26固有值和固有函数
贝塞尔函数的性质

2 k 1 2( k 1) x (1)k 1 2 k 2 ( k 1)! ( k 2) 2 k 0 2 k 1 1 x J 1 ( x) k (1) . 2 k 1 k ! ( k 2) 2 x k 0
12
12
此外,由于
J 1 ( x ) cos( ) J 1 ( x) 2 2 2 2 N 1 ( x) J 1 ( x) sin x (11) x 2 2 sin( ) 2
J 1 ( x) cos J 1 ( x) 2 2 2 2 N 1 ( x) J 1 ( x) cos x (12) x 2 2 sin 2
解: J 2 ( x) J 0 ( x) 2J1 ( x),
d ( xJ1 ( x)) xJ 0 ( x) dx
xJ
2
( x)dx xJ 0 ( x)dx 2 xJ1( x)dx
xJ1 ( x) 2( xJ1 ( x) J1 ( x) dx)
( x)dx) xJ1 ( x) 2( xJ1 ( x) J 0
第四章-贝塞尔函数的性质
2
2
(n 1) (n ) (n )
J ( x)
n 0
(1) n
1 x ( ) 2 n n!(n 1) 2
d ( x J ( x)) x J 1 ( x) (2) dx
2 n 2 d d 1 x n ( J ( x ) x ) [ ( 1) ] 证明: 2 n dx dx n 0 n !(n 1) 2 2 n 2 1 2( n ) x (1) n 2 n n ! ( n 1) 2 n 0
数学物理方程练习题第七版(学生用)

= u(0, t) 0= , ux (2,t) 1,
u(x= ,0)
cos π x + x3 − 3x2 − x.
2
3.求定解问题的解:
u
x= x + u yy
sinπ x,
0 < x < 1, 0 < y < 1,
= u(0, y) 1,= u(1, y) 2,
u(x,0) =1+ x,
7
u
rr
+
1 u
r
r
+
1 r2
uθθ
= 0,
u= (1,θ ) A cosθ (−π < θ ≤ π ).
4. 设 A, B 为常数,用试探法求如下定解问题的解:
u rr
1 +rur
+
1 r2
u
θθ
=
0,
r < a,
u r= =a A cosθ + B sinθ (−π < θ ≤ π ).
练习十五
练习六
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
3
2.求解如下定解问题:
= u tt
a2u
xx
+
t
sin
π l
x
,
u= (0,t) u= (l,t) 0, t ≥ 0,
X= ′(0)
X= (l)
0.
3. 求如下定解问题的解:
= ut uxx , 0 < x < 2, t > 0, ux= (0, t) u= (2, t) 0,
数理方程30题

u(x,t) = cos at sin x
注记:如果用系数计算公式
∫ ∫ Cn
=
2 L
L sin(ξ ) sin(nξ )dξ
0
, Dn
=
2 nπa
L 0 × sin(nξ )dξ ,(n=1,2,……)
0
会得出同样结论。
例 8.用分离变量法求解双曲型方程初边值问题
⎧u ⎪⎪⎨u
[Cn
n=1
cos
nπ L
t
+
Dn
sin
nπ L
t]sin
nπ L
x
利用初值条件,得
∑ ∑ ∞ Cn
n=0
sin
nπ L
x
=
x(L −
x) , π L
∞
nDn
n=0
sin
nπ L
x
=
0
为计算系数,首先令ϕ(x) = x(L − x) ,显然ϕ(0) = 0,ϕ(L) = 0 ,且
ϕ′(x) = L − 2x ,ϕ′′(x) = −2
x x
+ +
C1 C2
⎡ ∂ξ
构造变换:
⎧ξ ⎩⎨η
= =
2 sin 4 sin
x x
+ +
cos cos
y y
,
⎢ ⎢ ⎢
∂x ∂η
⎢⎣ ∂x
∂ξ ⎤
∂y ∂η
⎥ ⎥ ⎥
=
⎡2 ⎢⎣4
cos cos
x x
∂y ⎥⎦
− sin y⎤ − sin y⎥⎦
所以, a12 = 8sin 2 y cos2 x − 18cos2 x sin 2 y + 8cos2 x sin 2 y = −2 cos2 x sin 2 y
Bessel方程及Bessel函数

