正比例的意义

合集下载

六年级数学下册比例讲义

六年级数学下册比例讲义

六年级数学下册比例讲义知识点1.正比例和反比例的意义【知识点归纳】1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为:=k(一定).2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的乘积(一定),反比例的关系可以表示为:xy=k(一定).【命题方向】常考题型:例1:y﹣x=0,y与x()A、成正比例B、成反比例C、不成比例D、无法确定例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例知识点2.辨识成正比例的量与成反比例的量【知识点归纳】1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.(2)相对应的两个数的比值(商)一定.(3)关系式:=k(一定).2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.【命题方向】常考题型:例:下列x和y成反比例关系的是()A、y=3+xB、x+y=C、x=yD、y=典型例题例1.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例例2.下列式子中(a、b都不为0),a和b成反比例的是()A.9×a=2×b B.a×﹣4÷b=0C.a=D.a×7=例3.下列关系式中x、y 都不为0,则x与y不是成反比例关系的是()A.x=B.y=3÷x C.x=×πD.x=例4.成反比例的两个量在变化时的规律是它们的()不变.A.积B.商C.和例6.如图的图象表示一辆汽车在高速公路上行驶的路程与耗油量的关系.①这辆汽车行驶的路程和耗油量成比例.②根据图象判断,行驶150千米需耗油升.(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)例8.一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?例9.右面的图象表示小军骑车的路程和时间的关系.)小军骑车行驶的路程和时间成比例,这是因为:.千米大约需要分钟.甲地到乙地K1214:2622:268时640千米(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?达标检测1.如果x=y,那么与y成()比例.A.正B.反C.不成D.无法确定2.买同样的书,花钱的总价与()成正比例.A.书的本数B.书的页数C.书的单价D.不能确定3.下面关系式,()中X与Y不成正比例.A.X×=3B.5X=6Y C.4÷X=Y D.X=Y4.如果a:b=7:8,那么a和b()A.成正比例B.成反比例C.不成比例5.下面构成正比例的是()A.总页数一定,每天看的页数与天数B.长方形周长一定,长和宽C.x=y,x与y6.被除数一定,除数和商成比例.7.速度一定,时间和路程成正比例.(判断对错)8.如果A÷B=C,当A一定时,B 和C成比例.当B一定时,A和C成比例.9.按要求回答问题.a、b是相关联的两个量,并且a=,请补充下表,并且判断a与b成什么比例关系.成比例关系.10.根据下面的3张表,按要求回答问题.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.课后作业【巩固练习】1.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时问和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数2.成正比例的两种量中,一种量扩大,另一种量()A.随着扩大B.随着缩小C.不变从表中我发现了,车费和人数比例关系.4.如果下表中的X与Y成正比例,那么表中的括号应填,如果X与Y成反比例,表中的括号应5.已知6x=4y,x和y成比例,已知=,x和y成比例.6.如果a=(c≠0),那么一定时,和成反比例;一定时,和c成正比例.表中每天看的页数和所用天数的规律是;每题要看的页数和看的天数成比,如果每天看30页,则要天;如果用了15天,则每天看页.8.一辆汽车2时行驶160千米,照这样的速度,行驶80千米、240千米、320千米…所需的时间分别填入(1)所描的点连线,你发现:(2)这些数量中不变.(3)路程和时间成比例.(4)估计4.5时行驶千米.因为一定,随着变化而变化.增加,随着增加;减少,随着减少,并且和的一定,与成比例.(2)把上表中的数据在下面的方格纸上表示出来.(3)连接各点,你发现什么?(4)表中的数量和时间有什么关系?(5)估计一下,2.5小时大约做多少个零件?5.5小时呢?。

六年级下册数学《正比例的意义》一等奖说课稿

六年级下册数学《正比例的意义》一等奖说课稿

六年级下册数学《正比例的意义》一等奖说课稿《六年级下册数学《正比例的意义》一等奖说课稿》这是优秀的说课稿文章,希望可以对您的学习工作中带来帮助!1、六年级下册数学《正比例的意义》一等奖说课稿教材分析:正比例的意义是九年义务教育六年制小学浙教版第十二册第3单元的内容。

