QPSK通信系统性能分析与MATLAB仿真报告
QPSK通信系统性能分析与MATLAB仿真讲解

QPSK通信系统性能分析与MATLAB仿真讲解QPSK(Quadrature Phase Shift Keying)是一种调制方式,常用于数字通信中的短波通信和卫星通信等场景。
在QPSK通信系统中,将每个二进制位编码为相位不同的信号,通常使用正交载波来实现。
为了分析和评估QPSK通信系统的性能,可以使用MATLAB进行仿真。
下面将具体讲解如何进行QPSK通信系统性能分析和MATLAB仿真。
首先,我们需要定义一些基本参数。
QPSK调制是基于二进制编码的,因此将要发送的数据转换为二进制比特流。
可以使用MATLAB中的函数来生成二进制比特流,如`randi([0,1],1,N)`,其中N是比特流的长度。
在这里,可以自行选择比特流的长度。
接下来,需要将二进制比特流分组为2比特一组,以便编码为相位信息。
可以使用MATLAB中的函数来进行分组,如`reshape(bit_stream,2,length(bit_stream)/2)'`,其中bit_stream是二进制比特流。
这里的重点是要确保二进制比特流的长度为2的倍数。
然后,将每组2比特编码为相位信息。
QPSK调制使用4个相位点来表示4种可能的组合,通常用0、π/2、π和3π/2来表示这些相位点。
可以使用MATLAB中的函数生成这些相位信息,如`phase_data =[0,pi/2,pi,3*pi/2]`。
接下来,通过幅度和相位信息生成QPSK信号。
可以使用MATLAB中的函数来生成QPSK信号,如`qpsk_signal = cos(2*pi*f*t+phase)`,其中f是载波频率,t是时间,phase是相位信息。
然后,添加噪声到QPSK信号中以模拟实际通信环境。
可以使用MATLAB中的函数来添加噪声,如`noisy_signal =awgn(qpsk_signal,SNR)`,其中SNR是信噪比。
最后,解调接收到的信号以恢复原始数据。
可以使用MATLAB中的函数来解调信号,如`received_bits = reshape(received_signal,[],2) > 0`。
(完整word版)QPSK通信系统性能分析与MATLAB仿真

淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真学院:电子工程学院学期:2013-2014-2专业班级:姓名:学号:评语:成绩:签名:日期:QPSK通信系统性能分析与MATLAB仿真1 绪论1.1 研究背景与研究意义数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。
数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。
数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。
根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。
本实验采用QPSK。
QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 课程设计的目的和任务目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。
课程设计的任务是:(1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。
基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验容 (3)1.3.1实验平台 (3)1.3.2实验容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于MATLAB的QPSK系统仿真设计实现分析范文

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生姓名:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验内容 (3)1.3.1实验平台 (3)1.3.2实验内容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
qpsk、bpsk蒙特卡洛仿真matlab代码

qpsk、bpsk的蒙特卡洛仿真是一种用于测试和验证通信系统性能的重要工具。
通过模拟大量的随机输入数据,并对系统进行多次仿真运算,可以对系统的性能进行全面评估,包括误码率、信噪比要求等。
在matlab中,我们可以通过编写相应的仿真代码来实现qpsk、bpsk 的蒙特卡洛仿真。
下面将分别介绍qpsk和bpsk的蒙特卡洛仿真matlab代码。
一、qpsk的蒙特卡洛仿真matlab代码1. 生成随机的qpsk调制信号我们需要生成一组随机的qpsk调制信号,可以使用randi函数生成随机整数序列,然后将其映射到qpsk符号点上。
2. 添加高斯白噪声在信号传输过程中,会受到各种干扰,其中最主要的干扰之一就是高斯白噪声。
