的措施,减少灾害的损失。

具体的监测目标包括:1.地震监测:监测地震活动的强度、时空分布以及地震前兆,提前预警地震灾害。

2.滑坡监测:监测滑坡体的位移和变形,预测滑坡发生的可能性。

3.泥石流监测:监测降雨情况、地下水位变化和土体饱和度等,预测泥石流的危险等级。

4.地面沉降监测:监测地下水位变化和地下开采活动对地面沉降的影响。

5.地裂缝监测:监测地表裂缝的扩展和演变过程,预测地裂缝的危险程度。

3. 监测方法地质灾害监测主要通过物理、化学和遥感等方法进行。

具体的监测方法包括:1.地震监测:利用地震监测站网络监测地震波产生的振动、地壳变形和电磁场变化等信息。

2.滑坡监测:采用测量仪器(如位移传感器、加速度计等)监测滑坡体的位移和变形情况。

3.泥石流监测:利用降雨量监测站和流量监测站等设备,收集降雨和流量数据,并结合遥感技术进行综合分析。

4.地面沉降监测:采用全站仪、水准仪等仪器,定期测量地面沉降情况。

5.地裂缝监测:通过摄像机、GPS等设备实时监测地裂缝的扩展情况,并进行图像分析。

4. 监测体系地质灾害监测体系由观测设备、数据传输系统、数据处理与分析系统以及应急预警系统等组成。

具体的监测体系包括:1.观测设备:包括地震仪器、位移传感器、测量仪器等各种专业监测设备。

2.数据传输系统:采用无线传输、有线传输等方式,将监测数据传输到数据处理与分析系统。

3.数据处理与分析系统:利用计算机和专业软件,对传输的监测数据进行处理、分析和模型建立,提供灾害预测和预警。

4.应急预警系统:根据监测数据和分析结果,实现对地质灾害的及时预警,并采取应急措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华测地质灾害监测系统上海华测导航技术有限公司2013年7月目录第一章地质灾害滑坡体监测设计的原则、依据和技术指标 (1)2.1监测的内容和任务 (1)2.2监测设计的原则、依据和技术指标 (1)2.3监测依据 (3)2.4系统技术指标 (4)第二章滑坡立体监测设计 (5)2.1 拟设计监测的主要的参数 (5)2.2 滑坡体监测拓扑图 (6)2.3 现场监测各子系统 (8)2.3.1 高精度GPS自动化监测 (8)2.3.2 滑坡体表面裂缝监测之振弦式裂缝计 (24)2.3.3 滑坡体表面裂缝监测之拉线式裂缝计 (28)2.3.4滑坡体固定测斜深部位移监测 (30)2.3.5 孔隙水渗压计水位监测 (36)2.3.6土压力计 (39)2.3.7 土壤温湿度监测 (43)2.3.8气象监测站 (44)2.4北斗传输 (45)第三章、软件介绍 (46)第四章、服务体系 (49)4.1 保修、维修和升级服务 (49)4.2 技术培训 (50)4.3 技术服务 (51)第一章地灾监测技术指标2.1监测的内容和任务1)针对不同地质灾害点具体特征、影响因素,建立较完整的监测剖面和监测网,使之成为系统化、立体化的监测系统;2)及时快速的对不同地质灾害点的现状做出评价,并进行预测预报,将可能发生的危害降到最低限度;3)能够为各个滑坡体建立起地表位移变化、内部位移变化和水位变化的系统监测网络,建立管理平台,各级地质环境监测主管部门都能实时的了解滑坡体的安全状况,以便及时采用相应的管理措施。

4)监测滑坡体地表形变区的位移变化动态,内部位移变化的动态和滑坡体内部水位变化动态对其发展趋势做出预测预报;5)对比评价不同条件下的监测数据,进一步预测地表形变区域变形的趋势,指导场地规划建设。

6)及时反应出地表形变区的安全情况,为地质环境监测主管部门提供可靠的依据。

2.2监测设计的原则、依据和技术指标本监测系统是一个集结构分析计算、计算机技术、通信技术、网络技术、传感器技术等高新技术于一体的综合系统工程。

本监测系统的作用是成为一个功能强大并能真正长期用于结构损伤和状态评估,满足位移监测的需要,同时又具经济效益的结构健康安全监控系统,遵循以下设计原则和依据。

1)监测设计原则(1)科学合理性原则⏹监控对象的选取有科学和法律依据,尤其符合相关安全规程和规定,是必要的;⏹监控手段的选取有高科技含量,是先进的;⏹监控效果准确有效。

