回流温度曲线

合集下载

回流焊PCB温度曲线讲解

回流焊PCB温度曲线讲解

回流焊PCB温度曲线讲解1. 引言回流焊是电子元器件表面贴装的主要连接工艺之一。

在回流焊过程中,合适的温度曲线对于保证焊点质量以及避免元器件损坏至关重要。

本文将介绍回流焊的基本原理,并详细讲解回流焊PCB温度曲线的设计和特点。

2. 回流焊的基本原理回流焊是利用热风或蒸汽将焊料预热至熔点,通过表面张力作用使焊料润湿焊盘,然后快速冷却固化焊点的方法。

其基本原理如下:•加热:通过预热炉或沿焊点方向移动的加热头,将焊盘、元器件表面和焊料加热至熔点附近。

•润湿:在焊料熔化后,焊料会润湿焊盘和元器件表面,形成液态焊接材料。

•冷却:在焊料润湿后,迅速冷却焊点,使焊料固化,固定连接元器件和焊盘。

3. PCB温度曲线的设计为了确保回流焊质量和避免元器件受损,需要设计合适的PCB温度曲线。

PCB温度曲线由预热阶段、高温阶段和冷却阶段组成。

3.1 预热阶段在预热阶段,PCB温度逐渐升高,热量逐渐传导到焊盘和元器件表面。

此阶段的温度升高速度较慢,以免过快的温度变化引发热应力而损坏元器件。

3.2 高温阶段在高温阶段,PCB温度达到焊料的熔点。

此阶段的温度需要保持一定时间,以确保焊料充分熔化并使焊点质量达到要求。

在高温阶段,焊料的表面张力会促使其润湿焊盘和元器件表面。

3.3 冷却阶段在冷却阶段,PCB温度迅速下降。

冷却阶段的温度变化速度需要适当控制,以避免焊点在急剧温度变化中产生冷焊、裂纹等缺陷。

4. 回流焊PCB温度曲线的特点回流焊PCB温度曲线的设计需考虑以下几个因素:4.1 元器件耐热温度不同的元器件有不同的耐热温度。

在设计温度曲线时,需要确保元器件能够耐受高温环境,避免损坏。

4.2 焊料熔点根据焊料的熔点来确定高温阶段的温度和时间。

高温阶段的温度需要高于焊料熔点以保证焊料能够充分熔化。

4.3 焊接质量要求回流焊的质量要求取决于焊接应用的具体要求,如焊点的可靠性、电气性能等。

根据焊点的要求,调整高温阶段的温度和时间,以保证焊接质量。

SMT回流焊的温度曲线说明与注意事项

SMT回流焊的温度曲线说明与注意事项

SMT回流焊的温度曲线(Reflow Profile)说明与注意事项电子产业之所以能发展迅速,表面贴焊技术(SMT, Surface Mount Technology)的发明具有极大程度的贡献。

而回焊(Reflow)又是表面贴焊技术中最重要的技术之一。

下面给大家介绍下回焊的一些技术与温度设定的问题电路板组装的回流焊温度曲线(reflow profile)共包括了预热、吸热、回焊和冷却等四个大区块预热区预热区通常是指由温度由常温升高至150°C左右的区域﹐在这个区域﹐温度缓升(又称一次升温)以利锡膏中的部分溶剂及水气能够及时挥发﹐电子零件(特别是BGA、IO连接器零件)缓缓升温﹐为适应后面的高温作准备吸热区在这段几近恒温区的温度通常维持在150±10° C的区域﹐斜升式的温度通常落在150~190°C之间,此时锡膏正处于融化前夕﹐焊膏中的挥发物会进一步被去除﹐活化剂开始启动﹐并有效的去除焊接表面的氧化物﹐PCB表面温度受热风对流的影响﹐让不同大小、质地不同的零组件温度能保持均匀温度。

