数论中的一些公式【整理】

合集下载

初中数学必背公式全集打印版

初中数学必背公式全集打印版

初中数学必背公式全集打印版1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

初中数学必背公式大全因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

初中数学解方程所有公式行程问题:(1)基本公式:路程=速度×时间速度=路程÷时间时间=路程÷速度(2)相遇问题:快路程+慢路程=原距离速度和×时间=路程(3)追及问题:快路程-慢路程=原距离(快车先跑又折返遇到慢车时候用)速度差×时间=路程(4)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺水(风)路程=顺水(风)速度×顺水(风)时间逆水(风)路程=顺水(风)速度×顺水(风)时间水(风)速=(顺水(风)速度-逆风(水)速度)÷2(5)列车过桥问题:(桥长+列车长)÷速度=过桥时间工程问题中的:(1)工作效率:单位时间完成的工作量(2)工程问题的基本关系:工作量=工作效率×工作时间(3)总工作量在未知的情况下可以看作“1”(4)合作的效率:各效率之和(5)各部分工作量之和=工作总量调配问题(配套问题):(1)例如课本中:1个螺钉要配2个螺母,即螺钉/螺母=1/2 得到:1×螺母=2×螺钉(2)例如甲乙两种零件分别取3个、2个才能配成一套。

初数数学中的数论公式解析

初数数学中的数论公式解析

初数数学中的数论公式解析数论作为数学的一个重要分支,研究整数的性质和相互关系。

在初等数论中,有许多重要的数论公式,它们能够帮助我们解决一些关于整数的问题。

本文将对一些常见的数论公式进行解析,帮助读者更好地理解和掌握数论知识。

一、欧拉函数公式欧拉函数是一个十分重要的数论函数,通常表示为φ(n),表示小于等于n且与n互质的正整数的个数。

欧拉函数有一个重要的性质,即对于任意的正整数n,都有以下公式成立:φ(n) = n × (1 - 1/p₁) × (1 - 1/p₂) × ... × (1 - 1/pₙ)其中p₁, p₂, ..., pₙ是n的所有不同的素因子。

这个公式的解析非常简单明了:首先我们将n进行素因数分解,得到n的所有不同的素因子。

然后,对于每个素因子p,将1减去1/p的值,再将这些结果相乘,最后再乘以n,即可得到欧拉函数的值φ(n)。

二、费马小定理费马小定理是一个重要的数论定理,它表明如果p是一个素数,a 是一个整数且不被p整除,那么a的p-1次方除以p的余数等于1:a^(p-1) ≡ 1 (mod p)这个公式的解析也比较简单:根据费马小定理,我们可以利用这个公式来进行模幂运算。

首先,将指数p-1进行二进制拆分,然后利用模运算的性质求取每一位的幂运算结果,最后再将这些结果相乘,再进行一次模运算,即可得到最终结果。

三、威尔逊定理威尔逊定理是另一个与素数相关的重要数论定理,它表明如果p是一个素数,那么(p-1)!除以p的余数等于p-1:(p-1)! ≡ -1 (mod p)这个公式的解析稍微复杂一些。

