五年级奥数题练习及答案解析

合集下载

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

五年级奥数题及答案5篇

五年级奥数题及答案5篇

五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。

顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。

而甲行走45分钟,乙行走45分钟也能走完一圈。

所以甲行走25分钟的路程相当于乙行走45分钟的路程。

甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。

即乙走一圈的时间是126分钟。

2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。

提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

20道简单的五年级奥数题及答案

20道简单的五年级奥数题及答案

1.小学五年级奥数题及答案1、一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。

如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成。

2、有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。

这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个。

因此9份就是180个所以这批零件共180个3、挖一条水渠,甲、乙两队合挖要6天完成。

甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天。

甲单独挖需要1/(1/6-1/10)=15天。

2.小学五年级奥数题及答案1、一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。

猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。

所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

2、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。

问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

小学五年级奥数题和答案解析

小学五年级奥数题和答案解析

40 分到达北京。北京、上海两市间的路程是
千米。
,结果提前一 ,于是提前 1 小时
12 、两个完全相同长方体的长、宽、高分别是
5 厘米、 4 厘米、 3 厘米,把它们拼在一起
可组成一个新长方体,在这些长方体中,表面积最小的是
平方厘米。
优质 .参考 .资料
WORD 格式 . 整理版
二、解答题(本大题共 4 小题,每小题 15 分,共 60 分)要求:写出推算过程
题 3、有 3 元,5 元和 7 元的电影票 400 张,一共价值 1920 元, 其中 7 元和 5 元的张数相等,三种价格的电影票各多少张?
题 4、用大、小两种汽车运货,每辆大汽车装 18 箱,每辆小汽 车装 12 箱,现在有 18 车货,价值 3024 元,若每箱便宜 2 元,则 这批货价值 2520 元,问:大、小汽车各有多少辆?少,Βιβλιοθήκη 有 4 人,那么,参加 B 组的有
人。
9 、菜地里的西红柿获得丰收,摘了全部的
时,装满了 3 筐还多 16 千克。摘完其余部分
后,又装满 6 筐,则共收得西红柿
千克。
10 、工程队修一条公路,原计划每天修 720 米,实际每天比原计划多修
3 天完成任务。这条路全长
千米。
80 米。因而提前
11 、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了 个半小时到达; 返回时, 按原计划的速度行驶 280 千米后, 将车速提高
块?
A 15 B 12 C 75 D 8
优质 .参考 .资料
WORD 格式 . 整理版
(13) 图中 ABCD是长方形 , 已知 AB=4厘米 ,BC=6厘米 , 三角形 EFD的面积

小学五年级奥数题及答案10篇

小学五年级奥数题及答案10篇

小学五年级奥数题及答案10篇1.小学五年级奥数题及答案篇一1、学校有808个同学,分乘6辆汽车去春游,第一辆车已经接走了128人,如果其余5辆车乘的人数相同,最后一辆车乘了几个同学?【解析】学校有808个同学,第一辆车已经接走了128人,那么还剩下的人数为:808-128=680人,而剩下的这些人被平分到了5辆车上,所以最后的一辆车有680÷5=136个同学。

2、学校里组织兴趣小组,合唱队的人数是器乐队人数的3倍,舞蹈队的人数比器乐队少8人,舞蹈队有24人,合唱队有多少人?【解析】因为舞蹈队有24人,舞蹈队的人数比器乐队少8人,所以器乐队有24+8=32人;又因为合唱队的人数是器乐队人数的3倍,所以合唱队的人数是32×3=96人。

2.小学五年级奥数题及答案篇二1、同学们进行广播操比赛,全班正好排成相等的6行。

小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人【解析】站队问题,要注意不要忽略本身。

从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。

2、有一串彩珠,按“2红3绿4黄”的顺序依次排列。

第600颗是()颜色。

【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66……6,余数为6,所以第600颗是黄颜色。

3.小学五年级奥数题及答案篇三甲班有42名学生,乙班有48名学生。

已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分。

那么甲班的平均成绩比乙班高多少分?答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数。

因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分。

小学五年级奥数题及答案与解析

小学五年级奥数题及答案与解析

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等以下是⽆忧考整理的《⼩学五年级奥数题及答案与解析》相关资料,希望帮助到您。