此区域的温度如果升温太快,锡膏中的松香(助焊剂)就会迅速膨胀挥发,正常情况下,松香应该会慢慢从锡膏间的缝隙逸散,当松香挥发的速度过快时,就会发生气孔、炸锡、锡珠等品质问题回焊区回焊区是整段回焊温度最高的区域﹐通常也叫做「液态保持时间,必须注意,温度不可超过PCB板上任何温度敏感元件的最高温度和加热速率承受能力。

回焊的峰值温度,通常取决于焊料的熔点温度及组装零件所能承受的温度。

一般的峰值温度应该比锡膏的正常熔点温度要高出约25~30°C,才能顺利的完成焊接作业。

如果低于此温度,则极有可能会造成冷焊与润湿不良的缺点冷却区在回焊区之后,产品冷却,固化焊点,将为后面装配的工序准备。

控制冷却速度也是关键的,冷却太快可能损坏装配,冷却太慢将增加TAL,可能造成脆弱的焊点。

冷却区应迅速降温使焊料凝固,迅速冷却也可以得到较细的合晶结构,提高焊点的强度,使焊点光亮,表面连续并呈弯月面状,但缺点就是较容易生成孔洞,因为有些气体来不及散去。

回流焊温度曲线测试操作指示

回流焊温度曲线测试操作指示

1.0目的用于指导回流焊温度曲线测试操作指示。

2.0适用范围:适用于苏州福莱盈电子有限公司3.0职责:无4.0作业内容4.1设定温度参数制程界限:4.1.1工程师根据锡膏型号、特殊元件规格、特殊测量位置、FPC制程以及客户的要求制定一个合理的温度曲线测试范围,包括:升温区、浸泡(保温)区、回流区、冷却区的具体参数及定义图一: KOKI S3X48-M500锡膏的参考回流曲线4.1.2预热区:通常是指由室温升温至150度左右的区域。

在此温区,升温速率不宜过快,一般不超过3度/秒。

以防止元器件应升温过快而造成基板变形或元件微裂等现象。

4.1.3浸泡(保温)区:通常是指由110度~190度左右的区域。

在此温区,助焊剂进一步挥发并帮助基板清楚氧化物,基板及元器件均达热平衡,为高温回流做准备。

此区一般持续时间问60~120秒。

4.1.4回流区:通常是指超过217度以上温度区域。

在此温区,焊膏很快熔化,迅速浸润焊接面,并与基板PAD形成新的合金焊接层,达到元件与PAD之间的良好焊接。

此区持续时间一般设定为:45~90秒。

最高温度一般不超过250度(除有特定要求外)。

4.1.5冷却区:该区为焊点迅速降温,将焊料凝固,使焊料晶格细化,提高焊接强度。

本区降温速率一般设置为-3~-1度/秒左右。

4.2测温板的制作4.2.1采用与生产料号一致的样品板作为测温板,制作测温板时,原则上应保留必要的具有代表性的测温元器件,以保证测试测量温度与实际生产温度保持一致。

4.2.2测温板与生产料号在无法保持一致情况下,经工程师验证认可,可使用与之同类型的测温板进行测量。

4.2.3测温点应该选择最具有代表性的区域及元件,比如最大及最小吸热量的元件,零件选取优先级(如Socket->Motor->大型BGA ->小型BGA->QFP或SOP->标准Chip)除此之外,还应选择介于两者之间的一个测温区。