这部分知识是在学生学习了除法、分数和比的知识等的基础上教学的,是本套教材教学内容的最后一个单元。

教材通过实例说明两种相关联的量,一种量随着另一种量的变化而变化。

一种量扩大,另一种量随着扩大;一种量缩小,另一种量也随着缩小。

并且从具体的数据中看出:这两种相关联的量扩大、缩小的变化规律是它们相对应的两个数的比值(商)总是一定的,写成关系式就是:xy=k(一定),从而给出正比例的意义。

通过正比例意义的教学,向学生渗透初步的函数思想。

1、使学生掌握正比例的意义及字母表达式,会正确判断两个量是不是成正比例关系的两个量。

2、通过对比、观察、归纳、培养学生良好的数学学习习惯。

3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

正确理解正比例的意义,并能准确判断成正比例的量。

为了使学生掌握好反比例的意义这部分知识,达到以上的教学目的,突破以上教学重难点,教师采用迁移法、对比法、引导法、讲解法、联系法、自主探索法来进行教学。

通过本课教学,使学生学会利用旧知构建新知的'方法、合作探究的方法、分析小结的方法等等。

第一部分:复习三量关系,为本节内容引路。

(转载数学网)第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

第三部分:巩固练习。

帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。

最后指导学生看书,抓住本节重点,突破难点。

安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。

正比例的意义

正比例的意义

正比例的意义正比例是数学中一种重要的关系形式,如果两个量之间的关系可以用一个恒定的比例系数来表示,那么我们可以称之为正比例关系。

在现实生活中,正比例关系存在于许多方面,并且具有重要的意义。

1. 数学上的意义正比例关系在数学中经常被用来描述两个变量的相互关系。

如果两个变量X和Y呈现正比例关系,可以表示为Y = kX,其中k是一个常数。

这种关系具有以下几个重要的意义:简洁性与可预测性正比例关系的数学表示形式非常简洁明了。

通过X的变化我们可以准确地预测Y的变化,反之亦然。

这为研究和分析提供了很大的便利性。

比例系数的意义比例系数k反映了两个变量之间的比例关系。

该常数通常具有一定的实际意义,可以通过它来解释变量之间的关系。

例如,在物理学中,质量与体积之间的关系可以表示为质量=密度×体积,其中密度就是比例系数。

解决问题的实用性正比例关系在解决实际问题时具有很强的实用性。

通过观察并建立合适的数学模型,我们可以利用正比例关系来解决一些实际问题。

例如,在经济学中,可以使用工时和产量之间的正比例关系来确定最佳的生产计划。

2. 实际应用正比例关系在现实生活中有许多实际应用,下面列举了几个例子:距离与时间在物理学中,速度与时间之间的关系通常可以表示为速度 = 距离/时间。

在匀速直线运动中,速度恒定,所以距离与时间呈现正比例关系。

温度与体积在热力学中,根据查理定律,对于固定量的气体,在恒定的压力下,温度和体积呈现正比例关系。

这一关系在工程设计和实验室条件下的计量中非常重要。

成本与产量在经济学中,成本(如原材料费用或人工成本)与产量之间通常存在正比例关系。

例如,在生产线上,随着产量的增加,原材料费用也会相应增加。

电压与电流在电学中,根据欧姆定律,电压和电流呈现正比例关系。

这一关系在电路分析和计算中起着核心作用。

3. 经验规律的验证与发现正比例关系也为验证和发现经验规律提供了一个重要的工具。

通过观察和分析现象,我们可以建立正比例关系模型,通过比例系数来验证实际规律的合理性。

正比例和反比例的意义

正比例和反比例的意义

正比例和反比例的意义一、正比例的意义正比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量也随之增大,并且两个变量之间的比值保持不变。

正比例关系在许多领域具有重要意义。

1. 实际应用正比例关系在实际应用中得到广泛应用。

例如,速度与时间的关系通常是正比例关系。

在物理学中,我们可以根据物体的速度和时间来计算物体所走的距离。

又如,成员数量与总费用之间的关系通常也是正比例关系。

在经济学中,企业的成本和产量之间的关系通常被描述为正比例关系。

2. 权衡和计划正比例关系的存在使得我们能够在做出决策时进行权衡和计划。

通过观察两个变量之间的正比例关系,我们可以预测其中一个变量的变化对另一个变量的影响。

这对于制定有效的计划和做出明智的决策至关重要。

3. 图表和图形正比例关系可以通过制作图表和图形来可视化。

例如,我们可以用散点图来表示两个变量之间的正比例关系。

通过观察散点图,我们可以更直观地理解和分析两个变量之间的关系,并且可以预测和推断未来的变化。

二、反比例的意义反比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量相应地减小,并且两个变量之间的乘积保持不变。

