0-1背包问题实验报告

合集下载

算法设计与分析实验报告——基于回溯法的0-1背包等问题

算法设计与分析实验报告——基于回溯法的0-1背包等问题

实验报告. 基于回溯法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。

求解的问题为0-1背包。

作为挑战:可以考虑回溯法在如最大团、旅行商、图的m着色等问题中的应用。

实验目的◆理解回溯法的核心思想以及求解过程(确定解的形式及解空间组织,分析出搜索过程中的剪枝函数即约束函数与限界函数);◆掌握对几种解空间树(子集树、排列数、满m叉树)的回溯方法;◆从算法分析与设计的角度,对0-1背包等问题的基于回溯法求解有进一步的理解。

环境要求对于环境没有特别要求。

对于算法实现,可以自由选择C, C++或Java,甚至于其他程序设计语言如Python等。

实验步骤步骤1:理解问题,给出问题的描述。

步骤2:算法设计,包括策略与数据结构的选择。

步骤3:描述算法。

希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。

需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。

附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。

说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。

实验结果步骤1:问题描述。

给定 n个物品,其中第 i 个物品的重量为w i ,价值为 v i 。

有一容积为 W 的背包,要求选择一些物品放入背包,使得物品总体积不超过W的前提下,物品的价值总和最大。

0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。

0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定 n >0,W >0,v,w (v i ,w i >0,1≤i ≤n),找出一个 n 元0-1向量x =( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑v i n i=1x i 最大,并且∑w i n i=1x i ≤W ,即:max x (∑v i ni=1x i ) s.t.∑w i ni=1x i ≤W, x i ∈{0,1},1≤i ≤n步骤2:算法设计,即算法策略与数据结构的选择。

实验报告分支限界法01背包

实验报告分支限界法01背包

实验报告分支限界法01背包实验报告:分支限界法解决01背包问题一、引言背包问题是数学和计算机科学中一个经典的问题。

背包问题通常分为01背包问题和完全背包问题两种情况。

本实验主要探讨的是分支限界法解决01背包问题,该算法常用于解决NP难问题。

分支限界法通过将问题分解为一系列子问题,并借助剪枝技术,逐步缩小问题的空间,从而找到最优解。

本实验将通过具体的案例来展示分支限界法的求解过程和原理,并对算法的时间复杂度和空间复杂度进行分析。

二、算法原理01背包问题的数学模型为:有n个物品,每个物品有一个重量wi和一个价值vi,在限定的背包容量为W的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。

分支限界法的基本思想是:通过不断地分解问题为更小的子问题,并使用估算函数对子问题进行优先级排序,将优先级最高的子问题优先求解。

具体步骤如下:1.根节点:将背包容量W和物品序号0作为初始状态的根节点。

2.扩展节点:对于任意一个节点S,选择装入下一个物品或者不装入两种分支。

计算新节点的上界。

3.优先级队列:将扩展节点按照上界从大到小的顺序插入优先级队列。

4.剪枝条件:当扩展节点的上界小于当前已找到的最优解时,可以剪枝。

5.结束条件:当到叶节点或者队列为空时,结束。

若叶节点的上界高于当前最优解,更新最优解。

三、实验过程1.输入数据:给定一个物品序列,每个物品有重量和价值,以及一个背包的最大容量。

2.算法实现:根据算法原理,使用编程语言实现分支限界法的求解过程。

3.结果分析:比较算法求解得到的最优解和其他算法(如动态规划)得到的最优解之间的差异。

四、实验结果以一个具体的案例来说明分支限界法的求解过程。

假设有4个物品,其重量和价值分别为{2,3,4,5}和{3,4,5,6},背包的最大容量为8、通过分支限界法求解,得到最优解为9,对应的物品选择为{2,3,5}。

通过与动态规划算法的结果比较,可以发现分支限界法的最优解与动态规划算法得到的最优解是一致的。

【优质】背包问题实验报告-范文word版 (13页)

