回溯算法——0-1背包问题

合集下载

回溯法和分支限界法解决0-1背包题(精)[精品文档]

回溯法和分支限界法解决0-1背包题(精)[精品文档]

0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。

问题的解空间至少包含问题的一个(最优)解。

对于0-1背包问题,解空间由长度为n的0-1向量组成。

该解空间包含对变量的所有0-1赋值。

例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

二、回溯法步骤思想描述:0-1背包问题是子集选取问题。

0-1 背包问题的解空间可以用子集树表示。

在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。

当右子树中有可能含有最优解时,才进入右子树搜索。

否则,将右子树剪去。

设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。

当cp+r<=bestp时,可剪去右子树。

计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。

例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。

这4个物品的单位重量价值分别为[3,2,3,5,4]。

以物品单位重量价值的递减序装入物品。

先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。

由此得一个解为[1,0.2,1,1],其相应价值为22。

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

01背包问题回溯法c语言

01背包问题回溯法c语言

01背包问题回溯法c语言01背包问题是一个经典的动态规划问题,可以使用回溯法来解决。

在C语言中,我们可以通过递归的方式来实现回溯法解决01背包问题。

首先,让我们来看一下01背包问题的描述:给定n个物品,每个物品有一个重量和一个价值。

现在有一个背包,它能够容纳一定的重量,问如何选择装入背包的物品,使得背包中物品的总价值最大。

接下来,让我们来看一下如何使用回溯法来解决这个问题。

我们可以定义一个递归函数来尝试将每个物品放入背包或者不放入背包,然后找出最优解。

以下是一个简单的C语言代码示例:c.#include <stdio.h>。

#define N 5 // 物品的数量。

#define W 10 // 背包的容量。

int weight[N] = {2, 2, 6, 5, 4}; // 每个物品的重量。

int value[N] = {6, 3, 5, 4, 6}; // 每个物品的价值。

int maxValue = 0; // 最大的总价值。

void backtrack(int index, int currentWeight, int totalValue) {。

if (index == N || currentWeight == W) {。

if (totalValue > maxValue) {。

maxValue = totalValue;}。

return;}。

// 不放入背包。

backtrack(index + 1, currentWeight, totalValue); // 放入背包。

if (currentWeight + weight[index] <= W) {。

backtrack(index + 1, currentWeight +weight[index], totalValue + value[index]);}。

}。

int main() {。

backtrack(0, 0, 0);printf("背包能够容纳的最大总价值为,%d\n", maxValue);return 0;}。

回溯法求背包问题

回溯法求背包问题

《算法设计与分析》实验报告学号:姓名:日期:得分:一、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是w,其价值为iv,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总i价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

二、所用算法的基本思想及复杂度分析:1.回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。

这种具有限界函数的深度优先生成法称为回溯法。

对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。

在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。

当右子树中有可能包含最优解时就进入右子树搜索。

2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:)2()(n O n T =。

空间复杂度:有n 个物品,即最多递归n 层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为)(n O 。

2.以动态规划法验证:1)基本思想:令),(j i V 表示在前)1(n i i ≤≤个物品中能够装入容量为)1(C j j ≤≤的背包中的物品的最大值,则可以得到如下动态函数:0),0()0,(==j V i V{}⎩⎨⎧≥+---<-=)(),1(),,1(max ))(,1(),(i i i i w j v w j i V j i V w j j i V j i V 按照下述方法来划分阶段:第一阶段,只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。

