回溯法解0 1背包问题实验报告

合集下载

回溯法求背包问题

回溯法求背包问题

《算法设计与分析》实验报告学号:姓名:日期:得分:一、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是w,其价值为iv,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总i价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

二、所用算法的基本思想及复杂度分析:1.回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。

这种具有限界函数的深度优先生成法称为回溯法。

对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。

在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。

当右子树中有可能包含最优解时就进入右子树搜索。

2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:)2()(n O n T =。

空间复杂度:有n 个物品,即最多递归n 层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为)(n O 。

2.以动态规划法验证:1)基本思想:令),(j i V 表示在前)1(n i i ≤≤个物品中能够装入容量为)1(C j j ≤≤的背包中的物品的最大值,则可以得到如下动态函数:0),0()0,(==j V i V{}⎩⎨⎧≥+---<-=)(),1(),,1(max ))(,1(),(i i i i w j v w j i V j i V w j j i V j i V 按照下述方法来划分阶段:第一阶段,只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。

最后,),(C n V 便是在容量为C 的背包中装入n 个物品时取得的最大价值。

算法设计与分析实验报告——基于回溯法的0-1背包等问题

算法设计与分析实验报告——基于回溯法的0-1背包等问题

实验报告. 基于回溯法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。

求解的问题为0-1背包。

作为挑战:可以考虑回溯法在如最大团、旅行商、图的m着色等问题中的应用。

实验目的◆理解回溯法的核心思想以及求解过程(确定解的形式及解空间组织,分析出搜索过程中的剪枝函数即约束函数与限界函数);◆掌握对几种解空间树(子集树、排列数、满m叉树)的回溯方法;◆从算法分析与设计的角度,对0-1背包等问题的基于回溯法求解有进一步的理解。

环境要求对于环境没有特别要求。

对于算法实现,可以自由选择C, C++或Java,甚至于其他程序设计语言如Python等。

实验步骤步骤1:理解问题,给出问题的描述。

步骤2:算法设计,包括策略与数据结构的选择。

步骤3:描述算法。

希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。

需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。

附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。

说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。

实验结果步骤1:问题描述。

给定 n个物品,其中第 i 个物品的重量为w i ,价值为 v i 。

有一容积为 W 的背包,要求选择一些物品放入背包,使得物品总体积不超过W的前提下,物品的价值总和最大。

0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。

0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定 n >0,W >0,v,w (v i ,w i >0,1≤i ≤n),找出一个 n 元0-1向量x =( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑v i n i=1x i 最大,并且∑w i n i=1x i ≤W ,即:max x (∑v i ni=1x i ) s.t.∑w i ni=1x i ≤W, x i ∈{0,1},1≤i ≤n步骤2:算法设计,即算法策略与数据结构的选择。

【优质】背包问题实验报告-范文word版 (13页)

【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。

二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。

三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。

动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。

0-1背包问题具有最优子结构性质。

假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。

i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。

回溯法的实验报告

回溯法的实验报告

一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。

二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。

其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。

通过这种方法,可以找到问题的所有解,或者找到最优解。

四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。

(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。

(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。

回朔法实验报告

回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。

2. 掌握回溯法在解决实际问题中的应用。

3. 通过实验,提高编程能力和算法设计能力。

二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。

它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。

回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。

三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。

1. 实验环境:Windows操作系统,Python 3.7以上版本。

2. 实验工具:Python编程语言。

3. 实验步骤:(1)定义背包容量和物品重量、价值列表。

(2)定义回溯法函数,用于遍历所有可能的解。

(3)在回溯法函数中,判断当前解是否满足背包容量约束。

(4)若满足约束,则计算当前解的价值,并更新最大价值。

(5)若不满足约束,则回溯至前一步,尝试下一个解。

(6)输出最优解及其价值。

四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。

2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。

(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。

(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。

五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。

在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。

在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。

0-1背包问题实验报告

0-1背包问题实验报告

0-1背包问题实验报告一・问题描述4•给定n种物品和一个背包。

物品i的重量是w[i],其价值为v[i],背包容量为Co问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。

2在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。

不能将物品i装入背包多次,也不能只装入部分的物品io问题规模1.物品数目:n=50,2.背包容量:c=1000,3.每个物品重量分别为:{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1,1}4.每个物品价值分别为:{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1}三. 实验方法本次实验将分别通过动态规划法,贪心算法,回溯法及分支界限法四种方法解决0-1背包问题。

四. 算法分析I •动态规划法(1)•对动态规划的0-1背包问题,在给定c>0,wi>0, vi>0, 1<=i<=n,要求找出一个n 元0-1 向量(x1,x2,...)xn 1},1 < i;使得xi{0,wx■Ii 1ni而且maxvixioc,i1n同时可得出其递推关系,设最优值是背包容量为j,可选物品i,i+1…盼背包问题的最优值。