如图:4.2.4一般测温点在每板上不得少于3个,有BGA或大型IC至少选取4个,基于特殊代表型元件为首选原则选取元件。

回流焊接温度曲线

回流焊接温度曲线

回流焊接温度曲线作温度曲线(profiling)是确定在回流整个周期内印刷电路板(PCB)装配必须经受的时刻/温度关系的过程。

它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分。

装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都阻碍发热器的设定和炉传送带的速度。

炉的热传播效率,和操作员的经验一起,也阻碍反复试验所得到的温度曲线。

锡膏制造商提供差不多的时刻/温度关系资料。

它应用于特定的配方,通常可在产品的数据表中找到。

但是,元件和材料将决定装配所能忍受的最高温度。

涉及的第一个温度是完全液化温度(full liquidus temperature)或最低回流温度(T1)。

这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面。

它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的阻碍,可能在数据表中指出一个范围。

对Sn63/Pb37,该范围平均为200 ~ 225°C。

对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度。

那个温度通常比焊锡的熔点高出大约15 ~ 20°C。

(只要达到焊锡熔点是一个常见的错误假设。

)回流规格的第二个元素是最脆弱元件(MVC, most vulnerable component)的温度(T2)。

正如其名所示,MVC确实是装配上最低温度“痛苦”忍耐度的元件。

从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC。

它可能是连接器、双排包装(DIP, dual in-line package)的开关、发光二极管(LED, light emitting diode)、或甚至是基板材料或锡膏。

MVC是随应用不同而不同,可能要求元件工程人员在研究中的关心。

在建立回流周期峰值温度范围后,也要决定贯穿装配的最大同意温度变化率(T2-T1)。

是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素。

回流炉温度曲线设定

回流炉温度曲线设定

怎样设定锡膏回流温度曲线“正确的温度曲线将保证高品质的焊接锡点。

”约翰.希罗与约翰.马尔波尤夫(美)在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。

温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线.几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定.带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定.每个区所花的持续时间总和决定总共的处理时间。

每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差.增加区的设定温度允许机板更快地达到给定温度。

因此,必须作出一个图形来决定PCB的温度曲线。

接下来是这个步骤的轮廓,用以产生和优化图形.在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表.可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。

现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。

测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。

热电偶必须长度足够,并可经受典型的炉膛温度。

一般较小直径的热电偶,热质量小响应快,得到的结果精确。

有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。

另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。

还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠. 附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间.ﻫ(图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间)锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度.开始之前,必须理想的温度曲线有个基本的认识.理论上理想的曲线由四个部分或区间组成,前面三个区加热、最后一个区冷却。

回流焊的温度曲线

回流焊的温度曲线

通过对回流焊温度曲线的分段描述,理解焊膏各成分在回流炉中不同阶段所发生的变化,给出获得最佳温度曲线的一些基本数据,并分析不良温度曲线可能造成的回流焊接缺陷。

在SMT生产流程中,回流炉参数设置的好坏是影响焊接质量的关键,通过温度曲线,可以为回流炉参数的设置提供准确的理论依据,在大多数情况下,温度的分布受组装电路板的特性、焊膏特性和所用回流炉能力的影响。

为充分理解焊膏在回流焊接的不同阶段会发生什么,产生的温度分布对焊膏组成成分的影响,以下先介绍焊膏的组成成分及其特性,再介绍获得温度曲线的方法,然后对温度曲线进行较为详细的分段简析,最后列表分析不良温度曲线可能造成的回流焊接缺陷。

(1)冷却段这一段焊膏中的铅锡粉末已经熔化并充分润湿被焊接表面,快速度地冷却会得到明亮的焊点并有好的外形及低的接触角度,缓慢冷却会使板材溶于焊锡中,而生成灰暗和毛糙的焊点,并可能引起沾锡不良和减弱焊点结合力。

(2)回流焊接段这一段把电路板带入铅锡粉末熔点之上,让铅锡粉末微粒结合成一个锡球并让被焊金属表面充分润湿。

结合和润湿是在助焊剂帮助下进行的,温度越高助焊剂效率越高,粘度及表面张力则随温度的升高而下降,这促使焊锡更快地湿润。

但过高的温度可能使板子承受热损伤,并可能引起铅锡粉末再氧化加速、焊膏残留物烧焦、板子变色、元件失去功能等问题,而过低的温度会使助焊剂效率低下,可能使铅锡粉末处于非焊接状态而增加生焊、虚焊发生的机率,因此应找到理想的峰值与时间的最佳结合,一般应使曲线的尖端区覆盖面积最小。