最后,),(C n V 便是在容量为C 的背包中装入n 个物品时取得的最大价值。

回溯法解决0-1背包问题

回溯法解决0-1背包问题

回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。

第i件物品的价值是v[i],重量是w[i]。

求解将哪些物品装⼊背包可使价值总和最⼤。

所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。

回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。

在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。

对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。

为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。

#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。

0_1背包问题的多种解法

0_1背包问题的多种解法

页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。

回溯法核⼼:能进则进,进不了则换,换不了则退。

(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。

解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。

将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。

若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。

在层数达到物品的个数时,停⽌继续扩展,开始回溯。

注:如何回溯呢?怎样得到的,怎样恢复。

放⼊背包中的重量取出,加在bagV上的价值减去。

约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。

核⼼结构:递归思路进⾏解决。

层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。

# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。

0-1背包问题的枚举算法

0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。

目标是在不超过背包容量的情况下,选择物品使得总价值最大化。

然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。

二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。

对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。

如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。

最终得到的组合就是最优解。

三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。

上机实验一般应包括以下几个步骤:(1)、准备好上机所需的程序。

手编程序应书写整齐,并经人工检查无误后才能上机。

(2)、上机输入和调试自己所编的程序。

一人一组,独立上机调试,上机时出现的问题,最好独立解决。

(3)、上机结束后,整理出实验报告。

实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。

实验八 回溯算法——0-1背包问题一、实验目的与要求1. 熟悉0-1背包问题的回溯算法。

2. 掌握回溯算法。

二、实验内容用回溯算法求解下列“0-1背包”问题:给定n 种物品和一个背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?三、实验步骤1. 理解算法思想和问题要求;2. 编程实现题目要求;3. 上机输入和调试自己所编的程序;4. 验证分析实验结果;5. 整理出实验报告。

实验提示:(1)回溯算法求解0-1背包问题分析回溯法通过系统地搜索一个问题的解空间来得到问题的解。

为了实现回溯,首先需要针对所给问题,定义其解空间。

这个解空间必须至少包含问题的一个解(可能是最优的)。

然后组织解空间。

确定易于搜索的解空间结构。

典型的组织方法是图或树。

一旦定义了解空间的组织方法,即可按照深度优先策略从开始结点出发搜索解空间。

并在搜索过程中利用约束函数在扩展结点处剪去不满足约束的子树,用目标函数剪去得不到最优解的子树,避免无效搜索。

用回溯法解题的步骤:1)针对所给问题定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效的搜索。

0-1背包问题的数学描述为:n 个物品,物品i 的重量是w i 、其价值为v i ,其中0≤i ≤n-1,背包的容量为C 。

用x i 表示物品i 被装入背包的情况,如果物品Pi 被选中,则x i =1;否则x i =0。

求满足目标函数∑-=⨯=10max n i i i v xF 和约束方程C w x n i i i ≤⨯∑-=10的物品组合(x 0,x 1,x 2,…,x n-1) 与相应的总价值V 。

1)针对所给问题定义问题的解空间。

根据上述0-1背包问题的数学描述,解向量可以表示成X={ x0,x1,x2,…,x n-1) | x i=1或x i=0} 。

若n = 3 ,则此0-1背包问题的解空间为{(0,0,0),(0,0,1) ,(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}。

2)确定易于搜索的解空间结构。

可以用树的形式将解空间表达出来。

树中从第i层到第i+1层的边上的值表示解向量中x i的取值,并假定第i层的左子树描述物品Pi被装入背包的情况,右子树描述物品Pi被拒绝的情况。

则该0-1背包问题的状态空间树就表示为一棵高度为n的完全二叉树(如图l所示) 。

从根结点到叶子结点的任一路径就对应解空间中的一个解向量。

3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效的搜索。

构造出问题的状态空间树以后,就可以从其根结点出发搜索解空间,即决定每个物品的取舍。

为了使目标函数的值增加最快,可以优先选择价值最大的物品装入背包,然后是价值量次之的物品,……,直至背包装不下为止。

但是,如果所选择的物品重量很大,使得背包载重量消耗速度太快,以至后续能装入背包的物品迅速减少,使得继续装入背包的物品在满足了约束方程的要求以后,无法达到目标函数的要求。