我们可以使用randn函数生成高斯白噪声序列,然后与调制信号相加,模拟信号在传输过程中受到的噪声干扰。
3. 解调和判决接收端需要进行解调和判决操作,将接收到的信号重新映射到qpsk符号点上,并判断接收到的符号与发送的符号是否一致,从而判断是否发生误码。
4. 统计误码率通过多次仿真运算,记录错误判决的次数,从而可以计算出系统的误码率。
二、bpsk的蒙特卡洛仿真matlab代码1. 生成随机的bpsk调制信号与qpsk相似,我们需要先生成一组随机的bpsk调制信号,然后模拟信号传输过程中的噪声干扰。
2. 添加高斯白噪声同样使用randn函数生成高斯白噪声序列,与bpsk调制信号相加。
3. 解调和判决接收端对接收到的信号进行解调和判决,判断接收到的符号是否与发送的符号一致。
4. 统计误码率通过多次仿真运算,记录错误判决的次数,计算系统的误码率。
需要注意的是,在编写matlab代码时,要考虑到信号的长度、仿真次数、信噪比的范围等参数的选择,以及仿真结果的统计分析和可视化呈现。
qpsk、bpsk的蒙特卡洛仿真matlab代码可以通过以上步骤实现。
通过对系统性能进行全面评估,可以帮助工程师优化通信系统设计,提高系统的可靠性和稳定性。
基于MATLAB的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于 MATLAB 的QPSK系统仿真设计与实现学生学号:学生:所在班级:任课教师:2016年 10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验容 (3)1.3.1实验平台 (3)1.3.2实验容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
基于Matlab的QPSK通信系统建模与仿真综述

•
•
D_sam=conv(D_s_sam,BB);
• 3.相偏的预测 Discriminator_Out(pos_timing)=(sign(D_timing(pos_timin g))*(Q_timing(pos_timing))sign(Q_timing(pos_timing))*D_timing(pos_timing))/(sqrt( 2)*abs(D_timing(pos_timing)+1j*Q_timing(pos_timing)));
QPSK中文全称是“正交相移键控”。从名字可以看出属于“相位” 调制。 QPSK四相移键控是目前最常用的一种卫星数字信号调制方式。 优点:(1)频谱效率比较高,(2)误码率小(抗干扰能力强),(3)电路 实现简单。
二.QPSK调制解调基本原理
• 2.1QPSK调制
• 说明: 基带信号A(t)是单极性不归零双极性码元,串/并转换之后 变成并行码元a和b。这两路码元分别用两路正交的载波相 乘。相加之后即可得到QPSK信号。 • 原因: QPSK信号可以看成是两路BPSK信号相加的结果。上面 的每一路其实是一个BPSK调制。
• 5.3 误比特率曲线 • 5.3.1 信噪比SNR与比特能量比/噪声功率谱密度的转换 • QPSK通信系统不存在频偏时,为了得到统一的误比特率曲 线,我们用Eb/No作为我们的自变量。关于Eb/No与SNR的 关系有以下说明:EbNo就是Eb/No。 Eb表示单位比特的能 量,单位是焦耳(Joules)。No表示功率谱密度,单位是瓦 特/赫兹(Watts/Hz)。SNR就是S/R。S表示信号功率,单 位是瓦特(Watts)。N表示噪声功率,单位是瓦特 (Watts)。显然SNR单位是无量纲的。EbNo的单位是 Joules·Hz/ Watts,其实也是无量纲的。因为Watts表示是焦 耳/秒(Joules /s),而1 Hz=1/s。EbNo与SNR关系转换:
QPSK通信系统性能分析与MATLAB仿真

QPSK通信系统性能分析与MATLAB仿真QPSK是一种常见的调制方式,广泛应用于数字通信系统中。
在QPSK通信系统中,传输的数据被分为两个相互正交的子载波进行调制,每个子载波可以携带2位二进制数据。
本文将对QPSK通信系统的性能进行分析,并使用MATLAB进行仿真。
首先,我们需要了解QPSK调制的基本原理。
在QPSK中,发送端的数据被分为两个二进制数据流,分别称为I路和Q路。
通过调制器对I路和Q路进行调制生成正交的载波信号,然后进行并行传输。
接收端接收到信号后,通过对两路信号进行解调,并将解调后的数据进行重新组合,得到原始数据。
为了分析QPSK通信系统的性能,我们需要考虑到噪声的影响。
在传输过程中,信号会受到各种噪声的干扰,如加性高斯白噪声。
这些噪声会使得接收信号误码率增加。
我们可以使用误码率(Bit Error Rate)来评估系统的性能,误码率是指发送的比特和接收到的比特不一致的比率。
为了进行性能分析,我们可以进行理论分析和仿真两个步骤。
在理论分析中,我们可以通过理论计算得到系统的误码率曲线。
而在仿真过程中,我们可以通过编写一段MATLAB代码来模拟整个通信系统,然后进行模拟传输并统计误码率。
在仿真过程中,我们首先需要生成发送端的数据流。
这可以通过随机生成0和1的序列来实现。