(2)经济实用性原则⏹凡是需要较大投入的监控项目都是需要经常使用的;⏹凡是原系统已具备的功能或结构装置,只要准确有效,都采用系统整合的方法加以利用,相互配合;⏹所有涉及的技术手段,在保证长期可靠有效的前提下,采用最经济的方案;⏹所有的操作功能都采用最简洁的使用方法、做到直观方便、性能稳定以及维护简单。

(3)系统可扩展性原则⏹在监控方案要求改变时,本次投入的软硬件设备能够继续使用,最大限度减少重复投入;⏹系统接口开放性:系统输出的数据信息采用国际或国内通用的标准格式,便于系统功能扩充和监测成果的开发利用;系统软件系统支持其它监测设备数据分析、支持人工巡检记录等。

2.3监测依据本系统建设方案设计严格遵循以下相关规范:表2-1 系统依据的规范2.4系统技术指标1)各监测点的响应时间一般为4小时一次,最快可为几分钟一次,系统可根据需要进行设置;2)各监测子系统的监测精度达到国内先进水平:表面位移监测水平3-5mm,内部位移监测精度1.5″(量程不同,精度不同)等。

3)系统完全是自动运行,如数据自动传输、数据自动处理及表面采用GPS监测时的自动网平差、数据自动分析、自动报警及自动生成报表等,系统管理员可对系统进行远程控制、参数设置等操作;4)用户可根据各监测点位置的地质情况分别设置预警值,如果某监测点监测结果超过预警值,系统则通过短消息、声光或者E-mail的方式自动报警给相关人员;5)数据分析软件可自动分析各监测点的实时与历史三维变化情况、各监测点沉降速率实时与历史变化情况,通过各个监测点反映出整个滑坡体的形变动态;第二章滑坡立体监测设计2.1 设计方案地质灾害监测系统设计由清华同方股份有限公司设计,设计参考了当前所有新技术新方法,并积极引入新的科技手段,为滑坡体的可靠监测和治理提供了立体、科学的指导方向。

此次拟监测的方案如下:1)滑坡体表面位移监测;(GPS监测系统)2)滑坡体表面裂缝监测(裂缝计)3)滑坡体内部位移监测(固定测斜仪)4)滑坡体内部水位监测(孔空隙水渗压监测)5)滑坡体内部土压力监测(土压力计)6)组合气象站(雨量计、风速计、气压、风向、湿度、温度传感器)7)土壤温湿度监测(土壤温湿度传感器)2.2 滑坡体监测拓扑图图3-1 滑坡体监测拓扑图滑坡体监测系统主要由:滑坡体野外传感器采集系统、数据通讯系统和监控预警系统三大部分组成。

1)野外传感器部分:(1)表面位移监测a)采用高精度GPS定位设备b)滑坡体表面裂缝监测,采用拉线式位移计(2)滑坡体内部监测:a)采用固定测斜仪进行滑坡体内部位移监测b)采用孔隙水压力计进行滑坡体地下水位监测c)采用土压力计进行内部土压力监测,(4)一体化气象站(雨量计、风速计、气压、温度、风向、湿度传感器)(5)采用土壤温湿度传感器监测滑坡体的温度和湿度。

2)数据传输部分:由于滑坡体所处的位置,移动和联通的手机信号都比较好,考虑到通讯实时稳定性、建设成本本次滑坡采用3G进行通讯。

3)数据处理与控制子系统:由布置在监控中心的小型机系统、服务器系统及软件系统组成;4)辅助支持系统:包括外场机柜、外场机箱、配电及UPS、防雷等子系统。

2.3 现场监测各子系统2.3.1 高精度GPS自动化监测2.3.1.1 GPS自动化监测系统的工作原理全球定位系统(global positioning system,缩写为GPS),是美国国防部于1973年11月授权开始研制的海陆空三军共用的新一代卫星导航系统。

GPS由空间部分、地面监控部分和用户接收机3部分组成。

经过20多年的研究和试验,整个系统于1994年完全投入使用。

在地球上任何位置、任何时刻GPS可为各类用户连续地提供动态的三维位置、三维速度和时间信息,实现全球、全天候的连续实时导航、定位和授时。

目前、GPS已在大地测量、精密工程测量、地壳形变监测、石油勘探等领域得到广泛应用。

具体定位原理如下图:图3-2 GPS差分示意图通过近十多年的实践证明,利用GPS定位技术进行精密工程测量和大地测量,平差后控制点的平面位置精度为1mm~2mm,高程精度为2mm~3mm。