反比例关系也在许多领域中具有重要意义。

1. 逆向依赖关系反比例关系在一些情况下可以表示逆向依赖关系。

例如,时间和速度之间的关系通常是反比例关系。

在运动学中,我们知道物体的速度等于它所走过的距离除以所花费的时间。

当时间增加时,速度减小;而当时间减小时,速度增加。

这种反比例关系为我们理解和研究物体的运动提供了重要的数学工具。

2. 优化和最佳化反比例关系也在优化和最佳化问题中发挥重要作用。

在一些情况下,我们需要通过调整一个变量来最大化或最小化另一个变量。

反比例关系使得我们可以通过增加一个变量来减少另一个变量,或者通过减少一个变量来增加另一个变量。

这种关系对于优化问题的求解非常有用。

3. 比例转换反比例关系可以通过比例转换来应用到实际问题中。

例如,一个过程中的速度和所需时间之间的反比例关系可以通过比例转换为速度和所走距离之间的正比例关系。

正比例的意义

正比例的意义
详细描述
如果两个量x和y满足关系xy=k(k为常数),则x和y成正比。这是因为无论x和y各 自如何变化,它们的乘积始终等于k,这是正比例关系的另一种表达方式。
观察它们是否满足正比例的定义和性质
总结词
如果两个量满足正比例的定义和性质, 则它们成正比。
详细描述
正比例是指两个量之间的特定关系, 其中一个量是另一个量的常数倍。它 具有方向性、对称性和传递性。如果 两个量满足这些性质,则它们成正比。
体重与饮食
摄入的食物量与体重之间存在正比例关系,摄入的食物越多 ,体重增加的可能性越大。
时间与速度
在匀速运动中,时间与速度之间存在正比例关系,时间越长 ,速度越快。
科学中的正比例例子
电流与电阻
在欧姆定律中,电流与电压成正比,而与电阻成反比,但电压保持不变时,电流与电阻之间存在 正比例关系。
密度与质量
$number {01}
正比例的意义
目 录
• 正比例的定义 • 正比例的应用 • 正比例的性质 • 正比例与其他数学概念的关系 • 如何判断两个量是否成正比 • 正比例的意义和重要性
01
正比例的定义
什么是正比例
正比例是指两个量之间的比值保 持恒定,即当一个量增加或减少 时,另一个量也按照相同的比例
客户数量与销售额
客户数量越多,购买商品 的可能性越大,从而促进 销售额的增加,两者之间 存在正比例关系。
03
正比例的性质
当两个量成正比例时,它们的比值是常数
描述
当两个量x和y成正比例时,它们 的比值x/y是一个常数,这个常数 被称为比例常数。
数学表达
如果x和y成正比例,则存在一个常 数k,使得x/y=k。
增加或减少。

(完整版)正比例反比例

(完整版)正比例反比例

知识要点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例(正比例好脾气,同缩同扩好兄弟,比值永远不变异)1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:yx=k(一定)。

2.判断两种量是否成正比例:(1)两种量相关联。

(2)它们的比值一定。

备注:可以将两个量的关系写成yx=k(一定)的形式,再进行判断。

三、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

2.判断两个量是不是成反比例:(1)两种量相关联。

(2)它们的乘积一定。

经典例题1例题1 判断两种量是否成正比例的方法判断下面各题中的两种量是否成正比例比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽一定,长方形的周长与长。

解答:(1)每袋大米的质量一定,大米的总质量和袋数成正比例。

理由:大米的总质量随袋数的变化而变化,它们是相关联的量。

大米的总质量/袋数=每袋大米的质量(一定),所以它们成正比例。

(2)一个人的身高和年龄不成正比例。

理由:一个人的身高随年龄的增长而增高,但身高在不同年龄段增长幅度不同,且到了一定年龄后便不再增长,即两种量的比值不固定,所以它们不成正比例。

(3)宽一定,长方形的周长与长不成正比例,理由:宽一定,长方形的周长随着长的增减变化而变化,但长方形的周长是由两个长和两个宽组成的,即周长=(长十宽)×2,则周长/2-长=宽(一定),周长和长之间是加减关系,所以它们不成正比例。