然后,我们将数据流分为I路和Q路,并对每一路进行调制生成载波信号。
接下来,我们引入噪声,在信号上添加高斯白噪声。
然后,我们将接收到的信号进行解调,并将解调后的数据重新组合。
最后,我们统计误码率和信噪比(Signal-to-Noise Ratio)之间的关系,并绘制性能曲线。
通过MATLAB进行仿真,我们可以调整信噪比,并观察误码率的变化。
通过仿真实验,我们可以得到系统在不同信噪比下的性能表现。
通过比较理论结果和仿真结果,我们可以验证我们的分析是否准确。
总结起来,QPSK通信系统的性能分析是一个重要的研究课题。
通过理论分析和MATLAB仿真,我们可以得到系统在不同信噪比下的性能表现,并且验证我们的分析是否准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:QPSK通信系统性能分析与MATLAB仿真学院:电子工程学院学期:2013-2014-2专业班级:姓名:学号:QPSK通信系统性能分析与MATLAB仿真1 绪论1.1 研究背景与研究意义数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。
数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。
数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。
根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。
本实验采用QPSK。
QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 课程设计的目的和任务目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。
课程设计的任务是:(1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。
(2)训练学生网络设计能力。
(3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。
1.3 可行性分析QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
QPSK分为绝对相移和相对相移两种。
由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK。
它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。
其也是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。
2 QPSK通信系统正交相移键控(Quadrature Phase Shift Keying:QPSK)通信系统已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。
要求利用Matlab语言对QPSK通信系统进行仿真,验证QPSK的特性(如误码率随信噪比的增加而减小)。
2.1 基于MATLAB的QPSK通信系统的基本模型QPSK通信系统的基本模型图如图1所示。
图1 QPSK通信系统的基本模型图2.2 QPSK通信系统的性能指标2.2.1 有效性指标(1)码元传输速率RB码元传输速率通常又称为码元速率,传码率,码率,信号速率或波形速率,直单位时间内传输码元的数目,单位为波特,常用B表示(2)信息传输速率R b信息传输速率简称信息速率,又称比特率,表示单位时间内传送的比特数,单位为bit/s(3)频带利用率频带利用率指的是传输效率问题,定义为:单位频带内码元传输速率的大小即η= Rb/B(B/Hz)用信息速率形式表示为η=Rb/B (b/(s.Hz))2.2.2 可靠性指标(1)码元差错率Pe码元差错率简称误码率,指接受错误的码元数在传送码元数中所占的比例。
准确的说,误码率就是码元在传输系统中被传错的概率,表示为:Pe=单位时间内接收的错误码元数/单位时间内系统传输的总码元数(2)信息差错率Pb信息差错率称误信率或误比特率,指接收错误的信息量在传送信息总量所占比例。
表示为:Pb=单位时间内接受的错误比特数(错误信息量)/单位时间内系统传输的总比特数(总信息量)结论:一定范围内,随着信噪比逐渐变大,其误码率逐渐减小。
3 QPSK通信系统的主要模块3.1 信源/信宿及其编译码13折线近似的PCM编码器测试模型图如图2所示。
图2 PCM编码主要过程是将话音、图像等模拟信号每隔一定时间进行取样,使其离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。
PCM的解码主要是将数字信号转换成模拟信号。
13 折线近似的PCM解码器测试模型图如图3所示。
图3 PCM解码器测试模型图3.2 QPSK调制/解调我们将信息直接转换得到的较低频率的原始信号称为基带信号。
通常基带信号不宜直接在信道中传输。
因此在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内,而在接收端,再将它们搬移(解调)到原来的频率范围,这就是调制和解调。