曲线的峰值一般为210℃-230℃,达到峰值温度的持续时间为3-5秒,超过铅锡合金熔点温度183℃的持续时间维持在20-30秒之间。

(3)保温段溶剂的沸点在125-150℃之间,从保温段开始溶剂将不断蒸发,树脂或松香在70-100℃开始软化和流动,一旦熔化,树脂或松香能在被焊表面迅速扩散,溶解于其中的活性剂随之流动并与铅锡粉末的表面氧化物进行反应,以确保铅锡粉末在焊接段熔焊时是清洁的。

回流温度曲线的测定方法

回流温度曲线的测定方法

���� �
回流区 , 有时叫 做峰值区或最后升温 区.这 个区的作用 是将 PCB 装 配的温 度从活 性温度 提高 到所推 荐的 峰值温 度. 活性温度总是比 合金的熔点温度低一 点, 而 峰值温度总 是在熔点上. 典型的峰值温度范围是 205 �230� , 这个区 的 温度设定太高会使其温升斜率超过每秒 2 �4�,或达到 回 流峰值温度比推荐的高. 这种情况可能引 起 PCB 的过分卷 曲, 脱层或烧损, 并损害元件的完整性. 冷却区, 在这个区域温度的下降斜率一般为 3�5 �, 温 度下降的越快, 焊点表面越平滑, 光亮, 温度下降的 较慢, 焊 点表面越粗造, 焊点的机械抗拉强度就比较差. 接下来必须决定各个区的温度设定 ,重要的是要了解 实际的区间温度不一定就是该区的显示温度.显示温度只是 代表区内热敏电偶的温度, 如果热电偶越靠近加热源 , 显示 的温度将相对比区间温度较高,热电偶越靠近 PCB 的直接 通道, 显示的温 度将越能反应区间温 度.明智的 是向炉子制 造商咨询了解清楚显示温度和实际区间温度的关系.本文中 将考虑的是区间温度而不是显示温度.表 1 列出的是用于典 型 PCB 装配回流的区间温度设定. 表 1 典型 PCB 回流区间温度设定 区间 预热 活性 回流 区间温度设定 21 0 ( 1 0 1 (3 0 ) ) ) 区间末实际板温 1 0 ( 2 1 0 ( 302 21 0 ( 2 ) ) )
锡固定测温线时,请使用其融点高于回流炉 设定温度以上的 焊锡. 2.测试零部件的温度 测试零部件的温度 � 时间, 温度冲击等是否在可容许 的 范围内. (1 ) 用热 硬化型粘合 剂或无机 质粘合 剂等固 定测温 线 的顶端. 注 :如用 粘合剂等将 测温线的 顶端 "埋" 在零部件 中, 可 得到 较精确的测定. 请注意,在 使用粘合剂等时, 不要使零 部 件的外形变化的过大. 关于回流炉温度测试仪的测定误差. ①热应答与测温线直径的关系 对于回 流炉温度测试仪, 通常使 用直径为 �0.2mm 的 标 准 测温 线, 如想 加 快热 应答 的 速度 , 建 议 使 用直 径 为 �0.1mm 的测温线. 用热硬化型粘合剂将测温线固定在样品基板上时, 直 径为 �0.2mm 的测温线的耐久 性较好, 但如测定扁平组 件 等的 细引线时, 不适合使用 �0.2mm 的 测温线. 请使用直 径 为 �0.1mm 的测温线, 用胶带等粘 合剂将测温线的顶端 固 定在所要测定的部位上. ②焊接测温线顶端时的注意事项 测温线是通过和异种金属相接合的顶端(将测温线的顶 端焊接在所要测定的部位上)与其底端产 生温度差而发生电 压 .在焊接 时,测 温线的顶端 和所要测 定部位的接 和部分 越 小 ,测温线 的热应答 就越好. 请注意一 定要将测温 线伸直 后 再焊接. ③固定测温线的方法 使用高温焊锡固定时,请使用其熔点高 于回流炉设定温 度以 上的焊锡.如 使用高温焊锡, 需先使用不锈钢用 助焊剂. 通常是先用焊锡焊接完之后, 再使用助焊剂. 表2 固定方法 热电偶不良固定方法比较 优 点 缺 点