正、反比例的意义

正、反比例的意义引言正、反比例是数学中常见且重要的概念。

它们在实际生活、自然科学、工程技术等领域中具有广泛的应用。

本文将探讨正比例和反比例的意义及其在不同领域中的应用。

正比例的意义正比例是指两个变量之间的关系满足:当一个变量增加时,另一个变量也相应地增加,并且它们的比值保持不变。

在数学中,正比例可以用以下形式表示:y = kx其中,y和x分别表示两个变量,k为常数,表示比例系数或比例常数。

正比例的意义在于,它描述了一种直接的、线性的关系。

当x增加时,y会按照一定的比例增加,这种关系可以帮助我们理解现象和问题,方便进行计算和预测。

在实际生活中,正比例的意义体现在许多方面。

例如,当我们购买商品时,价格和数量往往是正比例关系。

当我们购买的商品数量增加时,总价格也会相应地增加,这样可以帮助我们合理规划预算。

另外,正比例也可以用于计算物体的速度、功率、电流等各种物理量,从而更好地了解和控制物理现象。

反比例的意义反比例是指两个变量之间的关系满足:当一个变量增加时,另一个变量相应地减小,并且它们的乘积保持不变。

在数学中,反比例可以用以下形式表示:y = k / x其中,y和x分别表示两个变量,k为常数,表示比例系数或比例常数。

反比例的意义在于,它描述了一种相互制约的关系。

当一个变量增加时,另一个变量必然会减小,这种关系在许多情况下能够揭示事物之间的内在规律。

反比例在实际生活和科学研究中有着广泛的应用。

例如,当我们在做实验时,有些现象可能遵循反比例关系。

例如,当我们测量一个物体的质量和体积时,其密度通常是一个常数,即质量与体积成反比。

另外,反比例还可以用于计算电阻和电容等电路中的物理量,从而更好地设计和优化电子设备。

正、反比例在不同领域中的应用正、反比例在各个领域中都有着重要的应用。

下面将分别介绍它们在实际生活、自然科学和工程技术中的应用。

实际生活中的应用在实际生活中,我们经常会遇到正比例和反比例的关系。

比如,当我们在超市购买商品时,价格与数量之间往往是正比例关系。

正比例的意义ppt课件

详细描写
这意味着当一个量增加时,另一个量也按相同的比率增加, 反之亦然。例如,当一个矩形的长和宽成正比例时,它们的 比值(长/宽)是恒定的,这意味着无论矩形的尺寸如何变化 ,其形状始终保持不变。
当两个量成正比例时,它们的交叉相乘是相等的
总结词
如果x和y成正比例,那么它们的交叉 相乘xy是相等的。
详细描写
正比例关系可以用来描写物体的速度、加速度、密度 等物理量之间的关系。
正比例的特性
01
02
03
04
等比性
正比例关系的两个量之间的比 值是恒定的,即 y/x = k。
增减性
当一个量增大或减小时,另一 个量也按相同的比例增大或减 小。
直线性
正比例关系可以用直线表示, 直线的斜率为 k。
广泛性
正比例关系在自然界和日常生 活中广泛存在,如物体的速度 、加速度、密度等都遵循正比 例关系。
正比例与反比例的关系
正比例和反比例都是描写两个量之间关系的数学模型,但它们描写的是不同的关 系。在正比例中,当一个量增加时,另一个量也按相同的比率增加;而在反比例 中,当一个量增加时,另一个量会按相反的方向减少。
正比例和反比例都是基于比例的概念,但它们的方向和变化趋势是相反的。在数 学表达上,正比例通常表示为y=kx,而反比例则表示为y=k/x。
这意味着当x增加时,y也增加相同的 量,反之亦然。例如,在电流和电阻 的关系中,当电流和电阻成正比例时 ,它们的交叉相乘(电流乘以电阻) 是恒定的。
正比例在坐标系中的表现
总结词
在坐标系中,两个成正比例的量将形成一条直线。
详细描写
如果两个量x和y成正比例,那么它们之间的关系可以用直线方程y=kx表示,其中k是常数。这意味着 当一个量增加或减少时,另一个量也按相同的比率增加或减少,形成一条直线。这种关系在许多实际 应用中都很重要,例如在物理学、工程学和经济学等领域。

正比例、反比例的比较

1、正比例的意义是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

2、用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用关系式表示:x÷y=k (一定)还可表示为:x=ky以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时,应注意已知的两种量必须是两种相关联的量(也就是有关系的两种量),有些量,虽然也是一种量随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.行驶的路程和时间是成比例的量。

“正反比例”归纳:相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。

②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。

正比例中相关联的两种量的变化方向是一致的,即:同时扩大或同时缩小,关键是:相对应的两个数的“比值一定,也就是商一定”;反比例中两种量的变化方向是相反的,即:一个量扩大,则另一个量缩小,一个缩小,另一个量则扩大,关键是:相对应的两个数的“积一定”。

