GA遗传算法概述
遗传算法遗传算法

(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10
GA遗传算法概述

GA遗传算法概述GA遗传算法(Genetic Algorithm)是一种受生物进化理论启发的优化算法,用于解决问题的和优化。
它模拟了自然界中生物进化的过程,通过模拟“基因”在群体中的遗传、交叉和变异等过程,逐步优化空间中的解。
1. 群体:GA遗传算法使用一个群体(population)来表示可能的解集合,每个解称为个体(individual)。
群体中的个体通过染色体(chromosome)来表示,染色体则由基因(gene)组成。
基因可以是任意类型的变量,例如二进制、整数或实数。
2. 适应度函数:GA遗传算法通过适应度函数(fitness function)来评估每个个体的优劣程度。
适应度函数将每个个体映射到一个实值,表示该个体的适应度。
适应度值越高,个体越优秀。
3.选择:在选择阶段,GA遗传算法根据个体的适应度值来选择优秀个体作为父代。
通常使用轮盘赌选择法或锦标赛选择法来进行选择。
轮盘赌选择法根据个体的适应度值来分配选择的概率,适应度值越高的个体被选中的概率越大。
锦标赛选择法则随机选择一定数量的个体,然后从中选择适应度最高的个体作为父代。
4.交叉:在交叉阶段,GA遗传算法随机选择一对父代个体,并以一定的概率对它们的染色体进行交叉操作。
交叉操作可以通过染色体的位进行交换、重组或变异,产生新的个体。
5.变异:在变异阶段,GA遗传算法以一定的概率对个体的染色体进行变异操作,以增加空间的多样性。
变异操作可以是将染色体中的位进行随机翻转、替换或插入等操作。
6.遗传进化:通过选择、交叉和变异等操作,GA遗传算法不断迭代优化个体的染色体,使得适应度值不断提高。
经过多代的演化,群体中出现了越来越优秀的个体,最终达到最优解或接近最优解。
GA遗传算法可以用于求解各种优化问题,例如函数最大化、函数最小化、组合优化、排列问题等。
它的优点在于可以在大规模空间中进行高效,并且能够找到全局最优解或接近最优解。
然而,由于遗传算法的随机性质,它无法保证每次都能找到最优解,且算法的收敛速度较慢。
遗传算法原理

遗传算法原理
遗传算法(Genetic Algorithm, GA)是一种进行寻优的计算机算法,它模拟了生物学中的遗传进化过程,以解决复杂的优化问题。
遗传算法以可解释的方式,模拟了自然界中物种进化的过程,该算法是基于遗传学原理,被广泛应用于计算机科学和人工智能领域,通常用于解决复杂的优化问题,如函数优化,规划,调度等。
遗传算法的基本思想是:模拟生物种群的进化过程,通过这个过程,使“更有效的染色体”在种群中得到更多的保留,而“较差的染色体”被淘汰。
染色体的变异也可以提供更好的适应性,从而引入新的染色体,从而改善种群的适应性。
遗传算法一般由以下步骤组成:初始化种群,评估染色体的适应性,选择优良的染色体,交叉,变异,替换,重复上述步骤,直至满足结束条件。
遗传算法的优势在于它可以解决复杂的优化问题,而且它具有可靠性,可重复性,适应性,可扩展性和可解释性。
此外,它还可以有效地避免局部最优解,因为它模拟了自然进化的过程,可以自动搜索和探索全局最优解。
总之,遗传算法是一种用于解决复杂优化问题的有效算法,它模拟了自然界中物种进化的过程,可以有效解决全局最优解问题,具有
可靠性,可重复性,适应性,可扩展性和可解释性。
简单遗传算法模型

简单遗传算法模型1. 概述遗传算法(GA)是一种启发式搜索算法,它受进化论中自然选择和遗传机制的启发而设计。
GA是一种非常强大的算法,它可以用来解决各种各样的优化问题。
2. 基本原理GA的基本原理是通过选择、交叉和变异操作,不断地优化一个种群的个体,最终使种群收敛到最优解。
选择:选择是GA中最关键的操作之一,它决定了哪些个体会进入下一代。
常用的选择方法有轮盘赌选择、锦标赛选择和精英选择等。
交叉:交叉是GA中另一个重要的操作,它通过交换两个个体的基因来生成新的个体。
交叉可以增加种群的多样性,提高GA的搜索能力。
常用的交叉方法有单点交叉、双点交叉和均匀交叉等。
变异:变异是GA中的一种随机操作,它通过改变个体的基因来产生新的个体。
变异可以防止种群过早收敛到局部最优解,提高GA的全局搜索能力。
常用的变异方法有比特翻转变异、均匀变异和高斯变异等。
3. 算法流程GA的算法流程如下:1. 初始化种群:随机生成一个种群,每个个体由一组基因组成。
2. 评估种群:计算每个个体的适应度值。
3. 选择:根据个体的适应度值,选择一部分个体进入下一代。
4. 交叉:对选出的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,生成最终的种群。
6. 重复步骤2-5,直到达到终止条件。
4. 优点和缺点GA具有以下优点:能够解决各种各样的优化问题。
不需要对问题做任何假设,也不需要任何先验知识。
能够找到全局最优解,而不是局部最优解。
GA也存在以下缺点:计算量大,尤其是当问题规模较大时。
容易陷入局部最优解,尤其是当问题具有多个局部最优解时。
难以确定合适的参数,例如种群规模、交叉率和变异率等。
5. 应用GA已被广泛应用于各种各样的领域,包括:组合优化:旅行商问题、背包问题、车辆路径问题等。
机器学习:神经网络训练、支持向量机训练、决策树学习等。
进化计算:遗传规划、进化策略、进化编程等。
6. 总结GA是一种非常强大的算法,它可以用来解决各种各样的优化问题。
GA遗传算法概述