【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。

二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。

三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。

动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。

0-1背包问题具有最优子结构性质。

假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。

i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。

算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。

物品i 的重量是iw ,其价值为i v,背包容量为C 。

问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。

因此0/1背包问题是一个特殊的整数规划问题。

0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。

由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。

01背包实验报告

01背包实验报告

算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。

设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。

(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。

二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。

但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。

例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。

若使用贪心策略,则会选择一个(30,120)和一个(20,100)。

得到的价值总和是220。

而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。

因此贪心策略不能给出0-1背包的最优解。

后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。

正确的贪心策略应是:每次选择单位重量下价值最大的物品。

由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。

2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。

则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。

则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。

01背包问题实验报告

01背包问题实验报告

算法设计与分析实验报告书实验名称:0/1背包问题学号:姓名:实验时间:2015年 6 月 1 日一实验目的和要求(1)深刻掌握贪心法、动态规划法、回溯法的设计思想并能熟练运用(2)理解这样一个观点:同样的问题可以用不同的方法来解决,一个好的算法是反复努力和重新修正的结果。

二实验内容(1)分别用蛮力法贪心法、动态规划法、回溯法设计0/1背包问题的算法。

(2)分析算法随n和C变化的时间性能,随机产生参数n和C,收集算法执行的时间(3)讨论n和C变化时,动态规划法和回溯法的时间性能。

(4)讨论几种算法在该问题求解上的特点。

三实验环境VC++6.0四设计思想及实验步骤蛮力法的设计思想和步骤将所有排列下的背包的重量和价值都计算出来,选择重量不大于背包的总重量下的最大价值。

贪心法的设计思想和步骤首先计算每种物品单位重量的价值vi/wi;按单位价值对物品进行升序排列。

然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包,直到背包装满为止。

动态规划法的设计思想和步骤令V(i, j)表示在前i个物品中能够装入容量为j的背包中的物品的最大价值,则可以得到如下动态函数:V(i, j)=0 (i=0或j=0)V( i, j) = V(i-1, j) j<w[i]V( i, j) = max{V(i-1, j), V(I, j-1)+v[i]} j>=w[j]按照下述方法来划分段:第一段只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n个阶段。

最后V(n, C)便是容量为C的背包中装入n个物品时获取到的最大价值。

回溯法的设计思想和步骤为了避免生成那些不可能产生最佳解的问题状态,要不断的利用越约束条件来剪掉那些实际上不可能产生所需解的节点,以减少问题额计算量。

对于n种可选物品的0/1背包问题,其解空间长度由长度为n的0-1向量组成,可用子集数表示。

0-1背包问题实验报告

0-1背包问题实验报告

0-1背包问题实验报告0-1背包问题实验报告小组成员:姓名班级学号贾倩楠 2010211307 10211339骆亮亮 2010211307 10211318高婧 2010211308 10211370一(算法设计名称:0-1背包问题二.实验内容问题描述:给定n种物品和一背包。

物品i的重量是w~其价值为v~背包ii的容量为C。

问应如何选择装入背包的物品~使得装入背包中物品的总价值最大?在选择装入背包的物品时~对每种物品i只有两种选择~即装入背包或不装入背包。

不能将物品装入背包多次~也不能只装入部分的物品。

0-1背包问题是一个特殊的整数规划问题n maxvx,ii,1in ,wx,C,,ii,,1i,x,{0,1},1,i,n i,三.实验目的1.运用动态规划思想~设计解决上述问题的算法~找出最大背包价值的装法。

2.掌握动态规划的应用。

四(算法:问题求解思路1.由0-1背包问题的最优子结构性质~建立计算m[i][j]的递归式如下:j,wmax{m[i,1,j],m[i,1,j,w],v[i]},ii m(i,j),,0,j,wm[i,1,j]i,2.查找装入背包物品的函数:从数组的最右下角开始寻找~如若m[i][weight] !=m[i-1][weight]~则该第i个物品就在背包中~将其从最大价值量中去掉~然后再接着寻找下一个在背包中的物品~直至i=0。

