矩阵位移法(整刚).
矩阵位移法的计算步骤及示例

单元①②和③:
35
⎡ 500 0 0 − 500 0 0 ⎤
⎢ ⎢
0
12 24
0
− 12
24
⎥ ⎥
(1)
k
=
(2)
k
=
(3)
k
=
10
3
⎢ ⎢⎢−
0 500
24 0
64 0
0 − 24 32 ⎥
500 0
0
⎥ ⎥
⎢ 0 −12 − 24 0 12 − 24⎥
⎢ ⎢⎣ 0
24 32
0
− 24
⎥ 64 ⎥⎦
8-8 矩阵位移法的计算步骤及示例 1
矩阵位移法的计算步骤:(以后处理为例)
(1)对结点和单元进行编号,建立结构(整
体)坐标系和单元(局部)坐标系,并对结
点位移进行编号。
(2)计算各杆的单元刚度矩 k (e)、k (e) 。
(3)形成结构原始刚度矩阵K。
(4)计算固端力
F
(e) F
、等效结点荷载FE及综合
⎢⎣0.0 0.0 6.0 12.0⎥⎦
由于连续梁的单元刚度矩阵为非奇异矩阵, 由此组集而成的结构刚度矩阵K 也是非奇异 的,故无需再进行支座约束条件处理。
(4)计算固端力列阵及等效结点 15 荷载列阵。
②单元的固端力列阵
F (2) F
=
⎧ 300 ⎫ ⎩⎨− 300⎭⎬kN
⋅
m
等效结点荷载列阵:
k(3)
=
⎢ ⎢ ⎢
l(3) 2EI
⎢⎣ l ( 3 )
4
2EI l(3) 4EI l(3)
⎤ ⎥ ⎥ ⎥ ⎥⎦
3 4
(3)集成结构刚度矩阵K
第十三章 矩阵位移法

0 sin 0 0
0 0 0 0 0 1
坐标转换矩阵(正交矩阵)
T
1
T
T
13-2 整体坐标系下的单元刚度矩阵
同理:
e
T
e
其中:
1 2 3 4 5 6
13-1 概述
将结构分解为杆件集合,为进行分析,事先需 做下面称为离散化的工作 结点:杆件交汇点、刚度变化点、支承点。有时也 取荷载作用点。图中1、2、3、4点均为结点。 单元:两结点间的等直杆段。图中1-3、2-4、3-4为 y 单元。 24 编码:黑的结点编号称整体码。 3 1 2 ② 2 红的1、2局限于单元,称 x ③ 局部码。 ① y 右手系 1 2 x 1 坐标:兰的坐标称 1 整体坐标。红的x、y局限于单元,称局部坐标
13-2局部坐标系下的单元刚度矩阵
EA EA F1 1 0 0 4 l l 12 EI 6 EI F 2 0 3 2 2 3 0 l l 6 EI 4 EI F 3 0 2 3 0 2 l l EA EA F 4 1 0 0 4 l l 12 EI 6 EI F 5 0 3 2 2 3 0 l l 6 EI 2 EI F 6 0 2 2 3 0 l l
局部坐标下自由单元的单元刚度矩阵
13-2局部坐标系下的单元刚度矩阵
2 单元刚度矩阵的性质
(1)单元刚度系数的意义
(2)单元刚度矩阵是对称矩阵 (3)自由单元刚度矩阵是奇异矩阵 矩阵行列式等于零,逆阵不存在。
单位杆端位移引起的杆端力
反力互等定理
F
e
结构力学十三讲矩阵位移法

-6EI l2
4EI l
4
§13-3 单元刚度矩阵(整体座标系)
一、单元座标转换矩阵 Y1
X1
X1
Y1
MM21
e
x
M2 X2
正交矩阵 [T]-1 =[T]T
e e
e T T e
v1
y e
X 2
Y2
Fⓔ T T F ⓔ
ee
F T F ee
座标转换矩阵
5
二、整体座标系中旳单元刚度矩阵
[k] e = [T]T k e [T]
(4)
(6)
00
(5)
y
单元 局部码总码
单元 局部码总码
(1) 1 (2) 2 (3) 3 (4) 0 (5) 0 (6) 4
1
2
3 0
0
4
(1) 1
1
(2) 2
2
(3) 3 (4) 0
3 0
(5) 0
0
(6) 0
0
18
1 2
[k] 1 = 3
0 0 4
1 2
[k] 2= 3
0 0 0
123004 101 102 103 104 105 106 201 202 203 204 205 206 301 302 303 304 305 306 401 402 403 404 405 406 501 502 503 504 505 506 601 602 603 604 605 606 123000 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66
矩阵位移法

