回溯算法之0-1背包问题
回溯法和分支限界法解决0-1背包题(精)[精品文档]
![回溯法和分支限界法解决0-1背包题(精)[精品文档]](https://img.taocdn.com/s3/m/4b32afcc84868762caaed595.png)
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
01背包问题(回溯法)

01背包问题(回溯法) 回溯法是⼀个既带有系统性⼜带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任意⼀结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对该结点为根的⼦树搜索,逐层向其祖先结点回溯;否则,进⼊该⼦树,继续按深度优先策略搜索。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
对于 n=3 时的 0/1 背包问题,可⽤⼀棵完全⼆叉树表⽰解空间,如图所⽰:求解步骤1)针对所给问题,定义问题的解空间;2)确定易于搜索的解空间结构;3)以深度优先⽅式搜索解空间,并在搜索过程中⽤剪枝函数避免⽆效搜索。
常⽤的剪枝函数:⽤约束函数在扩展结点处剪去不满⾜约束的⼦树;⽤限界函数剪去得不到最优解的⼦树。
回溯法对解空间做深度优先搜索时,有递归回溯和迭代回溯(⾮递归)两种⽅法,但⼀般情况下⽤递归⽅法实现回溯法。
算法描述 解 0/1 背包问题的回溯法在搜索解空间树时,只要其左⼉⼦结点是⼀个可⾏结点,搜索就进⼊其左⼦树。
当右⼦树中有可能包含最优解时才进⼊右⼦树搜索。
否则将右⼦树剪去。
代码:public class Knapsack_Problem01 {double m=100; //背包最⼤容量int n=5; //物品的个数int[] w = {10,20,30,40,50}; //第i个物品的重量int[] v = {20,30,65,40,60}; //第i个物品的价值int[] a = new int[n]; //记录在树中的移动路径,为1的时候表⽰选择该组数据,为0的表⽰不选择该组数据int maxvalue = 0; //背包的最⼤权重值public static void main(String[] args){Knapsack_Problem01 p = new Knapsack_Problem01();p.Search(0);}public void Search(int i) //i表⽰递归深度{if(i>=n){CheckMax();}else {a[i] = 0;Search(i+1);a[i] = 1;Search(i+1);}}public void CheckMax(){int weight = 0;int value = 0;for(int i=0;i<n;i++) //判断是否达到上限{if(a[i] == 1){weight = weight + w[i];value = value + v[i];}}if(weight <= m){if(value >= maxvalue){maxvalue = value;System.out.print("最⼤价值是:" + maxvalue +" ");System.out.print("所选取的物品为(1代表选中,0代表不选中): ");for(int j=0;j<n;j++){System.out.print(a[j]);System.out.print(' ');}System.out.print('\n');}}}}。
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
数据结构与算法题解(10):0-1背包问题与部分背包问题

假设我们有n件物品,分别编号为1, 2...n。其中编号为i的物品价值为vi ,它的重量量为wi 。为了了简
化问题,假定价值和重量量都是整数值。现在,假设我们有一一个背包,它能够承载的重量量是W。现 在,我们希望往包里里里装这些物品,使得包里里里装的物品价值最大大化,那么我们该如何来选择装的东 ⻄西呢?问题结构如下图所示:
}
public void printResult() { for(int i = 0; i < v. length; i++) { for(int j = 0; j <= weight; j++) System.out.print(c[i][j] + " "); System.out.println(); }
一一、0-1背包
1.1 初步分析
对于这个问题,一一开始确实有点不不太好入入手手。一一堆的物品,每一一个都有一一定的质量量和价值,我们
能够装入入的总重量量有限制,该怎么来装使得价值最大大呢?对于这n个物品,每个物品我们可能会 选,也可能不不选,那么我们总共就可能有2n种组合选择方方式。如果我们采用用这种办法来硬算的话,则整体的
回溯法求背包问题

《算法设计与分析》实验报告学号:姓名:日期:得分:一、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是w,其价值为iv,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总i价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。
这种具有限界函数的深度优先生成法称为回溯法。
对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。
在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。
当右子树中有可能包含最优解时就进入右子树搜索。
2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:)2()(n O n T =。
空间复杂度:有n 个物品,即最多递归n 层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为)(n O 。
2.以动态规划法验证:1)基本思想:令),(j i V 表示在前)1(n i i ≤≤个物品中能够装入容量为)1(C j j ≤≤的背包中的物品的最大值,则可以得到如下动态函数:0),0()0,(==j V i V{}⎩⎨⎧≥+---<-=)(),1(),,1(max ))(,1(),(i i i i w j v w j i V j i V w j j i V j i V 按照下述方法来划分阶段:第一阶段,只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。
最后,),(C n V 便是在容量为C 的背包中装入n 个物品时取得的最大价值。
回溯法解决0-1背包问题

回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、实验目的
(1)掌握回溯法设计策略。
(2)通过0-1背包问学习回溯法法设计技巧2.实验内容
源程序:
#include<iostream>
using namespace std;
double c;//背包容量
int n; //物品数
double w[100];//物品重量数组
double p[100];//物品价值数组
double cw=0;//当前重量
double cp=0;//当前价值
double bestp=0;//当前最优值
double bound(int i)
{ double cleft,b;
//计算上界
cleft=c-cw;//剩余容量
b=cp;
//以物品单位重量价值递减序装入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装满背包
if(i<=n)
b+=p[i]*cleft/w[i];
return b;
}
void Backtrack(int i)
{
if(i>n)
{
if(cp>bestp)
bestp=cp;
return;
}
if(cw+w[i]<=c) //搜索左子树
{
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cp-=p[i];
cw-=w[i];
}
if(bound(i+1)>bestp)//搜索右子树
Backtrack(i+1);
}
double Knapsack (double pp[],double ww[],double d) {
int i;
double TP=0,TW=0;
cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值
for(i=1;i<=n;i++)
{
TP=TP+pp[i];
TW=TW+ww[i];
}
if(TW<=d)//所有物品装入背包
bestp=TP;
else
{
Backtrack(1);
}
return bestp;
};
int main()
{
int i,j;
double t,a,x[100];
cout<<"请输入物品种类数和最大载重量:"<<endl;
cin>>n;cin>>c;
cout<<"请输入各物品重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请输入各物品价值:"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
//排序
for(i=1;i<=n;i++)
x[i]=p[i]/w[i];
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
if(x[i]<x[j])
{
t=x[i];
x[i]=x[j];
x[j]=t;
a=p[i];
p[i]=p[j];
p[j]=a;
a=w[i];
w[i]=w[j];
w[j]=a;
}
//排序结束
/////////////////////////////
Knapsack(p,w,c);
cout<<"结果:"<<endl;
cout<<bestp<<endl;
return 0;
}
结果:。