关键数据结构: 一个二维数组~两个一维数组~两个整型变量int m[N+1][M+1]={0};//用于存储当前最好的价值量int number,weight;//number表示物品的种类,weight表示背包重量的最大值int w[N]={0},v[N]={0};//分别表示物品的重量和价值函数摻块:Main函数调用其余两个个函数完成算法:void knapsack(int number,int weight,int * w,int * v,int m[][M+1]);//整理背包函数,找出最大价值void findobject(int number,int weight,int * w,int * v,intm[][M+1]);//找出所有在背包里的物品的函数五(最终算法设计:算法:1. void knapsack(int number,int weight,int * w,int * v,int m[][M+1]) {//数组m[][],其横坐标row表示物品是第几个,纵坐标col表示当前背包中物品的重量从1到weightint row,col;for(row=1;row<=number;row++)for(col=1;col<=weight;col++){if(col >= w[row])//当背包重量大于第row个物品的重量时,再继续进行判断{-w[row]] + v[row] > m[row-1][col]) if(m[row-1][colm[row][col] = m[row-1][col-w[row]] + v[row];else1][col];//判断加入该第row个物品 m[row][col] = m[row-是否会增大价值量,若增大则加入,否则不加}elsem[row][col] = m[row-1][col];//如果背包重量小于w[row],则不加入任何物品,价值量不变}printf("The most value of the knapsackis:%d.\n",m[number][weight]);//输出最大价值量}2. void findobject(int number,int weight,int * w,int * v,intm[][M+1]) {int i;int x[N]={0};for(i=number;i>0;i--)//从数组的最右下角开始找寻,直到找到最开始的m[0][]{if(m[i][weight] != m[i-1][weight]){x[i] = 1;weight = weight - w[i];//将找到的第i个物品从背包的重量中去掉printf("%dth object is chosen. weight:%d,value:%d\n",i,w[i],v[i]);//输出找到的物品的信息}}}六(运行结果:当输入的数据不符合要求时:七(分析时间复杂度:,n为物品总数~c为重量限制背包容量,从m(i~j)的递归式容易看出~算法需要O(nc)计算时间。

算法背包实验报告

算法背包实验报告

一、实验背景背包问题(Knapsack problem)是组合优化领域中的一个经典问题,它来源于日常生活中物品选择与装载的问题。

0-1背包问题是指给定一组物品,每个物品都有一定的重量和价值,选择一部分物品装入背包,使得背包总重量不超过给定限制,且物品总价值最大。

本实验旨在通过实现动态规划算法解决0-1背包问题,并分析其时间复杂度和空间复杂度。

二、实验目的1. 理解动态规划算法的基本思想和解决问题的步骤。

2. 掌握动态规划算法在解决0-1背包问题中的应用。

3. 分析0-1背包问题的数学模型,并建立求解最优值的递归关系式。

4. 对比不同背包问题的求解方法,分析其优缺点。

三、实验原理0-1背包问题的数学模型如下:设背包容量为C,物品集合为I,第i个物品的重量为w(i),价值为v(i),则0-1背包问题的目标函数为:Maximize Σ(v(i) x(i)),其中x(i) ∈ {0, 1}。

约束条件为:Σ(w(i) x(i)) ≤ C。

动态规划算法通过将问题分解为子问题,并存储子问题的解,以避免重复计算。

对于0-1背包问题,其状态可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w(i)] + v(i)),其中i表示物品编号,j表示剩余容量。

当i=0或j-w(i)<0时,dp[i][j] = 0。

四、实验过程1. 设计数据结构:定义物品类,包含物品编号、重量和价值属性。

2. 生成测试数据:随机生成一定数量的物品,并设置背包容量。

3. 实现动态规划算法:根据上述原理,实现0-1背包问题的动态规划算法。

4. 测试算法:使用测试数据验证算法的正确性。

5. 分析算法性能:分析算法的时间复杂度和空间复杂度。

五、实验结果与分析1. 算法正确性:通过测试数据验证,算法能够正确求解0-1背包问题。

2. 时间复杂度:动态规划算法的时间复杂度为O(nC),其中n为物品数量,C为背包容量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0-1背包问题实验报告
一・问题描述
4•给定n种物品和一个背包。

物品i的重量是w[i],其价值为v[i],背包容量为Co
问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。

2在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。

不能将物品i装入背包多次,也不能只装入部分的物品io
问题规模
1.物品数目:n=50,
2.背包容量:c=1000,
3.每个物品重量分别为:
{220,208,198,192,180,180,165,162,160,158,
155,130,125,122,120,118,115,110,105,101,
100,100,98,96,95,90,88,82,80,77,
75,73,70,69,66,65,63,60,58,56,
50,30,20,15,10,8,5,3,1,1}
4.每个物品价值分别为:
{80,82,85,70,72,70,66,50,55,25,
50,55,40,48,50,32,22,60,30,32,
40,38,35,32,25,28,30,22,50,30,
45,30,60,50,20,65,20,25,30,10,
20,25,15,10,10,10,4,4,2,1}
三. 实验方法
本次实验将分别通过动态规划法,贪心算法,回溯法及分支界限法四种方法解决0-1背包问题。

