(原创精品)n=3时的0-1背包问题(回溯法)
回溯法和分支限界法解决0-1背包题(精)[精品文档]
![回溯法和分支限界法解决0-1背包题(精)[精品文档]](https://img.taocdn.com/s3/m/4b32afcc84868762caaed595.png)
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题回溯法

背包问题回溯法背包问题回溯法是一种用于解决背包问题的算法。
背包问题是一个经典的组合优化问题,在许多领域都有广泛的应用。
它的基本形式是在给定一组物品和一个容量为C的背包的情况下,选择将哪些物品放入背包中,以使得放入背包中物品的总价值最大。
回溯法是一种通过搜索所有可能的解空间来求解问题的算法。
在背包问题中,回溯法通过递归地尝试将物品放入背包或不放入背包来寻找最优解。
具体而言,回溯法从问题的初始状态开始,根据问题的约束条件和目标函数的要求,逐步生成问题的解空间,并通过剪枝策略来减少搜索空间的规模,直到找到问题的最优解或无解。
在使用回溯法解决背包问题时,需要定义一个递归函数来实现搜索过程。
该函数的输入参数包括当前已选择的物品、当前已选择物品的总价值、当前已选择物品的总重量、剩余物品的可选范围、剩余背包容量等等。
在函数的实现中,首先需要判断当前选择的物品是否满足约束条件,如果满足则继续递归地对剩余的物品进行选择;如果不满足,则进行剪枝操作,即回溯到上一层递归函数继续搜索其他可能的解。
当递归函数搜索完所有可能的解空间时,返回问题的最优解或无解。
背包问题回溯法的关键是如何定义约束条件和剪枝策略。
在背包问题中,约束条件包括物品的重量不能超过背包的容量,物品的总价值不能超过已选择的物品的总价值。
而剪枝策略可以根据问题的具体情况来进行设计,例如可以根据当前已选择物品的总价值和剩余物品的可选范围来进行剪枝,减少搜索空间的规模,提高算法的效率。
背包问题回溯法的时间复杂度取决于问题的规模和剪枝策略的设计。
由于回溯法需要搜索所有可能的解空间,所以在最坏情况下,时间复杂度为指数级别。
为了提高算法的效率,可以引入一些优化技巧,例如动态规划和贪心策略,来减少搜索空间的规模并加速算法的执行速度。
总之,背包问题回溯法是一种用于解决背包问题的经典算法。
通过搜索所有可能的解空间,并根据约束条件和剪枝策略来寻找最优解,可以求解出背包问题的最优解或无解。
01背包问题回溯法c语言

01背包问题回溯法c语言01背包问题是一个经典的动态规划问题,可以使用回溯法来解决。
在C语言中,我们可以通过递归的方式来实现回溯法解决01背包问题。
首先,让我们来看一下01背包问题的描述:给定n个物品,每个物品有一个重量和一个价值。
现在有一个背包,它能够容纳一定的重量,问如何选择装入背包的物品,使得背包中物品的总价值最大。
接下来,让我们来看一下如何使用回溯法来解决这个问题。
我们可以定义一个递归函数来尝试将每个物品放入背包或者不放入背包,然后找出最优解。
以下是一个简单的C语言代码示例:c.#include <stdio.h>。
#define N 5 // 物品的数量。
#define W 10 // 背包的容量。
int weight[N] = {2, 2, 6, 5, 4}; // 每个物品的重量。
int value[N] = {6, 3, 5, 4, 6}; // 每个物品的价值。
int maxValue = 0; // 最大的总价值。
void backtrack(int index, int currentWeight, int totalValue) {。
if (index == N || currentWeight == W) {。
if (totalValue > maxValue) {。
maxValue = totalValue;}。
return;}。
// 不放入背包。
backtrack(index + 1, currentWeight, totalValue); // 放入背包。
if (currentWeight + weight[index] <= W) {。
backtrack(index + 1, currentWeight +weight[index], totalValue + value[index]);}。
}。
int main() {。
backtrack(0, 0, 0);printf("背包能够容纳的最大总价值为,%d\n", maxValue);return 0;}。
0-1背包问题的多种解法

问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。
首先说明一下 0-1 背包问题拥有最优解。
假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。
因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。
如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
回溯法解决0-1背包问题

回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
算法设计期末试卷及答案

一.简述递归动态规划算法的基本步骤,以及动态规划算法与分治法的异同。
设计动态规划算法的主要步骤为:(最长公共子串,0/1背包)(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。
而用分治法求解的问题,经分解得到的子问题往往是互相独立的。
二.分治法在每一层递归上都有三个步骤:(汉诺塔问题)1.分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;2.解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;3.合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:Divide-and-Conquer(P)1. if |P|≤n02. then return(ADHOC(P))3. 将P分解为较小的子问题P1 ,P2 ,...,Pk4. for i←1 to k5. do yi ←Divide-and-Conquer(Pi) △递归解决Pi6. T ←MERGE(y1,y2,...,yk) △合并子问题7. return(T)三.分支限界法的搜索策略:(0/1背包,旅行售货员)在当前节点(扩展节点)处,先生成其所有的儿子节点(分支),然后再从当前的活节点(当前节点的子节点)表中选择下一个扩展节点。
为了有效地选择下一个扩展节点,加速搜索的进程,在每一个活节点处,计算一个函数值(限界),并根据函数值,从当前活节点表中选择一个最有利的节点作为扩展节点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
分支限界法解决了大量离散最优化的问题。
四.回溯法一般步骤:()(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是
{(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题:
w=[16,15,15]p=[45,25,25]c=30
开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点
扩展A,先到达B结点
Cr=Cr-w1=14,V=V+v1=45
此时A、B为活结点,B成为当前扩展结点
扩展B,先到达D
Cr<w2,D导致一个不可行解,回溯到B
再扩展B到达E
E可行,此时A、B、E是活结点,E成为新的扩展结点
扩展E,先到达J
Cr<w3,J导致一个不可行解,回溯到E
再次扩展E到达K
由于K是叶结点,即得到一个可行解x=(1,0,0),V=45
K不可扩展,成为死结点,返回到E
E没有可扩展结点,成为死结点,返回到B
B没有可扩展结点,成为死结点,返回到A
A再次成为扩展结点,扩展A到达C
Cr=30,V=0,活结点为A、C,C为当前扩展结点
扩展C,先到达F
Cr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达L
Cr=Cr-w3=0,V=V+v3=50
L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50
L不可扩展,成为死结点,返回到F
再扩展F到达M
M是叶结点,且25<50,不是最优解
M不可扩展,成为死结点,返回到F
F没有可扩展结点,成为死结点,返回到C
再扩展C到达G
Cr=30,V=0,活结点为A、C、G,G为当前扩展结点
扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G
再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到G
G没有可扩展结点,成为死结点,返回到C
C没有可扩展结点,成为死结点,返回到A
A没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值
V=50。