Reflow技术要求及测试方法

Reflow技术要求及测试方法

Reflow技术要求及测试方法回流温度曲线的一般技术要求及测试方法一、回流温度曲线在生产中地位:回流焊接是在SMT工业组装基板上形成焊接点的主要方法,在SMT工艺中回流焊接是核心工艺。

因为表面组装PCB的设计,焊膏的印刷和元器件的贴装等产生的缺陷,最终都将集中表现在焊接中,而表面组装生产中所有工艺控制的目的都是为了获得良好的焊接质量,如果没有合理可行的回流焊接工艺,前面任何工艺控制都将失去意义。

而回流焊接工艺的表现形式主要为回流温度曲线,它是指PCB的表面组装器件上测试点处温度随时间变化的曲线。

因而回流温度曲线是决定焊接缺陷的重要因素。

因回流曲线不适当而影响的缺陷形式主要有:部品爆裂/破裂、翘件、锡粒、桥接、虚焊以及生半田、PCB脱层起泡等。

因此适当设计回流温度曲线可得到高的良品率及高的可靠度,对回流温度曲线的合理控制,在生产制程中有着举足轻重的作用。

二、回流温度曲线的一般技术要求及主要形式:1.回流温度曲线各环节的一般技术要求:一般而言,回流温度曲线可分为三个阶段:预热阶段、回流阶段、冷却阶段。

预热阶段:预热是指为了使锡水活性化为目的和为了避免浸锡时进行急剧高温加热引起部品不具合为目的所进行的加热行为。

•预热温度:依使用锡膏的种类及厂商推荐的条件设定。

一般设定在80~160℃范围内使其慢慢升温(最佳曲线);而对于传统曲线恒温区在140~160℃间,注意温度高则氧化速度会加快很多(在高温区会线性增大,在150℃左右的预热温度下,氧化速度是常温下的数倍,铜板温度与氧化速度的关系见附图)预热温度太低则助焊剂活性化不充分。

•预热时间视PCB板上热容量最大的部品、PCB面积、PCB厚度以及所用锡膏性能而定。

一般在80~160℃预热段内时间为60~120see,由此有效除去焊膏中易挥发的溶剂,减少对元件的热冲击,同时使助焊剂充分活化,并且使温度差变得较小。

•预热段温度上升率:就加热阶段而言,温度范围在室温与溶点温度之间慢的上升率可望减少大部分的缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎樣設定錫膏回流溫度曲線
“正確的溫度曲線將保證高品質的焊接錫點。