四. 算法分析
I •动态规划法
(1)•对动态规划的0-1背包问题,在给定c>0,w
i>0, v
i>0, 1<=i<=n,要求找出一个n 元0-1 向量(x1,x2,...)xn 1},1 < i;使得
x
i{0,
wx

I
i 1
n
i而且max
v
ix
io
c,
i1n同时可得出其递推关系,设最优值是背包容量为j,可选物品
i,i+1…盼背包问题的最优值。

于是可建立计算m(l,j)的递归式:
在j>=w
i,为max{m(i+1 ,j),m(i+1 j-w
i)+v
i},
在0<=j<w
i 时,m(i+15j);
m[n,j]在j>=w
n时为v
n,在OWj <w
n为0。

且该算法的特点是:随着包中物品的加入,包中容量也随之不断在变化,每次包中放物品前都基于包中剩余的容量,当达到最优解时,此时包不一定都装满。

该算法所需的算法的计算时间复杂性为0(2 n),若所给物品重量
i是整数时,该算法的计算时间复杂性为O(min{nc,2n}).
(2).实验结果为:总共装进背包的容量是1OOO;
装进背包物品的总价值为3076o
II .贪心算法
(1)•贪心算法在解决问题的时候,总是做出当前看来是最好的选择,并不从整体上最优加以考虑。

在做出局部意义上的最优选择之后,我们能得到一个近似的最优解,即使它不一定是最优的,但在要求不那么精确地情况下,往往能较为便捷地得到结
果。

贪心算法求解背包问题的步骤:
首先计算每种物品单位重量的价值vi/wi ;
然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背
包。

若将这种物品全部装入背包后,背包内的物品总量未超过C,则选择单位重
量价值次高的物品并尽可能多地装入背包。

依此策略一直进行下去,直到背包装满为止。

(2).实验结果为:
装入背包的物品总价值为:3087o
(3)结果分析:
使用贪心算法,时间复杂度为O (n*logn)。

优于动态规划算法,空间占有也较动态规划少,但贪心算法所得得结果并不一定是最优解。

皿•回溯法
(1)•问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空
间。

问题的解空间应至少包含问题的一个(最优)解。

(2)•回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结
点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

换句话说,这个结点不再是一个活结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空
间中已没有活结点时为止。

(3)•算法设计步骤:
a.针对所给问题,定义问题的解空间;
b •确定易于搜索的解空间结构;
C.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;
(4).实验结果:
装入背包物品的总价值为:3090o (5)結果分析:
回溯法在最坏的情况下有0(2)个右儿子节点需要计算上界,且计算上界的时间为On
n
(n),所以回溯法时间复杂度为0 (n*2)。

而且对空间复杂性分析来说,该算法
需要栈来存储中间值,故空间复杂度大。

同时随着问题规模的扩大,会使得问题处理起来的时间花销增大,故而构建良好的剪枝函数成为回溯法的关键所在。

但由于回溯法德适应性比较好,很多问题的解决也都会采用它。

IV •分支界限法
(1)•分支限界法运用优先队列扩展了活结点的运行空间。

使得算法在广域中可以较为快捷的剪掉冗余枝。

整个解空间较之于回溯法是快速聚类的,故其时间复杂度较回溯法优,但在空间上却需要相当一部分的处理能力。

对于离散的最优化方法较为适宜,这是分支法好处,却也是其局限所在。

(2)•算法设计步骤:
a.各物品按性价比有大到小排序,构建解空间树;
b.由根节点出发,检查当前左儿子结点的可行性,如果可行,将它加入到子集树
和活动队列中;
c.仅当右儿子结点满足上界约束,才将它加入子集树和活结点优先序列。

d.重复b.c至整个解空间结束。

(3).实验结果:
装入背包的物品的总价值为:3027o。

相关文档
最新文档