因此,最好优先选择那些既使目标函数的值增加最快。

又能使背包载重量消耗速度较慢的物品装入背包。

为了达到这个目的,首先把所有物品按价值重量比的非增顺序排列,然后按照这个顺序进行搜索。

在装包过程中,要尽量优先选择价值重量比较高的物品装入背包。

表现在搜索过程中,就是要尽量沿着左子树结点前进。

当不能继续前进时(假设该结点为T),就得到问题的一个部分解,并把搜索转移到右子树。

估计由该部分解所能得到的最大价值,即结点T的上限。

可以用贪婪算法处理剩余物品:将按照价值重量比非增顺序排列的剩余物品依次装入背包,至无法完全装入下一个物品时,就将该物品的一部分装满背包。

这样就可以得到一个上限。

如果该值为当前最优值:继续由右子树向下搜索,扩大部分解,直至找到可行解;保存可行解,并把可行解的值作为当前最优值,向上回溯,寻找其他可行解;若该值小于当前最优值:丢弃当前正在搜索的部分解,向上回溯。

反复使用此方法,直至搜索完整个解空间。

(2)回溯算法求解0-1背包问题示例:给定8种物品和一个背包。

8种物品的重量和价值分别为(79,83)、(58,14)、(86,54)、(11,79)、(28,72)、(62,52)、(15,48)、(68,62),背包的容量为200。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?一种可能的解决方案是(红色字体强调突出的物品):(79,83)、(58,14)、(86,54)、(11,79)、(28,72)、(62,52)、(15,48)、(68,62);装入背包中的物品的总价值为334。

(3)回溯算法求解0-1背包问题的源代码(供参考)算法步骤如下:1)按价值重量比的非增顺序排列物品。

2)初始化:当前背包重量tempW为0,当前背包中物品总价值tempV为0,当前搜索深度i为0,当前解向量为x[i]=0,当前最优值maxV为0。

3)调用限界函数。

4)如果返回的上限大于当前最优值maxV,从物品Pi开始把物品装入背包,直至没有物品可装或装不下物品Pk为止,并生成部分解,转步骤5);否则,转步骤6)。

5)如果k大于或等于物品总数量n,则得到一个可行解,并把该可行解的值作为当前最优值,令i=n,转步骤3),以便回溯搜索其他可行解;否则,令i=k+l,拒绝物品k,从物品k+l继续装入,转步骤3)。

6)当k≥0且x[k]=0时,令k=k-1,直至条件不成立。

即沿着右分支结点方向向上回溯,直至左分支结点。

7)如果k<0,算法结束;否则,转步骤8)。

8)令x[k]=0,tempW=tempW-w[k],tempV=tempV-v[k],i=k+l,转步骤3)。

/*回溯法解0-1背包问题*/#define N 8// 物品个数#define C 200 //容积int result[N]; //存储结果:0表示不在集合内,1表示在集合内int tempR[N]; //当前结果int w[N]; //重量int v[N]; //价值int tempV = 0; //当前价值int maxV = 0 ; //最大价值int tempW = 0 ; //当前的容量void traceBack(int i ){if(i>=N){if(tempV>maxV){maxV = tempV;int j = 0;for(j=0;j<N;j++){result[j] = tempR[j];}}return;} //边界情况考虑if(tempW+w[i]<=C){tempR[i] = 1;tempV+=v[i];//当前价值增加tempW+=w[i] ;//当前重量增加traceBack(i+1);//进入下一层tempV-=v[i] ;//当前价值增加tempW-=w[i] ;//当前重量增加} //左子树//直接进入右子树int k=0;int cp = 0;for(k=i+1;k<N;k++){cp+= v[k];}if(tempV+cp>maxV){tempR[i] = 0;//当前值舍弃traceBack(i+1);}}void pack(){int i=0;printf("请输入各个物品重量和价值(成对输入,例如“79 83”)\n");for(i=0;i<N;i++){//printf("请输入%d个物品的重量:\t",i);// scanf("%d",&w[i]);scanf("%d %d",&w[i],&v[i]);}/*for(i=0;i<N;i++){printf("请输入%d个物品的价值:\t",i);scanf("%d",&v[i]);}*/traceBack(0);printf("最大价值为%d\t",maxV);printf("\n取值情况为\n");for(i=0;i<N;i++){printf("%d\t",result[i]);}printf("\n");for(i=0;i<N;i++){printf("%d\t",w[i]);}printf("\n");for(i=0;i<N;i++){printf("%d\t",v[i]);}printf("\n");}//背包问题的调用。

相关文档
最新文档