图4 QPSK调制与解调图3.3 信道信道(information channels)是信号的传输媒质,可分为有线信道和无线信道两类。
有线信道包括明线、对称电缆、同轴电缆及光缆等。
无线信道有地波传播、短波电离层反射、超短波或微波视距中继、人造卫星中继以及各种散射信道等。
如果我们把信道的范围扩大,它还可以包括有关的变换装置,比如:发送设备、接收设备、馈线与天线、调制器、解调器等,我们称这种扩大的信道为广义信道,而称前者为狭义信道。
3.4 信道编码及译码3.4.1 编码原理为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。
实质是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样,由信息码元和监督码元共同组成一个由信道传输的码字。
一旦传输过程中发生错误,则信息码元和监督码元间的约束关系被破坏。
在接收端按照既定的规则校验这种约束关系,从而达到发现和纠正错误的目的。
3.4.2 RS编码介绍卷积码编码器参数设置表如表3-1所示,RS码编码器模块及其参数设置表3-2所示。
表3-1 卷积码编码器参数设置表Trellis structure poly2trellis(9, [753 561])Reset None表3-2 RS码编码器模块及其参数设置表Codeword length N 8Message length K 2Primitive polynomial [1 0 1 1]Generator polynomial rsgenpoly(7,3)RS码又称里所码,即Reed-solomon codes,是一种低速率的前向纠错的信道编码,对由校正过采样数据所产生的多项式有效。
编码过程首先在多个点上对这些多项式求冗余,然后将其传输或者存储。
对多项式的这种超出必要值的采样使得多项式超定(过限定)。
当接收器正确的收到足够的点后,它就可以恢复原来的多项式,即使接收到的多项式上有很多点被噪声干扰失真。
RS(Reed-Solomon)码是一类纠错能力很强的特殊的非二进制BCH码。
对于任选正整数S可构造一个相应的码长为n=qS-1的q进制BCH码,而q作为某个素数的幂。
当S=1,q>2时所建立的码长n=q-1的q进制BCH码,称它为RS码。
当q=2m(m>1),其码元符号取自于F(2m)的二进制RS码可用来纠正突发差错,它是最常用的RS码。
RS码为(204,188,t=8),其中t是可抗长度字节数,对应的188符号,监督段为16字节(开销字节段)。
实际中实施(255,239,t=8)的RS编码,即在204字节(包括同步字节)前添加51个全“0”字节,产生RS码后丢弃前面51个空字节,形成截短的(204,188)RS码。
RS的编码效率是:188/204。
图5 RS码模块图因为本系统中采用(2,1,9)卷积码,即每输入一个比特,将输出2个比特,约束长度为9,因此本系统中,信源设置成基于采样的二进制序列。
卷积码编码器格型结构Trellis structure设置成poly2trellis(9, [753 561]),其中9是约束长度,[753 561]是生成多项式的八进制表示方式,转换成二进制为[111101011 101110001],代表了卷积码编码器反馈连线的有无。
操作模式Operation mode设置成Continuous,即卷积码编码器在整个仿真过程中都不对寄存器复位。
另外三种操作模式分别为:每帧数据开始之前自动对寄存器复位;每帧输入信号的末尾增加填充比特;通过输入端口复位.接收端用维特比译码器进行译码,译码器的参数设置与编码器相对应,判决方式采用硬判决,反馈深度可设为72。
3.4.3 卷积码介绍因为本系统中采用(2,1,9)卷积码,即每输入一个比特,将输出2个比特,约束长度为9,因此本系统中,信源设置成基于采样的二进制序列。
卷积码编码器格型结构Trellis structure设置成poly2trellis(9, [753 561]),其中9是约束长度,[753 561]是生成多项式的八进制表示方式,转换成二进制为[111101011 101110001],代表了卷积码编码器反馈连线的有无。
操作模式Operation mode设置成Continuous,即卷积码编码器在整个仿真过程中都不对寄存器复位。
另外三种操作模式分别为:每帧数据开始之前自动对寄存器复位;每帧输入信号的末尾增加填充比特;通过输入端口复位.接收端用维特比译码器进行译码,译码器的参数设置与编码器相对应,判决方式采用硬判决,反馈深度可设为72。
图6 卷积码模块图3.4.4 汉明码介绍汉明码是一种线性分组码,一般来说,若码长为n,信息位数为k,则监督位数为r=n-k。
如果希望用r个监督位构造出r个监督关系式来指示一位错码的n 种可能位置,则要求2的r次方减去1大于等于n或者2的r次方大于等于k+r+1。
汉明码模块的参数可以改变,但必须要满足上述关系式。
图7 汉明码模块图信道编码之汉明码参数设置为:Codeword length N:7,Message length K:Gfprimfd (3,‘min’)。