高一数学必修一第二章基本初等函数综合练习题及答案

合集下载

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析

为幂函数,得 m2-m-
A
1=1,解得 m=2 或 m=-1.当 m=2 时,m2-2m-3=-3,y=x-3 在
(0,+∞)上为减函数;当 m=-1 时,m2-2m-3=0,y=x0=1(x≠0)
在(0,+∞)上为常数函数(舍去),所以 m=2,故选 A. 7.D 解析:当 x≤1 时,由 21-x≤2 知,x≥0,即 0≤x≤1;
18.(本小题满分 12 分)
1 2
已知函数 f(x)=-2x . (1)求 f(x)的定义域; (2)证明:f(x)在定义域内是减函数.
19.(本小题满分 12 分)
3
xx
已知-3≤log0.5x≤-2,求函数 f(x)=log22·log24的最大值和最小
值.
20.(本小题满分 12 分)
2-x,x∈(-∞,1], 设 f(x)= x x
16.设函数 f(x)是定义在 R 上的奇函数,若当 x∈(0,+∞)时,f(x)
=lg x,则满足 f(x)>0 的 x 的取值范围是________. 三、解答题(本大题共 6 个小题,共 70 分,解答时应写出必要的文
字说明、证明过程或演算步骤) 17.(本小题满分 10 分) 计算下列各题:
1 13. 2,4] 解析:由题意知,2≤log2x≤2,即 log2 2≤log2x≤log24, ∴ 2≤x≤4.
1 14.24 解析:∵log23<4, ∴f(log23)=f(log23+1)=f(log23+3)=f(log224), ∵log224>4,∴f(log224)=12log224=214. 15. 3 3 解析:由图象过点(-2,0),(0,2),知
1 当 x>1 时,由 1-log2x≤2 知 x≥2,即 x>1.

2023年新版高一数学必修一基本初等函数高考真题含详细答案

2023年新版高一数学必修一基本初等函数高考真题含详细答案

基本初等函数1.(高考(安徽文))23log 9log 4⨯=( )A .14 B .12C .2D .4 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3.(高考(重庆))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1) C .(-1,1) D .(,1)-∞4.(高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+5.(高考(四川))函数(0,1)xy a a a a =->≠旳图象也许是6.(高考(山东))函数21()4ln(1)f x x x =+-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-7.(高考(广东))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .21y x =+8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A .(1,2)B .[1,2]C .[,)12D .(,]129.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是10.(高考(江西理))下列函数中,与函数3x( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题11.(高考(上海))方程03241=--+x x 旳解是_________.12.(高考(陕西))设函数发,0,()1(),0,2xx x f x x ,则((4))f f =_____13.(高考(北京))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m旳取值范围是________.14.(高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是______.16.(高考(江苏))函数x x f 6log 21)(-=旳定义域为____.三、解答题17.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.基本初等函数参照答案一、选择题1.【解析】选D 23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3..(高考(重庆文))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->因此1x <或3log 5x >;由()2g x <得322x -<即34x <因此3log 4x <故(,1)MN =-∞4.(高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,因此在)2,1(上也为增函数,选B.5.(高考(四川文))函数(0,1)xy a a a a =->≠旳图象也许是[答案]C [解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. 6. (高考(山东文))函数21()4ln(1)f x x x =-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-解析:要使函数)(x f 故意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B. 7.(高考(广东文))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .2ln 1y x =+解析:D.()()()22ln 1ln 1f x x x f x -=-+=+=.8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A.(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是[答案]C [解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C. 10.(高考(江西理))下列函数中,与函数3x定义域相似旳函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD 【解析】 函数3y x=旳定义域为()(),00,-∞+∞,而答案中只有sin xy x=旳定义域为()(),00,-∞+∞.故选D.二、填空题11.(高考(上海文))方程03241=--+x x 旳解是_________.[解析] 0322)2(2=-⋅-xx ,0)32)(12(=-+xx,32=x ,3log 2=x . 12.(高考(陕西文))设函数发,0,()1(),0,2x x x f x x ,则((4))f f =_____解析:41(4)()162f ,((4))(16)164f f f13.(高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 旳取值范围是________. 【解析】首先看()22xg x =-没有参数,从()22xg x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),因此舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,因此30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,因此4m >-,又0m <,故(4,0)m ∈-,综上,m 旳取值范围是(4,0)-.14.(高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴= 2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是___5___.16.(高考(江苏))函数xx f 6log 21)(-=旳定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x . 由1lg)1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 由于01>+x ,因此1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-== 由单调性可得]2lg ,0[∈y . 由于y x 103-=,因此所求反函数是xy 103-=,]2lg ,0[∈x。