約翰.希羅與約翰.馬爾波尤夫(美)
在使用表面貼裝元件的印刷電路板(PCB)裝配中,要得到優質的焊點,一條優化的回流溫度曲線是最重要的因素之一。

溫度曲線是施加於電路裝配上的溫度對時間的函數,當在笛卡爾平面作圖時,回流過程中在任何給定的時間上,代表PCB上一個特定點上的溫度形成一條曲線。

幾個參數影響曲線的形狀,其中最關鍵的是傳送帶速度和每個區的溫度設定。

帶速決定機板暴露在每個區所設定的溫度下的持續時間,增加持續時間可以允許更多時間使電路裝配接近該區的溫度設定。

每個區所花的持續時間總和決定總共的處理時間。

每個區的溫度設定影響PCB的溫度上升速度,高溫在PCB與區的溫度之間産生一個較大的溫差。

增加區的設定溫度允許機板更快地達到給定溫度。

因此,必須作出一個圖形來決定PCB的溫度曲線。

接下來是這個步驟的輪廓,用以産生和優化圖形。

在開始作曲線步驟之前,需要下列設備和輔助工具:溫度曲線儀、熱電偶、將熱電偶附著於PCB的工具和錫膏參數表。

可從大多數主要的電子工具供應商買到溫度曲線附件工具箱,這工具箱使得作曲線方便,因爲它包含全部所需的附件(除了曲線儀本身)。

現在許多回流焊機器包括了一個板上測溫儀,甚至一些較小的、便宜的臺面式爐子。

測溫儀一般分爲兩類:即時測溫儀,即時傳送溫度/時間資料和作出圖形;而另一種測溫儀採樣儲存資料,然後上載到電腦。

熱電偶必須長度足夠,並可經受典型的爐膛溫度。

一般較小直徑的熱電偶,熱質量小回應快,得到的結果精確。

有幾種方法將熱電偶附著於PCB,較好的方法是使用高溫焊錫如銀/錫合金,焊點儘量最小。

另一種可接受的方法,快速、容易和對大多數應用足夠準確,少量的熱化合物(也叫熱導膏或熱油脂)斑點覆蓋住熱電偶,再用高溫膠帶(如Kapton)粘住。

還有一種方法來附著熱電偶,就是用高溫膠,如氰基丙烯酸鹽粘合劑,此方法通常沒有其他方法可靠。

附著的位置也要選擇,通常最好是將熱電偶尖附著在PCB焊盤和相應的元件引腳或金屬端之間。

(圖一、將熱電偶尖附著在PCB焊盤和相應的元件引腳或金屬端之間)
錫膏特性參數表也是必要的,其包含的資訊對溫度曲線是至關重要的,如:所希望的溫度曲線持續時間、錫膏活性溫度、合金熔點和所希望的回流最高溫度。

開始之前,必須理想的溫度曲線有個基本的認識。

理論上理想的曲線由四個部分或區間組成,前面三個區加熱、最後一個區冷卻。

爐的溫區越多,越能使溫度曲線的輪廓達到更準確和接近設定。

大多數錫膏都能用四個基本溫區成功回流。

(圖二、理論上理想的回流曲線由四個區組成,前面三個區加熱、最後一個區冷卻)
預熱區,也叫斜坡區,用來將PCB的溫度從周圍環境溫度提升到所須的活性溫度。

在這個區,産品的溫度以不超過每秒2~5°C速度連續上升,溫度升得太快會引起某些缺陷,如陶瓷電容的細微裂紋,而溫度上升太慢,錫膏會感溫過度,沒有足夠的時間使PCB達到活性溫度。

爐的預熱區一般占整個加熱通道長度的25~33%。

活性區,有時叫做乾燥或浸濕區,這個區一般占加熱通道的33~50%,有兩個功用,第一是,將PCB 在相當穩定的溫度下感溫,允許不同質量的元件在溫度上同質,減少它們的相當溫差。