应该说:利用GPS定位技术进行变形监测,是一种先进的高科技监测手段,而用GPS监测滑坡体是GPS技术变形监测的一种典型应用。

通常有两种方案:①用几台GPS接收机,由人工定期到监测点上观测,对数据实施处理后进行变形分析与预报;②在监测点上建立无人值守的GPS观测系统,通过软件控制,实现实时监测解算和变形分析、预报。

GPS监测系统成功应用于各大桥梁、边坡、大坝等监测项目。

随着中国自主研发建设的北斗卫星导航系统的逐步完善,北斗必将成为国际主流的卫星导航系统,目前GPS接收机已经可以实现全面兼容北斗卫星信号。

支持GPS+北斗解算,北斗系统在亚太的应用效果远远优于GPS,接收机在高遮挡地区抗干扰能力显著增强,GPS+北斗的解算模式更大程度的提高了监测数据的稳定性。

2.3.1.2 传统监测手段与GPS自动化监测系统优劣势对比1)传统监测手段常规变形监测技术包括采用经纬仪、水准仪、测距仪、全站仪等常规测量仪器测定点的变形值,其优点是:(1)能够提供变形体整体的变形状态;(2)适用于不同的监测精度要求、不同形式的变形体和不同的监测环境;(3)可以提供绝对变形信息。

但外业工作量大,布点受地形条件影响,不易实现自动化监测。

特殊测量手段包括应变测量、准直测量和倾斜测量,它具有测量过程简单、可监测变形体内部的变形、容易实现自动化监测等优点,但通常只能提供局部和相对的变形信息。

摄影测量技术包括地面摄影测量技术和航空摄影测量技术。

近10余年来,近景摄影测量在隧道、桥梁、大坝、滑坡、结构工程及高层建筑变形监测等方面得到了应用,其监测精度可达mm级。

与其他变形监测技术相比较,近景摄影测量的优点是:(1)可在瞬间精确记录下被摄物体的信息及点位信息;(2)可用于规则、不规则或不可接触物体的变形监测;(3)相片上的信息丰富、客观又可长久保存,有利于进行变形的对比分析;(4)监测工作简便、快速、安全。

但摄影距离不能过远,且大多数的测量部门不具备摄影测量所需的仪器设备,摄影测量技术在变形监测中应用尚不普及。

2)GPS自动化监测系统的优点(1)优点利用GPS定位技术进行地质灾害监测时具有下列优点:⏹测站间无需保持通视:由于GPS定位时测站间不需要保持通视,因而可使变形监测网的布设更为自由、方便。

可省略许多中间过渡点(采用常规大地测量方法进行变形监测时,为传递坐标经常要设立许多中间过渡点),且不必建标,从而可节省大量的人力物力。

⏹可同时测定点的三维位移:采用传统的大地测量方法进行变形监测时,平面位移通常是用方向交汇,距离交汇,全站仪极坐标法等手段来测定;而垂直位移一般采用精密水准测量的方法来测定。

水平位移和垂直位移的分别测定增加了工作量。

且在山区等地进行崩滑地质灾害监测时,由于地势陡峻,进行精密水准测量也极为困难。

改用三角高程测量来测定垂直位移时,精度不够理想。

而利用GPS定位技术来进行变形时则可同时测定点的三维位移。

由于我们关心的只是点位的变化,故垂直位移的监测完全可以在大地高系统中进行。

这样就可以避免将大地高转换为正常高时由于高程异常的误差而造成的精度损失。

虽然采用GPS定位技术来进行变形监测时,垂直位移的精度一般不如水平位移的精度好,但采取适当措施后仍可满足要求。

⏹全天候观测:GPS测量不受气候条件的限制,在风雪雨雾中仍能进行观测。

这一点对于汛期的崩塌、滑坡、泥石流等地质灾害监测是非常有利的。

⏹易于实现全系统的自动化:由于GPS接收机的数据采集工作是自动进行的,而且接收机又为用户预备了必要的入口,故用户可以较为方便地把GPS变形监测系统建成无人值守的全自动化的监测系统。

这种系统不但可保证长期连续运行,而且可大幅度降低变形监测成本,提高监测资料的可靠性。

可以获得mm级精度:mm级的精度已可满足一般崩滑体变形监测的精度要求。

需要更高的监测精度时应增加观测时间和时段数正因为GPS定位技术具有上述优点,因而在滑坡、崩塌、泥石流等地质灾害的监测中得到了广泛的应用,成为一种新的有效的监测手段。

2)总结从上面分析可得,利用GPS进行变形监测的优点要远远大于缺点的制约,所以说:GPS技术的应用给测量技术带来了一场深刻的革命。

相关文档
最新文档