第9章矩阵位移法9.1 概述前面介绍的力法、位移法和渐近法都是传统的解算超静定结构的方法,它们是建立在手算基础上的。
随着基本未知量数目的增加,其计算工作极为冗繁和困难。
而计算机的问世及其广泛应用,为结构计算提供了有效工具。
矩阵位移法就是以计算机为运算工具的一种新的结构分析方法,它完全可以代替人来完成大型复杂结构的计算问题。
矩阵位移法是以位移法为理论基础,结构分析的全部过程中运用了线性代数中的矩阵理论。
引入矩阵运算的目的就是使计算过程程序化,便于把结构分析的过程用算法语言编成计算程序,实现计算机自动化处理。
目前,应用矩阵位移法编制的结构分析软件,已在结构设计中得到了广泛的应用。
矩阵位移法又称为杆件有限元法。
它的主要解题思路是:首先将结构离散成为有限个独立的单元,进行单元分析,建立单元杆端力与单元杆端位移之间的关系式——单元刚度方程;然后利用结构的变形连续条件和平衡条件将各单元组合成整体,建立结点力与结点位移之间的关系式——结构刚度方程,这一过程称为整体分析;最后求得结构的位移和内力。
矩阵位移法就是在一分一合,先拆后搭的过程中,把复杂结构计算问题转化为简单的单元分析和集合问题。
本章主要讨论杆系结构的单元刚度矩阵及其在单元局部坐标系与结构整体坐标系间的变换、结构刚度矩阵的形成、荷载及边界条件处理等内容。
9.2 单元分析9.2.1 结构离散化结构离散化是指把结构分离成有限个独立杆件(单元),由单元的组合体代替原结构(图9.1)。
一般单元为等截面直杆,杆系结构中每根杆件可以作为一个或几个单元。
单元的联接点称为结点。
对于等截面直杆所组成的杆系结构,只要确定了一个结构的所有结点,则它的各个单元也就随之确定了。
根据杆件联接的方式,可以将构造结点,如转折点、汇交点、支承点和截面的突变点取为结点。
在有些情况下,非构造点,如集中力作用点,也可作为结点处理。
离散化的结构用数字进行描述,即对各结点和单元进行编号。
通常用①,②,…表示单元编号,用1,2,…表示结点编号。
第八章矩阵位移法-135页PPT

Fyi Fxj
F4 Fyj
8-1 概述
31
刚架单元
结构坐标系
1 (e) ui (e)
2
v
i
δ (e)
δi (e)
δ
j
3 4
i u j
5
6
8-1 概述
10
3.结构坐标系(整体坐标系)
• 对整个结构建立统一的坐标系 • 在整体分析中,采用统一的坐标来
描述结构的结点和单元位置等。
8-1 概述
11
4.单元坐标系(局部坐标系)
• 针对每一单元的坐标系 x o y
• 以杆轴线的某方向作为 x 轴正向,在轴线
上以箭头作正方向标记,以垂直于杆件轴线 方向为 y 轴,本章采用右手坐标系
u 1v 1 1u 2v 2
2u 3v 3
3u 4v 4
T 4
8-1 概述
20
结点位移
若平面刚架有n个结点
Δ u 1v 11u 2v 22 u nv nn T
第i结点的位移为 Δ i ui vi iT
则n个结点的位移向量为
Δ Δ 1 Δ 2 Δ nT
F x 1F y 1M 1F x 2F y 2M 2F x 3F y 3M 3F x 4F y 4M 4T
8-1 概述
25
刚架的结点力向量
• 第i结点的结点力为 Fi = ( Fxi Fyi Mi )T
• 刚架的结点力向量为 F =(F1 F2 F3 … Fi … Fn )T
第九节矩阵位移法

(2 =1)
0
6EI l2 2EI l
0
6EI
l2 4EI
l
e
…(9-4)
F e k ee
…(9-5)
即为一般单元的刚度方程。其中 k e 称为局部坐标系中的单
元刚度矩阵。
2、一般单元刚度矩阵的性质
(1)单元刚度系数的意义
单元刚度矩阵中的每个元素称为单元刚度系数 kij ,其物理
意义表示由于单位杆端位移引起的杆端力。
( v1e
v2e
)
Fye1
6EI l2
(1e
2e )
12EI l3
( v1e
v2e )
Fye2
6EI l2
(1e
e 2
)
12 l
EI
3
( v1e
v2e
)
Fx1 M1
1
v1
Fy1
u1
…(9-2)
e
1
M2
Fx2
2 Fy2
v2
u2
2
式(9-1) 、(9-2)即为局部坐标系下平面刚架一般单元的单元刚度方
ke T Tk eT
F e kee
即为单元e在整体坐标中的单元刚度方程 其中 k e为整体坐标系的单元刚度矩阵,和 k e 同阶,且具有类似的性质。
§9-4 结构的整体刚度矩阵
作用在结构上的荷载与结构的结点位移, 也存在一一对应的关系,即为结构的整体刚 度方程。结构的整体刚度方程反映了结点荷 载和结构位移之间的关系,其实质就是位移 法的基本方程。求解方法一种是传统位移法, 另一种是直接刚度法。
l
Fxe1
EA l
u1e
EA l
u2e
《矩阵位移法》课件