首先,我们可以利用质数的定义以及基本的数论知识来证明威尔逊定理。

然后,我们可以通过数学归纳法来证明(p-1)! ≡ -1 (mod p)成立。

最后,利用模运算的性质,我们可以证明(p-1)!除以p的余数等于p-1。

四、高斯二项式定理高斯二项式定理是一个经典的数论定理,它可以用于计算组合数的模运算结果。

(完整版)数论知识点总结

(完整版)数论知识点总结

(完整版)数论知识点总结1. 整数与整除性质整数是数的基本单位,整除是整数相除所得到的商是整数的关系。

- 整数运算:加法、减法、乘法、除法。

- 整数性质:正整数、负整数、零。

- 整数除法:被除数、除数、商、余数。

2. 质数和合数质数是只能被1和自身整除的正整数,合数是除了1和本身外还能被其他正整数整除的正整数。

- 判断质数:试除法、素数筛法。

- 质因数分解:将一个合数分解成质因数的乘积。

3. 最大公约数和最小公倍数最大公约数是一组数的最大公因数,最小公倍数是一组数的最小公倍数。

- 欧几里得算法:用辗转相除法求最大公约数。

- 求最小公倍数:将数分解成质因数,再取每个质因数的最高次幂相乘。

4. 同余定理同余定理是描述整数之间关系的定理。

- 同余关系:如果两个整数对于同一个模数的除法所得的余数相等,则它们对于这个模数是同余的。

- 同余定理:如果a与b对于模数m同余,那么它们的和、差、积也对于模数m同余。

5. 欧拉函数欧拉函数是比给定正整数小且与它互质的正整数的个数。

- 欧拉函数公式:对于正整数n,欧拉函数的值等于n与所有小于n且与n互质的正整数的个数。

6. 莫比乌斯函数莫比乌斯函数是一个常用于数论的函数。

- 莫比乌斯函数的定义:对于任何正整数n,莫比乌斯函数的值分为三种情况,分别是μ(n) = 1,μ(n) = -1,μ(n) = 0。

7. 勒让德符号勒让德符号是用来判断一个整数是否是二次剩余的符号。

- 勒让德符号的定义:对于正整数a和奇素数p,勒让德符号的值是一个取值为-1、0或1的函数。

- 勒让德判别定理:如果勒让德符号等于1,则a是模p的二次剩余;如果勒让德符号等于-1,则a不是模p的二次剩余。

8. 素数定理和费马小定理素数定理和费马小定理是数论中的重要定理。

- 素数定理:对于足够大的正整数n,小于等于n的素数的个数约为n/(ln(n)-1)。

- 费马小定理:如果p是素数,a是不是p的倍数的正整数,则a^(p-1)与模p同余。

数学公式大全 全套

数学公式大全 全套

数学公式大全全套
很抱歉,但由于数学公式实在太多,无法一一列举。

数学公式的
种类繁多,涵盖了代数、几何、微积分、概率统计、数论等多个领域。

以下将针对一些常见的数学公式进行简单的介绍:
1.代数方面的公式:
-二次方程的求根公式:对于二次方程ax^2 + bx + c = 0,解为
x = (-b ± √(b^2 - 4ac)) / (2a)。

-四则运算公式:加法a + b、减法a - b、乘法a * b、除法a / b。

-指数和对数公式:例如指数函数a^x和自然对数函数ln(x)。

2.几何方面的公式:
-三角函数公式:例如正弦、余弦、正切函数等。

-勾股定理:对于直角三角形,a^2 + b^2 = c^2,其中c表示斜边,a和b表示两条边的长度。

-各种图形的面积和周长公式:例如矩形、三角形、圆等。

3.微积分方面的公式:
-导数和微分公式:例如常见函数的导数求法和微分规则。

-积分公式:例如不定积分和定积分的计算方法,包括牛顿—莱布尼兹公式等。

4.概率统计方面的公式:
-概率公式:例如基本概率公式、条件概率、贝叶斯公式等。

-统计量的计算公式:例如均值、方差、标准差等。

5.数论方面的公式:
-质数相关公式:例如素数定理、埃拉托色尼筛法等。

-数字分解定理:任何一个大于1的正整数,都可以唯一地分解成质数的乘积。

以上只是数学公式的部分示例。

在实际应用中,会有更多的数学公式被用于解决各种问题。

如果有具体的数学公式需要了解,可以提供具体的公式名称,我可以为您提供相应的详细解答。

初中数学代数公式归纳

初中数学代数公式归纳

初中数学代数公式归纳在初中数学的学习中,代数是一个重要的部分,而掌握代数公式则是学好代数的关键。

下面就为大家归纳一下初中数学中常见的代数公式。

一、整式运算公式1、同底数幂的乘法:$a^m \times a^n = a^{m+n}$(其中$m$、$n$都是正整数)同底数幂相乘,底数不变,指数相加。

例如:$2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$2、幂的乘方:$(a^m)^n = a^{mn}$(其中$m$、$n$都是正整数)幂的乘方,底数不变,指数相乘。

例如:$(3^2)^3 = 3^{2×3} = 3^6 = 729$3、积的乘方:$(ab)^n = a^n b^n$(其中$n$是正整数)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

例如:$(2×3)^2 = 2^2 × 3^2 = 4×9 = 36$4、同底数幂的除法:$a^m ÷a^n =a^{mn}$($a≠0$,$m$、$n$都是正整数,且$m>n$)同底数幂相除,底数不变,指数相减。

例如:$5^5 ÷ 5^3 = 5^{5-3} = 5^2 = 25$5、单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