【篇⼀】⼩学五年级奥数题及答案与解析 30粒珠⼦依8粒红⾊、2粒⿊⾊、8粒红⾊、2粒⿊⾊、……的次序串成⼀圈。

⼀只蚱蜢从第2粒⿊珠⼦起跳,每次跳过6粒珠⼦落在下⼀粒珠⼦上。

这只蚱蜢⾄少要跳⼏次才能再次落在⿊珠⼦上。

答案与解析: 这些珠⼦按8粒红⾊、2粒⿊⾊、8粒红⾊、2粒⿊⾊、的次序串成⼀圈,那么每10粒珠⼦⼀个周期,我们可以推断出这30粒珠⼦数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是⿊珠⼦。

刚才是从第10粒珠⼦开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,⼀直跳到59粒的时候会是⿊珠⼦,所以⾄少要跳7次。

【篇⼆】⼩学五年级奥数题及答案与解析 银⾏整存整取的'年利率是:⼆年期为11.7%,三年期为12.24%,五年期为13.86%.如果甲、⼄⼆⼈同时各存⼈⼀万元,甲先存⼆年期,到期后连本带利改存三年期;⼄存五年期.五年后,⼆⼈同时取出,那么谁的收益多,多多少元? 答案与解析: 甲存⼆年期,则两年后获得利息为:1×11.7%×2=0.234(万),再存三年期则为(1+23.4%)×12.24%×3=0.453(万元) ⼄存五年期,则五年后获得1×13.86%×5=0.693(万元) 所以⼄⽐甲多,0.693-0.453=0.24(万元)。

【篇三】⼩学五年级奥数题及答案与解析 ⼀串数排成⼀⾏,它们的规律是这样的。

:头两个数都是1,从第三个数开始,每⼀个数都是前两个数的和,也就是:1,1,2,3,5,8,13,21,34,55,…问:这串数的前100个数中(包括第100个数)有多少个偶数? 答案与解析: 观察⼀下已经写出的数就会发现,每隔两个奇数就有⼀个偶数,如果再算⼏个数,会发现这个规律仍然成⽴。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数题练习及答案解析班级姓名等级1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?5. 一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?6. 有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?7. 一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?8. .学校要砌一道长20米,宽2.4分米、高2米的墙,每立方米需要砖525块,学校需要买多少块砖?9. 一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?11. 一个长方体油箱,长6分米,宽5分米,高4分米。

做这个油箱需要多少平方分米铁皮?每升油重0.85千克,这个油箱可装油多少千克?12. 一个正方体被切成24个小长方体(如图)。

这些小长方体的表面积总和为162平方厘米,求这个正方体的表面积。

13. 将一个长6厘米、宽4厘米、高3厘米的长方体的六个面都涂上红色,然后把这个长方体切割成一个个边长为1厘米的小正方体。

这些小正方体中恰好有两个面涂上红色的有多少个?14. 在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。

问水位上升了多少分米?15. 从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?16. 把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?17. .把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积18. 一个正方体的表面积是384平方厘米,把这个正方体平均分割成64个相等的小正方体。

每个小正方体的表面积是多少平方厘米?19. 把两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个大长方体,这个大长方体的表面积最少是多少平方厘米?20. 将一个表面积为30平方厘米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体。

求大长方体的表面积是多少。

21. 一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?22. 一个厂房体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,其表面积减少了120平方厘米。

原来厂房体的体积是多少立方厘米?23. 张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?24. 父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。

问父亲现年多少岁?25.体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。

那么买一个足球、一个篮球各付多少元?26. 加工一批零件,原计划每天加工80个,正好按期完成任务。

由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。

他们实际加工零件多少个?27. 一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。

已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?28. 将一根电线截成15段。

一部分每段长8米,另一部分每段长5米。

长8米的总长度比长5米的总长度多3米。

这根铁丝全长多少米?29. 把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。

这条大鱼重多少千克?30. 体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。

那么买一个足球、一个篮球各付多少元?31. 某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。

如果上下山速度不变,从B村沿原路返回A村,要用多少时间?32. 乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。