不同点:正比例的定量(即不变的量)是两个变量中相对应的两个数的比值。

反比例的定量(即不变的量)是两个变量中相对应的两个数的积。

②正比例的图像时上升直线;反比例是曲线。

③公式不同:正比例是(x y=k(一定)),反比例是(xy=k(一定))。

④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。

门诊医院:举例:当路程一定时,已行路程与未行路程成比例吗?为什么?分析:虽然这里的已行路程和未行路程也是相关联的两个量,但是它们的变化规律是增加或减少的数,换句话说已行路程与未行路程不是一个量随另一个量的扩大而扩大或缩小而缩小,也就是它们之间不能相乘,也不能相除,得不到一个积或一个商,所以它们不成比例。

《正比例的意义》

上涨时,需求量会相应减少。
02
正比例的性质
正比例的量与量之间的关系
当两个量存在正比例关系时, 一个量变化,另一个量也随之 按相同的方向变化。
例如,如果一个人吃越多饭, 他就会越饱;如果一个人走越 长的路,他就会越累。
这种关系可以用等比关系式来 表示,即y=kx,其中x为自变 量,y为因变量。
正比例的量与变量之间的关系
在实际生活中,正比例关系广泛存在, 如身高和体重之间、股票价格和交易量
之间等。
04
正比例的应用
在生活中的正比例应用
购物优惠
商家经常使用正比例折扣来吸引 顾客,例如购买金额每增加100 元,就可以享受10元的折扣。
时间和速度
在行驶或飞行中,距离和时间是 成正比例的,速度保持恒定。例 如,行驶100公里需要1小时,那 么行驶200公里就需要2小时。
《正比例的意义》
汇报人: 日期:
目 录
• 正比例的定义 • 正比例的性质 • 正比例的表示方法 • 正比例的应用 • 正比例的例子 • 正什么是正比例
正比例是指两个量之间的比值保持恒定,即当一个量增加时,另一个量也以相同的 比例增加。
在数学中,我们通常用y=kx表示正比例关系,其中y是因变量,k是比例常数,x是 自变量。
角度和长度的正比例关系
总结词
角度增加,长度也相应增加。
详细描述
在三角形中,随着角度的增加,对应边的长度也会增加。这 是因为角度越大,对应边所对的圆周弧长也会越大。这种现 象在几何学中很常见,比如等腰三角形中底角越大,底边也 会越长。
06
正比例的意义
正比例在数学中的重要性
描述变量间的关系
正比例关系是函数关系的一种,描述了两个变量之间的线性关系, 对于理解变量的变化规律和预测非常有帮助。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例的意义(数学六年级)
[教材简解] 正比例的意义是在学生认识了比例和比例的基本性质,掌握了常见数量关系的基础上进行教学的。

教学内容包括例1、试一试、练一练两道题、练习十的第1、2题。

[目标预设] 1、让学生经历从具体实例中认识正比例的过程,初步理解正比例的意义,能正确判断常见的两个量是否成正比例关系。

2、使学生在认识成正比例的两种量的过程中,初步学会从变量的角度来认识两个量之间的关系,感受函数的思想方法,提高分析、抽象、概括、推理能力、渗透初步的函数思想。

3、使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验激发对数学学习的兴趣。

(4)[重点、难点]
教学重点:让学生经历从具体实例中认识正比例的过程,初步理解正比例的意义,能正确判断常见的两个量是否成正比例关系。

教学难点:使学生在认识成正比例的两种量的过程中,初步学会从变量的角度来认识两个量之间的关系,感受函数的思想方法,提高分析、抽象、概括、推理能力、渗透初步的函数思想。

(5)[设计理念] 在结构化教学的观点下,让学生在核心问题引领下开展自主学习,经历知识的形成过程,在比较讨论中进行观察,归纳出正比例的意义。

(6)[设计思路]
(7)[教学过程]
一、初识相关联的两个量
1、出示;():()=8
谈话:我们知道括号里可以填很多组不同的数。

如果比的后项给你一个数,你能说出相对应的前项是几吗?
根据学生的回答出示:8:1=8 16:2=8 40:5=8 64:8=8……
2、揭示:比的后项变了,前项也随之变化。

像这样一种量变化,另一种量也随着变化,我们就说这两种量是相关联的量。

这里比的前项和后项就是相关联的量。

3、判断下面两种量是不是相关联的量,并说说理由。

(1)
……。

相关文档
最新文档