实际工程案例分析
总结词
为了验证矩阵位移法的有效性,可以通过实际工程案例 进行分析。通过与实验结果的对比,可以评估方法的精 度和可靠性。
详细描述
选取具有代表性的实际工程案例,如高层建筑、大跨度 桥梁等,利用矩阵位移法进行计算,并将结果与实验数 据进行对比。通过对比分析,可以评估矩阵位移法的精 度和可靠性,为该方法在实际工程中的应用提供依据。 同时,也可以针对不同工程案例的特点,对矩阵位移法 进行优化和改进,提高其适用性和计算效率。
05
矩阵位移法的优缺点
优点
精确度高
矩阵位移法基于严格的数学推导,能 够精确地计算出结构的位移和内力, 尤其适用于复杂结构的分析。
适用性强
矩阵位移法可以处理多种类型的载荷 ,包括静载、动载以及温度载荷等, 适用范围广泛。
便于计算机化
矩阵位移法的计算过程可以通过计算 机程序实现,便于进行大规模的结构 分析。
多尺度方法
将矩阵位移法应用于多尺度问题 ,考虑不同尺度之间的相互作用 和影响,为复杂系统提供更准确 的模拟结果。
THANKS
感谢观看ts
目录
• 引言 • 矩阵位移法的基本概念 • 矩阵位移法的实施步骤 • 矩阵位移法的应用实例 • 矩阵位移法的优缺点 • 未来展望与研究方向
01
引言
什么是矩阵位移法
矩阵位移法是一种数值分析方法,用 于求解线性方程组和解决各种数值计 算问题。
它通过将原问题转化为矩阵形式,利 用矩阵运算来求解未知数,具有高效 、精确和灵活的特点。
并行计算
利用并行计算技术,将计算任务分解为多个子任务,同时运行在多 个处理器上,加快计算速度。
智能优化
结合人工智能和机器学习技术,自动调整算法参数,实现自适应优 化,提高算法的效率和稳定性。
矩阵位移法