高一数学第二章《基本初等函数》单元测试卷4

高一数学第二章《基本初等函数》单元测试卷4

高一数学第二章《基本初等函数》单元测试卷班级 学号 姓名一、选择题(每小题5分,共40分) 1.3334)21()21()2()2(---+-+----的值( ) A 437 B 8 C -24 D -8 2.函数x y 24-=的定义域为( )A ),2(+∞B (]2,∞-C (]2,0D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是( ) A ||x y = B x y 2log = C 31x y = D x y 5.0=4.函数x x f 4log )(=与x x f 4)(=的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a6.若函数)1,0)(1(≠>+-=a a b a y x 的图象在第一、三、四象限,则有( )A 1>a 且1<bB 1>a 且0>bC 10<<a 且0>bD 10<<a 且0<b7.已知10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m n8.函数⎩⎨⎧>-≤-=--)1(23)1(2311x x y x x 的值域是A )1,2(--B ),2(+∞-C ]1,(--∞D ]1,2(--二、填空题(每小题5分,共20分)9.若n m a a )()(->-ππ,且1>>n m ,则实数a 的取值范围为 。

10.已知函数)(x f 为偶函数,当),0(+∞∈x 时,12)(+-=x x f ,当)0,(-∞∈x 时,=)(x f _____________.11.已知函数⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.12.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________三、解答题(共40分)13(本题满分10分)计算下列各式的值:(写出化简过程)(1)5.02120)01.0()412(2)532(-⨯+--;(5分)(2)432981⨯;(5分)14.已知函数x y 2=(1)作出其图象;(4分)(2)由图象指出单调区间;(2分)(3)由图象指出当x 取何值时函数有最小值,最小值为多少?(4分)15.已知[]2,1,4329)(-∈+⨯-=x x f x x(1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值;(4分)(2)求)(x f 的最大值与最小值;(6分)16.已知函数.11lg )(xx x f +-= (1) 求证:);1()()(xyy x f y f x f ++=+(4分) (2) 若,2)1(,1)1(=--=++abb a f ab b a f 求)(a f 和)(b f 的值.(6分)《基本初等函数》参考答案一、1~8 CBCD ABAD二、9、{}1-<πa a 10、12)(+-=-x x f11、12112、{}21<<a a三、13、(1)1516(2) 67314、(1)如图所示:(2)单调区间为()0,∞-,[)+∞,0.(3) 由图象可知:当0=x 时,函数取到最小值1min =y15、解:(1)x t 3= 在[]2,1-是单调增函数∴ 932max ==t ,3131min ==-t(2)令x t 3=,[]2,1-∈x ,⎥⎦⎤⎢⎣⎡∈∴9,31t 原式变为:42)(2+-=t t x f ,1xy3)1()(2+-=∴t x f ,⎥⎦⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,当9=t 时,此时2=x ,67)(max =x f 。

人教版高中数学必修1数学第二章课后习题(共10页)Word版

人教版高中数学必修1数学第二章课后习题(共10页)Word版

新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。

高中数学 必修1 第二章 基本初等函数(Ⅰ) 2.1.1(一)

高中数学 必修1 第二章 基本初等函数(Ⅰ)  2.1.1(一)

本课结束
n
(2)( a)n= a (n∈N*,且 n>1); 的奇数);
n
a a≥0 (4) an=|a|= (n 为大于 1 的偶数). -a a<0
n
题型探究
类型一 根式的意义
例 1 求使等式 a-3a2-9=(3-a) a+3成立的实数 a 的取值范围.
n 为偶数时,a≥0, n
而 a 为任意实数 an均有意义,且 an=|a|.
跟踪训练2 求下列各式的值:
(1) -2 ;
7
7

4
7
-27=-2.
(2) 3a-34(a≤1); 解
3
4
3a-34=|3a-3|=3|a-1|=3-3a.
4
(3) a + 1-a4.
3

3
∴( x-1) + x2-4x+43
4
4
6
=x-1+ x-26
=x-1-(x-2) =1.
6
解析
答案
当堂训练
1.已知x5=6,则x等于
A. 6 C.- 6
5

B. 6 D.± 6
5
5
1
2
3
4
5
答案
2.m是实数,则下列式子中可能没有意义的是
A. m2
4
B. m D. -m
5
3

C. m
6
原式=-(x-1)-(x+3)=-2x-2;
当1≤x<3时,原式=(x-1)-(x+3)=-4.
-2x-2,-3<x<1, ∴原式= -4,1≤x<3.
解答
引申探究
例3中,若将“-3<x<3”变为“x≤-3”,则结果又是什么?