问兔子还需要多少长时间才能追上乌龟?33. 在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。

若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。

两人跑一圈各要几分钟?34. 静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?35. 一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。

参考答案一、填空题:1.1997原式=(1997—1995)+(1996—1994)+(1993—1991)+(1992—1990)+…+(9—7)+(8—6)+(5—3)+(4—2)+1=2+2+…+2+2+因为从1至1997共1997个数,所以从2至1997共1996个数,这1996一定相等,所以,9A+5B=23,A和B都是自然数,先试A=1,B=1或B =2或B=3,均不成立;再试A=2,B=1.因此,只有A=2,B=1时,成立,即:A+B=3.3.14.如图,余下的四个圆圈分别用A、B、C、D四个字母来表示,5由每一条直线上三个数的关系可知:从①式中知,B比D大2,那么②式可写成:D=(8+D+2)÷2,故D=10,所以,C=(10+12)÷2=11,于是,(8+x)÷2=11,x=14.最大圆面积为:π×32=9π,所以阴影部分面积与最大圆面积之比为:6.9A不能放在第一层,那么A只能放在第二、三、四层,有3种可能情况.如果第一层放B,不论第二、三、四哪一层放A、C、D也就可以确定3.因此,当第一层放B时,所有可能摆放情况有以下三种:第一层第二层第三层第四层B A D CB D A CB C D A(注意:C不能在第三层,D不能在第四层).当第一个位置放C或D时,也各有3种可能的摆放方法,因此,不同的放法共有3×3=9种.7.57由于627的3倍比2109小,因此,开始时的长方形纸片上,可以连剪3个边长为627的正方形:2109=627×3+228,剩下的部分是长、宽分别为627和228的长方形,依此类推,有627=228×2+171228=171×1+57也就是说,当剩下长171,宽57的长方形时,可以刚好剪成三个边长为57的正方形,所以,最后剪得的正方形边长是57毫米.8.8.04兔子跑完全程(不包括玩的时间),需要:12.96=1+2+3+4+2.9612.96分钟分成五段跑完,中间兔子玩了4次,每次15分,共玩了15×4=60(分),兔子跑完全程共需要12.96+60=72.96(分).而乌龟跑完81—72.96=8.04(分).9.10先看左上角,它是所填四个数中最小的一个,所以,只能取1或2.如果取1,它右边一个空可填2,3或4,当填2时,下面两空有三种情况(3,4),(3,5),(4,5);当填3时,下面两空可填(2,4),(2,5),(4,5);当填4时,下面两空可填(2,5),(3,5).如果左上角取2,右下角一定取5,3和4可交换,便得到另外两种情况,综上所述,共有10种填法.10.15(人),男生比女生少240—225=15人.二、解答题:1.2小时20分.去时速度∶回来速度=5∶7,所以,去时时间∶回来时间= 7∶5,因此,所以,去时用2小时20分.2.170如图,长方体的正面和上面的面积之和=长×宽+长×高=长×(宽+高)=119=7×17,那么,有两种可能:(1)长=7,宽+高=17(2)长=17,宽+高=7宽和高必是一个奇质数与一个偶质数2,7=2+5,符合要求;17=2+15不符合要求,所以长=17,长方体体积=2×5×17=170.3.65秒甲、乙不停留,甲追上乙需要多少时间?两人同时出发,相差100米,甲每秒比乙快2米,所以100÷2=50(秒)就可以追上乙,甲跑50×7=350(米),在100米, 200米, 300米处共停留5×3=15(秒),所以甲追上乙需要50+15=65(秒).4.4人.设女生中超过85分的有x人,则男生中超过85分的有(30—x)人,那么男生中未超过85分的有26-(30-x)=(x-4)(人),所以女生中超过85分的比男生中未超过85分的多x-(x-4)=4(人).。

相关文档
最新文档