于是可建立计算m(l,j)的递归式:在j>=wi,为max{m(i+1 ,j),m(i+1 j-wi)+vi},在0<=j<wi 时,m(i+15j);m[n,j]在j>=wn时为vn,在OWj <wn为0。

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)
BBnode enode =null;
inti = 1;
doublebestp = 0.0;
doubleup = bound(1);
while(i !=n+ 1) {
doublewt =cw+w[i];
//检查当前扩展节点的左儿子节点
if(wt <=c) {
if(cp+p[i] > bestp) {
}
do{
System.out.println("请输入背包的容量:");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");
}while(input.equals(""));
if(input.equals("2")){
w=newdouble[n+ 1];
for(inti = 1; i <=n; i++) {
p[i] = pp[q[i - 1].id- 1];
w[i] = ww[q[i - 1].id- 1];
}
backtrack(1);
returnbestp;
}
//回溯过程
privatevoidbacktrack(inti) {
c= cc;
n= pp.length;
Element[] q =newElement[n];
doublews = 0.0;
doubleps = 0.0;
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);

01背包问题实验报告

01背包问题实验报告

算法设计与分析实验报告书实验名称:0/1背包问题学号:姓名:实验时间:2015年 6 月 1 日一实验目的和要求(1)深刻掌握贪心法、动态规划法、回溯法的设计思想并能熟练运用(2)理解这样一个观点:同样的问题可以用不同的方法来解决,一个好的算法是反复努力和重新修正的结果。

二实验内容(1)分别用蛮力法贪心法、动态规划法、回溯法设计0/1背包问题的算法。

(2)分析算法随n和C变化的时间性能,随机产生参数n和C,收集算法执行的时间(3)讨论n和C变化时,动态规划法和回溯法的时间性能。

(4)讨论几种算法在该问题求解上的特点。

三实验环境VC++6.0四设计思想及实验步骤蛮力法的设计思想和步骤将所有排列下的背包的重量和价值都计算出来,选择重量不大于背包的总重量下的最大价值。

贪心法的设计思想和步骤首先计算每种物品单位重量的价值vi/wi;按单位价值对物品进行升序排列。

然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包,直到背包装满为止。

动态规划法的设计思想和步骤令V(i, j)表示在前i个物品中能够装入容量为j的背包中的物品的最大价值,则可以得到如下动态函数:V(i, j)=0 (i=0或j=0)V( i, j) = V(i-1, j) j<w[i]V( i, j) = max{V(i-1, j), V(I, j-1)+v[i]} j>=w[j]按照下述方法来划分段:第一段只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n个阶段。

最后V(n, C)便是容量为C的背包中装入n个物品时获取到的最大价值。

回溯法的设计思想和步骤为了避免生成那些不可能产生最佳解的问题状态,要不断的利用越约束条件来剪掉那些实际上不可能产生所需解的节点,以减少问题额计算量。

对于n种可选物品的0/1背包问题,其解空间长度由长度为n的0-1向量组成,可用子集数表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 回溯法解0-1背包问题
一、实验要求
1.要求用回溯法求解0-1背包问题;
要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。

3.
二、实验仪器和软件平台
仪器:带usb接口微机
软件平台:WIN-XP + VC++
三、实验源码
#include \
#include<iostream>
#include<cstdio>
#include<>
#include<iomanip>
using namespace std;
template<class ty>
class Knap
{
public:
friend void Init();
friend void Knapsack();
friend void Backtrack(int i);
friend float Bound(int i);
bool operator<(Knap<ty> a)const
{
if(fl< return true;
else return false;
}
private:
ty w; ;
cout<<endl;
潣瑵?请依次输入?渼?个物品的价值P:<<endl;
for(i=0;i<n;i++)
cin>>bag[i].v;
for(i=0;i<n;i++)
{
bag[i].flag=0; bag[i].kk=i;
bag[i].fl=*bag[i].v/bag[i].w;
}
}void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1;
cp+=bag[i].v; Backtrack(i+1);
cw-=bag[i].w; cp-=bag[i].v;
}
if(Bound(i+1)>bestp)lag=0; Backtrack(i+1);
}}<=cleft){;
b+=bag[i].v;
i++;
}
/bag[i].w * cleft;
return b;
}
void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加
}
cout<<endl;
潣瑵? 当前最优价值为:<<L<<endl;
潣瑵? 变量值x = ;
for(int i=1;i<=n;i++)
{
cout<<x[i-1];}delete []bag; bag=NULL;x=NULL; delete []x;
getch(); cout<<endl;
}int main()
{cout<<endl;cout<<|**********背包问题0-1 回溯法解**********|<<endl;Init(); Backtrack(0);Knapsack();return 0;
}
四、运行结果
五、实验小结
通过该实验,我充分了解了回溯法与分支界限法的区别。

回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

.。

相关文档
最新文档