高中数学新人教A版必修1课件:第二章基本初等函数(Ⅰ)对数运算及对数函数习题课

高中数学新人教A版必修1课件:第二章基本初等函数(Ⅰ)对数运算及对数函数习题课
log1 ,0 < ≤ 1,
2
(2)y=|log1 | =
其图象如图②所示,
2
log2 , > 1,
其定义域为(0,+∞),值域为[0,+∞),在区间(0,1]上是减函数,在区间
(1,+∞)内是增函数.
图①
图②
题型一
题型二
题型三
题型四
反思1.一般地,函数y=f(x±a)±b(a,b为正实数)的图象可由函数
由(1)知f(x)的定义域为(-1,1),
且f(-x)=loga(-x+1)-loga(1+x)= -[loga(x+1)-loga(1-x)]=-f(x),
故f(x)为奇函数.
(3)因为当a>1时,f(x)在定义域(-1,1)内是增函数,
所以由f(x)>0,得loga(x+1)-loga(1-x)>0,即loga(x+1)>loga(1-x),即
y=f(x)的图象变换得到.
将y=f(x)的图象向左或向右平移a个单位长度可得到函数y=f(x±a)
的图象,再向上或向下平移b个单位长度可得到函数y=f(x±a)±b的
图象(记忆口诀:左加右减,上加下减).
2.含有绝对值的函数的图象变换是一种对称变换,一般地,y=
f(|x-a|)的图象是关于x=a对称的轴对称图形,也可以由y=f(x)的图象
题型二
题型三
题型四
4
【变式训练 1】 计算:(log43+log83)(log32+log92)-log1 32.
2
解:原式 =
5
6
3
1
2
1

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 第二章 基本初等函数(Ⅰ)单元测试(二)新人教A版必修1-新人教A版高一必修1数学试题

word1 / 7第二章 基本初等函数(Ⅰ)注意事项:1.答题前,先将自己的某某、某某号填写在试题卷和答题卡上,并将某某号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.()0a a >可以化简为( )A .32aB .18a C .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5< D .0.10.2212<log 25< 3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy=( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B .12y x =-C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa xx f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有word2 / 7()()1212f x f x x x -<0-成立,则实数a 的取值X 围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值X 围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数22logy x =,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)()31320.5log 511lg3lg91lg 812730.25-⎛⎫++-+-+ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.word3 / 719.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值X 围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).word4 / 721.(12分)已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(12分)若函数f (x )满足21(log )1a a f x x x a ⎛⎫=⋅- ⎪-⎝⎭ (其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值X 围.word1 / 72018-2019学年必修一第二章训练卷基本初等函数(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B .8.【答案】A 【解析】A,22xy x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C .11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值X 围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)word2 / 713.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-. 16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭, 点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2xf x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422xx -⎛⎫-= ⎪⎝⎭,即112=42xx⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析.【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}.word3 / 721.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222x x -+.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x=(2x-2)2-4.∵x ∈[0,1],∴2x∈[1,2],∴当2x=2,即x =1时,g (x )取得最小值-4; 当2x=1,即x =0时,g (x )取得最大值-3. 22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡+⎣.【解析】(1)令log a x =t (t ∈R ),则x =a t,∴2()()1t ta f t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数.当0<a <1时,y =a x为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1, ∴a的取值X 围为)(21,23⎡+⎣.。

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.的值域是_______ ;【答案】[0,30]【解析】,因为,结合二次函数的图象可知函数在上单调递减,当时当时,所以函数的值域为[0,30].【考点】本小题主要考查二次函数在闭区间上的值域,考查学生的运算求解能力.点评:对于二次函数要采用配方法求函数的值域,结合函数的图象进行即可.2.函数|()的图象是()【答案】B【解析】,因为,所以选B.【考点】本小题主要考查指数函数和分段函数的图象问题.点评:指数函数的图象是常考的内容,要根据底数的范围求解.3.已知函数,若满足,则等于;【答案】 2【解析】因为函数,若满足,则a的值为2.4.(本小题满分14分)已知二次函数的图像经过原点,且.(1)求的表达式;(2)当时,试求取值的集合;【答案】(1)(2)【解析】(1)可以采用待定系数法设,因为它过原点,所以c=0,再根据,可建立关于a,b的方程求出a,b的值,解析式确定.(2)在(1)的基础上,由f(x)<0可得到关于x的一元二次不等式,利用一元二次不等式的解法求解即可.5. 设a ,b 为正数,且a -2ab -9b = 0,求lg(a +ab -6b )-lg(a +4ab +15b )的值. 【答案】-【解析】由a -2ab -9b = 0,得()-2()-9 = 0, 令= x >0,∴x -2x -9 = 0,解得x =1+,(舍去负根),且x = 2x +9,∴lg(a +ab -6b )-lg(a +4ab +15b ) = lg = lg= lg= lg = lg= lg= lg=-.6. 如果在(0,+∞)内是减函数,则a 的取值范围是 ( )A .|a |>1B .|a |<2C .aD .【答案】D 【解析】要使在(0,+∞)内是减函数,需使所以故选D7. (log 43+log 83)(log 32+log 98)等于( ) A . B .C .D .以上都不对【答案】B 【解析】原式=·=·=×=.故选B.8. 已知m 2=a ,m 3=b ,m>0且m≠1,求2log m a +log m b 【答案】7【解析】解:由m 2=a ,m 3=b ,m>0且m≠1,得log m a =2,log m b =3; ∴2log m a +log m b =2×2+3=7.9. 已知-1<a<0,则三个数由小到大的顺序是【答案】【解析】又。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档