k22坐k11标局k01成部1k029坐200标时kk20与32,3 整局k0体12部45 单k0k20514
0 k26 k26
To 47
k e ke
刚和有何整k关体3k3系单33 ?刚k0k间454535
k35 00
k3k6 36
0 k56
对称对称
kk5544
kk65k66 66
F e FEe k e e
单元杆端位移矩阵
e 1
2
3
4
T e
单元刚度矩阵(应熟记)
12 6l 12 6l
k
e
EI l3
6l
12
4l 2 6l
6l 12
2l
2
6l
6l 2l 2 6l 4l 2
是转角位移方程的矩阵表示
单元等效结点荷载矩阵
根据单跨梁的载常数,可得
向上满跨均布荷载 q 作用
(F FE )e k e e F e FEe k e e
连续梁单元需要 进行坐标转换吗?
连续梁的局部坐标与整 体坐标一致,所以不需 要转换。
第一种做法
桁架单元如何
进行坐标转换? T
力的转换
T
F1
F2
F3
F4
T
cos
0
位移的转换
sin
0
0
cos
0 T F1
sin F2
1 2
3. 坐标转换问题
在搞清单元特性后,像位移法一样,需将单 元拼装回去。在结点处位移自动满足协调条件 的基础上,令全部结点平衡,即可建立求解位 移的方程,这是下一节将讨论的内容。
除连续梁外,一般结构单元不全同方位, 为保证协调和平衡,应将杆端位移和杆端力 都转换成统一的,对整体坐标的量,因此要 先解决坐标转换问题。下面先讨论自由式梁 单元的转换问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与结构的整 体位移编码 (总码)对 应
单元贡献矩阵
1 1 2
F1 1 i1 1
F2 2 i2 2
F3 3
2 3
2
单元1的贡献矩阵
k k k
1 1 11 1 21
k k
1 12 1 22
扩充
单元2的贡献矩阵
k k k
2 2 11 2 21
K K
i 1
e
i
e=1,2,…….NE
零位移边界条件的处理 应该按刚架处理
零位移边界对应的整体位移编码为 0。即:整体刚 度矩阵中去掉相应的行和列。
二、刚架的整体刚度矩阵
基本思路:与连续梁总刚的集成法相同。 复杂性体现在: • 一般单元的位移分量有3个 • 单刚有局部坐标与整体坐标的差别 • 联结更复杂
1 K12 1 K 22
0
0 0 0
0 2 K12 2 K 22
F1
1 i1 1
F2
2 i2 2
F3 3
0 0 2 K2 0 K 11 2 0 K 21
整体分析
K K K
1
2
4i1 2 i 1 0
2i1 4i1 4i2 2i2
联结4个单元的情况 结点数: 3
4 1 A 3 2
独立的位移有:
uA
vA
1 2 A A A
3 A
4 A
1. 结点位移分量的统一编码——总码 给出结点位移向量 3 ( 2,3,5) 结点位移编码 2 2(2,3,4) 单元定位向量
单元数: 3 结点数: 5 结点位移分量编码 结点位移未知量数 结点位移定位向量
F K
方法的特点:
•力学概念清晰;
•工作量偏大,规律性不强.
2.单元集成法
单元分析——将各元素按总位移编码对应,将单元刚
度矩阵扩充为与整体刚度矩阵同阶,称为单元贡献矩阵。
引入单元定位向量
i1 1
e
与单元e的 F1 杆端位移分 1 量编码(局 部码)对应
F2 2 i2 2
F3 3
1 2 1 2 1 1 2 1 1 2 2 2 2 3
T
一.连续梁的整体刚度矩阵
1. 传统刚度法 列出个结点的 平衡方程 单元分析
e
F1 1 i1
F2 2 i2
F3 3
1
2
4ie 2ie e M 2ie 4ie 整体分析 2 1 2 1 1 1 2 2 1 3 2
M1 M
1 1
1 M2 M2 M 12
0 2i2 4i2
力学含义:
考虑单元1的贡献时,令 i2=0
综合上述
e k
定位向量
e K
e
求和
K
单元定位向量是扩充的桥梁
矩阵元素“对号入座”
k K i j
e ij
单元集成法的实施方案
在单元分析就将各个元素累加到总刚中,采用 “边定位,边累加”的方式进行。具体步骤:
1、K=0 总刚的所有元素置 0 问题:当连续梁中有中间 铰时如何处理 e 2、将k 的元素按定位向量累加到K中。 此时:
2. 单元定位向量与单元(半)带宽
单元定位向量
e e 1 e 2
3 ( 2,3,5) 2(2,3,4)
2
3
4( 6,7,8)
1
T
T
0 0 1 2 3 4
2 M3 M2
整理得:Hale Waihona Puke M1 4i11 2i1 2
M 2 2i11 (4i1 4i2 ) 2 2i2 3
M 3 2i2 2 4i2 3
M 1 4i1 M 2 2i1 M 0 3 2i1 4i1 4i2 2i2 0 2i2 4i2 1 2 3
e k
T
e k
定位向量
e K
求和
K
二、刚架的整体刚度矩阵
1. 结点位移分量的统一编码——总码 目的: • 边界条件预处理(处理与整体坐标一致的0边 界条件); • 铰结点的处理。 做法: • 每个独立的位移分量对应一个编码; • 已知的0位移分量的总码为 0 • 铰结点处视为若干个半独立结点。
1. 结点位移分量的统一编码——总码
3
4( 6,7,8)
0 5 0 0
1
1(0,0,1)
5 ( 0,0,0)
结点位移向量
1 2
1
3
4
5
6
x4
F6
7
8
T
T
结点力向量
F F1 F2
x2
y2 2
F3 F4
3
F5
y4 4
F7 F8
T
1 K11 1 K 1 K 21 0
1 K12 1 K 22
0
0 0 0
k k
2 12 2 22
扩充
0 0 2 K2 0 K 11 2 0 K 21
0 2 K12 2 K 22
1 K11 1 K 1 K 21 0
1. 结点位移分量的统一编码——总码
0 1 0 1 6 4 7 8
2 2 3 4
2 3 3 5
3 ( 2,3,5) 2(2,3,4)
2
2 0 1 0 2 3 4 1
4( 6,7,8)
1
3
5 ( 0,0,0)
1(0,0,1)
8
2 3 3 5
6 4 7 8
0 5 0 0
7.4 整体刚度矩阵
整体刚度矩阵(简称总刚)反映了结点位移对结 点力的贡献 所有单元结点力的组合即为整体结点力 整体结点力用 F 表示 整体坐标下的单元结点力用 F e 表示
F F
F F1
1
e
F2
F3 Fn
求和的含义 与方法
T
整体结点位移用 △ 表示
2 3 n