第一部分 Bessel 函数(阶数或自变量趋于0或无穷时,各种Bessel 函数的极限值,可以利用Mathematica 试算推得。
)一、Bessel 方程及其通解0)(22222=-++y n x dx dy x dxy d x (1) 上式称为以x 为宗量的n 阶Bessel 方程.●当n 为整数时,(1)式的通解为)()(x BY x AJ y n n += (2)其中,A 、B 为任意实数;)(x J n 为n 阶第一类Bessel 函数;)(x Y n 为n 阶第二类Bessel 函数(或称为“诺依曼(Neumann )函数")。
●当n 不为整数时,例如,v n =,(1)式的通解可表示为如下两种形式)()(x BJ x AJ y v v -+= (3) )()(x BY x AJ y v v += (4)其中,A 、B 为任意实数;)(x J v 和)(x J v -分别称为v 阶和v -阶第一类Bessel 函数; )(x Y v 称为v 阶第二类Bessel 函数。
另外,Bessel 方程的通解还可以表示为)()()2()1(x BH x AH y v v +=其中,)()()()1(x iY x J x H v v v +=,)()()()2(x iY x J x H v v v -=分别称为称为第一类和第二类汉克尔(Hankel)函数,或统称为第三类Bessel 函数。
●值得注意的是, ∞=-→)(lim 0x J v x ,∞=→)(lim 0x Y v x ,∞=→)(lim 0x Y n x ,当所研究的问题的区域包含0=x 时,由于要求Bessel 方程的解在0=x 处取有限值,所以,此时对(2)、(3)、(4)式而言,必有0=B 。
此条件称为“Bessel 方程的自然边界条件"。
例1:022=+'+''y x y x y x λ (10<≤x )此式为以x λ为宗量的0阶Bessel 方程,其通解为)()(00x BY x AJ y λλ+=另外,由于所求解问题的区域10<≤x 包含0=x ,根据Bessel 方程的自然边界条件,必然有0=B ,通解最后简化为)(0x AJ y λ=例2:0)413(22=-+'+''y x y x y x 为以x 3为宗量的21阶Bessel 方程,其通解为)3()3(2121x BJ x AJ y -+= 或 )3()3(2121x BY x AJ y +=例3:0)(1222=-+'+''y xm k y x y上式两边同乘以2x ,可将其化为如下的以kx 为宗量的m 阶Bessel 方程0)(2222=-+'+''y m k x y x y x (0≠x )例4:012=+'+''y k y xy 上式两边同乘以2x ,可将其化为如下的以kx 为宗量的0阶Bessel 方程0222=+'+''y k x y x y x (0≠x )即:0)0(2222=-+'+''y k x y x y x (0≠x )例5:0)]1([222222=+-++R l l r k rd R d r r d R d r 令r k x =,xx y r R 2)()(π=,则可以将上式化为如下的21+l 阶Bessel 方程0])21([22222=+-++y l x xd y d x x d y d x 二、虚宗量Bessel 方程及其通解0)(22222=+-+y n x dx dy x dxy d x (5) 上式称为“n 阶虚宗量的Bessel 方程”或“n 阶修正的Bessel 方程”,其通解为)()(x BK x AI y n n += (6)其中,A 、B 为任意实数;)(x I n 为“n 阶第一类修正的Bessel 函数”,或称为“n 阶第一类虚宗量Bessel 函数”; )(x K n 为“n 阶第二类修正的Bessel 函数”,或称为“n 阶第二类虚宗量Bessel 函数”。
数理方程与特殊函数数理方程复习