例如:$2x^2y × 3xy^2 =(2×3)×(x^2×x)×(y×y^2) = 6x^3y^3$6、单项式乘以多项式:用单项式乘以多项式的每一项,再把所得的积相加。

例如:$2x(3x^2 4x + 5) = 2x×3x^2 2x×4x + 2x×5 = 6x^3 8x^2 + 10x$7、多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

例如:$(x + 2)(x 3) = x×x 3×x + 2×x 2×3 = x^2 x 6$8、平方差公式:$(a + b)(a b) = a^2 b^2$两个数的和与这两个数的差的积,等于这两个数的平方差。

高中数学必背公式大全-

高中数学必背公式大全-

乘法与因式分解a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) • a^3-b^3=(a-b(a^2+ab+b^2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式 tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB;某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 - 2+4+6+8+10+12+14+…+(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h;定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n 边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形;77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L ×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

数理化公式大全

数理化公式大全

数理化公式大全数理化公式大全三角形的面积=底×高÷2。

公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

常用数学公式

常用数学公式

常用数学公式数学是一门基础学科,它涉及到了很多的公式和定理。

在数学的各个分支中,有一些公式是非常常用的,几乎在每个数学问题中都会用到。

下面是一些常用的数学公式:1. 二次方程的根:对于二次方程ax²+bx+c=0,它的根可以通过求根公式来得到。

对于实数根,公式为:x=(-b±√(b²-4ac))/2a。

对于复数根,公式为:x=(-b±i√(4ac-b²))/2a。

2. 同余定理:如果两个整数a和b除以正整数m得到的余数相同,那么称a与b关于模m同余,记作a ≡ b (mod m)。

同余定理包括加法同余定理、乘法同余定理和幂同余定理。

3.欧拉公式:对于任何一个凸多面体,它的面数F、顶点数V和边数E之间有着如下关系:F+V=E+2、这个公式被称为欧拉公式,是立体几何中非常重要的公式。

4.边界值定理:对于连续函数f(x)和定义在[a,b]上的连续函数g(x),如果在(a,b)内f(x)≤g(x),那么必然存在一些点c∈(a,b),使得f(c)=g(c)。

5.泰勒展开:如果函数f(x)在x=a处存在各阶导数,则对于任意整数n,函数f(x)在x=a处的n阶泰勒展开式为:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+...+f⁽ⁿ⁾(a)(x-a)ⁿ/n!+R⁽ⁿ⁺¹⁾(x),其中R⁽ⁿ⁺¹⁾(x)为余项。