第二個功能是,允許助焊劑活性化,揮發性的物質從錫膏中揮發。

一般普遍的活性溫度範圍是120~150°C,如果活性區的溫度設定太高,助焊劑沒有足夠的時間活性化,溫度曲線的斜率是一個向上遞增的斜率。

雖然有的錫膏製造商允許活性化期間一些溫度的增加,但是理想的曲線要求相當平穩的溫度,這樣使得PCB 的溫度在活性區開始和結束時是相等的。

市面上有的爐子不能維持平坦的活性溫度曲線,選擇能維持平坦的活性溫度曲線的爐子,將提高可焊接性能,使用者有一個較大的處理視窗。

回流區,有時叫做峰值區或最後升溫區。

這個區的作用是將PCB裝配的溫度從活性溫度提高到所推薦的峰值溫度。

活性溫度總是比合金的熔點溫度低一點,而峰值溫度總是在熔點上。

典型的峰值溫度範圍是205~230°C,這個區的溫度設定太高會使其溫升斜率超過每秒2~5°C,或達到回流峰值溫度比推薦的高。

這種情況可能引起PCB的過分捲曲、脫層或燒損,並損害元件的完整性。

今天,最普遍使用的合金是Sn63/Pb37,這種比例的錫和鉛使得該合金共晶。

共晶合金是在一個特定溫度下熔化的合金,非共晶合金有一個熔化的範圍,而不是熔點,有時叫做塑性裝態。

本文所述的所有例子都是指共晶錫/鉛,因爲其使用廣泛,該合金的熔點爲183°C。

理想的冷卻區曲線應該是和回流區曲線成鏡像關係。

越是靠近這種鏡像關係,焊點達到固態的結構越緊密,得到焊接點的質量越高,結合完整性越好。

作溫度曲線的第一個考慮參數是傳輸帶的速度設定,該設定將決定PCB在加熱通道所花的時間。

典型的錫膏製造廠參數要求3~4分鐘的加熱曲線,用總的加熱通道長度除以總的加熱感溫時間,即爲準確的傳輸帶速度,例如,當錫膏要求四分鐘的加熱時間,使用六英尺加熱通道長度,計算爲:6 英尺÷4 分鐘= 每分鐘 1.5 英尺= 每分鐘18 英寸。

接下來必須決定各個區的溫度設定,重要的是要瞭解實際的區間溫度不一定就是該區的顯示溫度。

顯示溫度只是代表區內熱敏電偶的溫度,如果熱電偶越靠近加熱源,顯示的溫度將相對比區間溫度較高,熱電偶越靠近PCB的直接通道,顯示的溫度將越能反應區間溫度。

明智的是向爐子製造商諮詢瞭解清楚顯示溫度和實際區間溫度的關係。

本文中將考慮的是區間溫度而不是顯示溫度。

表一列出的是用於典型PCB裝配回流的區間溫度設定。

表一、典型PCB回流區間溫度設定
速度和溫度確定後,必須輸入到爐的控制器。

看看手冊上其他需要調整的參數,這些參數包括冷卻風扇速度、強制空氣衝擊和惰性氣體流量。

一旦所有參數輸入後,啓動機器,爐子穩定後(即,所有實際顯示溫度接近符合設定參數)可以開始作曲線。

下一部將PCB放入傳送帶,觸發測溫儀開始記錄資料。

爲了方便,有些測溫儀包括觸發功能,在一個相對低的溫度自動啓動測溫儀,典型的這個溫度比人體溫度37°C(98.6°F)稍微高一點。

例如,38°C(100°F)的自動觸發器,允許測溫儀幾乎在PCB剛放入傳送帶進入爐時開始工作,不至於熱電偶在人手上處理時産生誤觸發。

一旦最初的溫度曲線圖産生,可以和錫膏製造商推薦的曲線或圖二所示的曲線進行比較。

首先,必須證實從環境溫度到回流峰值溫度的總時間和所希望的加熱曲線居留時間相協調,如果太長,按比例地增加傳送帶速度,如果太短,則相反。

下一步,圖形曲線的形狀必須和所希望的相比較(圖二),如果形狀不協調,則同下面的圖形(圖三~六)進行比較。

選擇與實際圖形形狀最相協調的曲線。

應該考慮從左道右(流程順序)的偏差,例如,如果預熱和回流區中存在差異,首先將預熱區的差異調正確,一般最好每次調一個參數,在作進一步調整之前運行這個曲線設定。

這是因爲一個給定區的改變也將影響隨後區的結果。

我們也建議新手所作的調整幅度相當較小一點。

一旦在特定的爐上取得經驗,則會有較好的“感覺”來作多大幅度的調整。

圖三、預熱不足或過多的回流曲線
圖四、活性區溫度太高或太低
圖五、回流太多或不夠
圖六、冷卻過快或不夠
當最後的曲線圖盡可能的與所希望的圖形相吻合,應該把爐的參數記錄或儲存以備後用。

雖然這個過程開始很慢和費力,但最終可以取得熟練和速度,結果得到高品質的PCB的高效率的生産。

相关文档
最新文档