球对称性导致球面波问题
2u t 2
a2
1 r2
r
(r 2
u ) r
u t 0
(r), ut
t 0
(r)
令 v = r u , 则有
2v u 2u r 2 2 r r r 2
所以
1 r
r
(r 2
u ) r
1 r
(2r
u r
r2
2u r 2 )
2v r 2
2u t 2
a2
1 r2
r
Ex20. 上半平面 y > 0 的格林函数
11
1
G(P, M0 )
2
[ln rPM0
ln rPM1
]
P M1
O M0
(x y) ( x0 , y0 )
( x0 , – y0 )
Ex21. 证明
J1/2( x)
2 cos x
x
证:
(1)m x n2m
J n ( x) m0 2n2m m!(n m 1)
n1
L
x
L2
h
Cn
2 L
L 0
4 (L ) n
L2
sin L
d
n≥1
Ex10. 用分离变量法求解
utt u
x
0
uxx 0,
0 x 1, u 0
x1
t
0
u
t0
sin(x),
ut
t0
0
Ex11. 求解方程
uuttx0
a 2uxx g, 0, u
xL
(0 0
x
L,
t
0)
u t0 0, ut t0 0
25-26具有非齐次边界条件的问题以及固有值和固有函数资料

6
utt a 2uxx f (x, t) (0 x l, t 0), (79) 若边界条件不全是第一类,也可采用类似方法 把非齐次边界条件化成齐次的。 我们就下列几种
非齐次边界条件的情况,分别给出相应辅助函数
w(x,t) 的表达式:
(1) u(0,t) u1(t),
于是可得
w(t, x)
x l
[u2
(t
)
u1
(t
)]
u1
(t
).
因此,令
u( x, t )
v( x, t )
x l
[u2 (t)
u1(t)]
u1 (t ).
则问题(79)-(81)可化成v(x,t) 的定解问题
(79) (80) (81) (82)
(85)
4
utt a 2uxx f (x, t) (0 x l, t 0),
4
vt (x,0) sin l x.
为了将 v(x,t) 的边界条件也化成齐次,则 w(x)满足
w(0) 3,
w(l) 6.
13
utt a 2uxx u(0,t) 3,
sin 2 x cos 2
l
l
u(l,t) 6,
x
(0
x l,
t
0),
(91)
u ( x,0)
l
x,
为了将此方程化成齐次的,自然选取w(x) 满足
a2w sin 2 x cos 2 x 0.
l
l
12
例2 求解下列问题:
utt a 2uxx u(0,t) 3,
数理方程第2章波动方程

π
2π sin x,"" l
kπ 2 π 1,cos l x, cos x,""cos l l
π
x,"
是[0, l]上的正交函数列
⎧l , m=n≠0 ⎪ l mπ nπ ⎪2 = cos cos ∫0 l x l xdx ⎨ l m = n = 0 ⎪ ⎪ ⎩0 m≠n
17
例:
2 ⎧ ∂ 2u u ∂ 2 = , t > 0, 0 < x < l a ⎪ ∂t 2 2 ∂x ⎪ ⎪ u (0, t ) = u ( l , t ) = 0, ⎨ ⎪ u ( x , 0) = x ( l − x ), ⎪ 2π x ⎪ u t ( x , 0) = sin l ⎩
kπ X k ( x) = Bk sin x l
所以定解问题的级数形式解为
u ( x, t ) = ∑ X k ( x)Tk (t )
k =1
kπ a kπ a ⎞ kπ ⎛ t + bk sin t ⎟ sin x = ∑ ⎜ ak cos l l ⎠ l k =1 ⎝ ak =Bk Ck ,bk =Bk Dk .
8π at 8π x u ( x, t ) = 3cos sin sin + 5 cos l l l l
π at
πx
23
• 其它边界条件的混合问题
2 ⎧ ∂ 2u u ∂ 2 x ∈ (0, l ), t > 0 ⎪ ∂t 2 = a ∂x 2 , ⎪ ⎪ ⎨u ( x, 0) = ϕ ( x), ut ( x, 0) = ψ ( x), x ∈ [0, l ] ⎪u (0, t ) = u (l , t ) = 0, t≥0 x x ⎪ ⎪ ⎩
数学物理方程与特殊函数课后答案

29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。