6. 复数的欧拉公式:对于任意一个复数z,它可以表示为z=r(cosθ+isinθ),其中r为模长,θ为幅角。

这个公式被称为复数的欧拉公式。

7.向量叉乘的模长:对于二维向量a=(a₁,a₂)和b=(b₁,b₂),它们的叉乘的模长为,a×b,=,a₁b₂-a₂b₁。

8. 三角函数的和差公式:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb,tan(a±b)=(tana±tanb)/(1∓tana*tanb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数论中的一些公式【整理】以下等式或者不等式均可以用数学归纳法予以证明!1 + 3 + 5 + ... + (2n - 1) = n^21*2 + 2*3 + 3*4 + ... + n*(n + 1) = n*(n + 1)*(n + 2) / 31*1! + 2*2! + 3*3! + ... + n*n! = (n + 1)! - 11^2 + 2^2 + 3^2 + ... + n^2 = n*(n + 1)*(2n + 1) / 61^2 - 2^2 + 3^2 -... + (-1)^n * n^2 = (-1)^(n + 1) * n * (n + 1) / 22^2 + 4^2 + ... + (2n)^2 = 2n*(n+1)*(2n+1) / 31/2! + 2/3! + ... + n/(n+1)! = 1 - 1/(n+1)!2^(n + 1) < 1 + (n + 1)2^n1^3 + 2^3 + 3^3 + ... + n^3 = (n*(n + 1) / 2)^21/(2*4)+1*3/(2*4*6)+1*3*5/(2*4*6*8)+...+(1*3*5*...*(2n-1))/(2*4*6*... *(2n+2)) = 1/2 - (1*3*5*...*(2n+1))/(2*4*6*...*(2n+2))1/(2^2-1) + 1/(3^2-1) + .. + 1 / ((n+1)^2 - 1) = 3/4 - 1/(2*(n+1)) - 1/(2*(n+2))1/2n <= 1*3*5*...*(2n-1) / (2*4*6*...*2n) <= 1 / sqrt(n+1) n=1,2...2^n >= n^2 , n=4, 5,...2^n >= 2n + 1, n=3,4,...r^0 + r^1 + ... + r^n < 1 / (1 - r), n>=0, 0<r<11*r^1 + 2*r^2 + ... + n*r^n < r / (1-r)^2, n>=1, 0<r<11/2^1 + 2/2^2 + 3/2^3 + ... + n /2^n < 2, n>=1(a(1)*a(2)*...*a(2^n))^(1/2^n) <= (a(1) + a(2) + ... + a(2^n)) / 2^n, n = 1, 2, ... a(i)是正数注:()用来标记下标cos(x) + cos(2x) + ... + cos(nx) = cos((x/2)*(n+1))*sin(nx/2) / sin(x/2), 其中sin(x/2) != 01*sin(x) + 2*sin(2x) + ... + n*sin(nx) = sin((n+1)*x) / (4*sin(x/2)^2) - (n+1)cos((2n + 1)/2 * x) / (2 * sin(x/2))其中sin(x/2) != 05^n - 1能被4整除7^n - 1能被6整除11^n - 6能被5整除6*7^n - 2*3^n能被4整除3^n + 7^n - 2能被8整除n条直线能将平面最多划分为(n^2 + n + 2) / 2个区域定义H(k) = 1 + 1/2 + 1/3 + ... + 1/k则1 + n/2 <=H(2^n) <= 1 + nH(1) + H(2) + ... + H(n) = (n + 1) * H(n) - n1*H(1) + 2*H(2) + ... + n*H(n) = n*(n + 1) / 2 * H(n + 1) - n * (n + 1) / 4欧拉函数的定义:E(k)=([1,n-1]中与n互质的整数个数).因为任意正整数都可以唯一表示成如下形式:k=p1^a1*p2^a2*……*pi^ai;(即分解质因数形式)可以推出:E(k)=(p1-1)(p2-1)……(pi-1)*(p1^(a1-1))(p2^(a2-1))……(pi^(ai-1))=k*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);=k*(1-1/p1)*(1-1/p2)....(1-1/pk)在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);若N>2, 欧拉函数E(N)必定是偶数若gcd(a,b) = 1,则有E(a * b) = E(a) * E(b)若一个数N分解成p1^a1 * p2^a2 * ... * pn^an,那么E(N) = p1^(a1 - 1) * (p1 - 1) * ... * pn^(an - 1) * (pn - 1)若N>1,不大于N且与N互素的所有正整数的和是1/2 * N * E(N)因子和: 若 k=p1^a1*p2^a2...*pi^ai F(k) =(p1^0+...+p1^a1)*(p2^0+...+p2^a2)*...*(pi^0 + ... + pi^ai)没有一个平方数是以2,3,7,8结尾的max{a, b, c} - min{a, b, c} = (|a - b| + |b - c| + |a - c|) / 2ac % m = bc % m 可以得到 a % m' = b % m' m' = m / gcd(m, c)如果a % mi = b % mi (i=1,2,...,n) 并且 l = lcm(m1, m2, ..., mn) 则可以得到 a % l = b % lEuler 定理若gcd(a,m)==1, 则a^(phi(m)) % m = 1 % mFermat小定理p为素数,对任意的a有 a^p % p = a % pp为素数,对任意的a(a<p), a^(p-1) % p = 1 % pp为素数,对任意的a,若gcd(p,a)==1, a^(p-1) % p = 1 % p一个奇数a的平方减1都是8的倍数任意4个连续整数的乘积再加上1 一定是完全平方数当a是整数时,a(a-1)(2a-1)是6的倍数当a是奇数时, a(a^2 - 1)是24的倍数n次代数方程 x^n + a1 * x^(n-1) + ... + an-1*x + an = 0 的系数都是a1, a2, ... , an都是整数。

如果它有有理数的根,证明这个根一定是整数,而且这个数一定是an的因子。

如果不是整数,就一定是无理数。

设a,b都是正整数,a<b而gcd(a,b) = 1 ,如果存在一个素数p,它能够整除b,但是不能够整除10,则a/b一定不能够化成有限小数。

如果b=2^a * 5^b,其中a,b都是非负整数,则a/b能化成有限小数。

设0<a<b, 且gcd(a,b) = 1, 如果a/b能表示成纯循环小数,则我们有gcd(b, 10) = 1。

设0<a<b, 且gcd(a,b) = 1, 令h是一个最小的正整数,使得10^h 与1 关于b 同余,那么a/b可以表示成纯循环小数0.d1d2d3...dh。

设b是一个正整数且gcd(10, b) = 1,令h是一个最小的正整数,能使得10^h 与1 关于b同余,则h能够整除Euler(b)设a, b, b1都是正整数,a < b, gcd(a, b) = 1, b1 > 1, gcd(b1, 10) = 1。

b = 2^c * 5^d * b1, 其中c, d都是非负整数,且不同时为0,令h是一个最小的正整数,使得 10^h 与1 关于b1同余, 则当c>=d时,我们有a/b = 0.a1a2...aca'(c+1)...a'(c + h) ,而当c < d时,我们有a/b =0.a1a2...ada'(d+1)...a'(d + h)设0.a1a2...an...不能换成有限小数,也不能化成循环小数,则它不能化成分数。

设p是一个素数,m是一个正整数且m=na+b其中a是一个非负整数而b是一个不大于n-1的非负整数。

令a=p^m, 当b=0的时候,a的开n次方是一个整数,当1<= b <= n - 1时,a的开n次方不能表示为分数。

设p是一个素数,m是一个正整数且m=na+b其中a是一个非负整数而b是一个不大于n-1的非负整数。

令a=p^m, 当b=0的时候,a的开n次方是一个整数,当1<= b <= n - 1时,a的开n次方=b+c, 其中b是一个正整数而c是一个无限小数但不是循环小数。

设a是一个正整数, 当a的开n次方=b+c中b是一个正整数而0<c<1时,则a的开n次方不能表示成为分数,并且这时c是一个无限小数但不是循环小数。

(4b^3 + 3b) / (4b^2 + 1) <= b + 1 / (2b + 1/2b) <= 根号b平方+1 <= b + 1 / (2b + 1/(2b + 1 / 2b)) = (8b^4 + 8b^2 + 1) / (8b^3 + 4b)b + 1/(2b + 1/(2b + 1/(2b + 1/2b))) <= 根号b平方+1(16b^5 + 20b^3 + 5b) / (16b^4 + 12b^2 + 1) <= 根号b平方+1 <= (8b^4 + 8b^2 + 1) / (8b^3 + 4b)[modified from &豪's blog](1)定理:设x0,x1,x2,...是无穷实数列,xj>0,j>=1,那么,(i)对任意的整数 n>= 1, r>=1有<X0,...,Xn-1,Xn,...,Xn+r> = <X0,...,Xn-1,<Xn,...,Xn+r>> = <X0,...,Xn-1,Xn+1/<Xn+1,...,Xn+r>>.特别地有<X0,...,Xn-1,Xn,Xn+1> = <X0,...,Xn-1,Xn+1/Xn+1> 注:用该定理可以求连分数的值(2)对于连分数数数列 <X0,...Xn> 有递推关系:Pn = XnPn-1+Pn-2;Qn = XnQn-1+Qn-2;定义: P-2 = 0; P-1 = 1; Q-2 = 1; Q-1 = 0;所以: P0 = X0; Q0 = 1; P1 = X1X0+1; Q1 = X1;特别地:当 Xi=1 时, {Pn}, {Qn}为Fbi数列(3)对于连分数数数列 <X0,...Xn>当n>= 1时,我们有PkQk-1 = Pk-1Qk = (-1)^k当n>=2时,我们有PkQk-2 = Pk-2Qk = (-1)^(k - 1) * xk(4) 所有有理数都可以表示成有限连分数(5)pell方程: x^2+ny^2=+-1的解法:若n是平方数,则无解, 否则:先求出sqrt(n)的连分数序列<x0,x1..xn> 其中xn = 2*x0;对于 x^2+ny^2=-1若n为奇数,则 x=Pn-1, y=Qn-1; n为偶数时无解对于 x^2+ny^2=1若n为偶数,则 x=Pn-1, y=Qn-1; n为奇数时x=P2n-1, y=Q2n-1 注:以上说的解均为最小正解。

相关文档
最新文档