GA遗传算法概述GA(Genetic Algorithm,遗传算法)是一种模拟自然界中生物进化过程的优化算法,具有全局能力和适应性优化能力。
1980年由美国的John Holland提出,并在优化问题领域取得了许多成功的应用。
遗传算法的基本思想是通过模拟自然选择、基因交叉和变异等操作来问题的最优解。
具体而言,遗传算法从一个初始群体(种群)开始,通过不断的迭代进化,逐渐产生接近于最优解的个体。
其中,每个个体都可以看作是问题的一种解决方案。
遗传算法的主要步骤包括:初始化种群、适应度评估、选择操作、交叉操作、变异操作和终止条件。
下面将对这些步骤逐一进行介绍。
首先,初始化种群。
在该步骤中,需要确定种群的规模、编码方式以及初始个体的生成方式。
种群的规模一般较大,以增加空间的覆盖度。
编码方式是将问题的解表示为一个个体的基因型(即染色体),常见的编码方式有二进制编码和实数编码等。
初始个体的生成方式也需根据具体问题来确定。
其次,进行适应度评估。
适应度函数是衡量个体优劣的标准,通常是问题的目标函数。
适应度函数的设计要充分考虑问题的特点,使得适应度高的个体拥有更大的生存概率。
然后,进行选择操作。
选择操作的目的是根据适应度函数的评估结果,选择优秀个体作为下一代个体的父代。
常见的选择方法有轮盘赌选择、竞争选择和排名选择等。
轮盘赌选择法根据个体的适应度进行选择,适应度高的个体被选择概率大。
接着,进行交叉操作。
交叉操作是通过基因交换产生新的个体,以增加种群的多样性。
交叉操作的方式有很多,如一点交叉、多点交叉和均匀交叉等。
一般会在较高适应度个体之间进行交叉操作,以保留优良的基因。
然后,进行变异操作。
变异操作是通过基因突变产生新的个体,以增加种群的多样性。
变异操作是在交叉操作后进行的,其方式有变异率和变异步长等。
变异率决定了个体基因发生变异的概率,变异步长则决定了基因变异的程度。
最后,根据终止条件判断是否终止迭代。
终止条件可以是达到预定的迭代次数、找到满足要求的解或运行时间超过设定的阈值等。
遗传算法步骤

遗传算法(Genetic Algorithm,GA)是一种基于自然进化理论的算法,是一种可以对不同问题寻找最优解的智能算法,它可以用于优化因变
量组成的多为目标函数,使得其能够模拟自然群体中最优种群的复制
替代的演化过程。
GA的基本步骤如下:
1.初始化种群:随机选择或采用已有解法创建一个代表优化问题的群体,这一群体中包含多个个体,并对每一体对应一个可衡量适应度的值。
2.计算适应度:根据建模函数以及求解问题,计算每一体的适应度值,作为群体的适应度表示,该适应度值指示了当前群体的优劣,越高的
适应度表示越优秀的群体。
3.选择操作:通过自然选择决定种群接下来的演化趋势,选取进化最佳的个体,裁去低适应度的个体,做出自然选择的决定。
4.交叉操作:将于原始群体中优秀的体通过交叉进行基因交换,优化基因序列,达到更加精细化优化的进化效果。
5.变异操作:在交叉操作过后,某些个体的基因顺序经过一定的随机变异,添加新的基因组合,增强搜索空间的拓展能力。
6.重复上述步骤:将上述步骤重复进行,让群体在遗传进化过程中迭代优化,不断找寻最优解,最终终止整个搜索过程,达到满足目标。
以上就是GA的基本步骤,它不仅能够用于求解多种问题,而且运算
效率高,不需要事先设定初始值,使得对比其它算法更加方便和灵活。
但是,由于其随机性原因,在某些情况下可能得出的解不一定是最优解,使其在实际应用中并不尽如人意。
GA 遗传算法简介概述

适应性》中首先提出的,它是一类借鉴生物界自然选择和
自然遗传机制的随机化搜索算法。GA来源于达尔文的进化 论、魏茨曼的物种选择学说和孟德尔的群体遗传学说。其
基本思想是模拟自然界遗传机制和生物进化论而形成的一
种过程搜索全局最优解的算法。
一、遗传算法概述
2、生物进化理论和遗传学基本知识
(1) 达尔文的自然选择说
三、遗传算法的原理
标准遗传算法(Standard genetic algorithm, SGA)
Step1 在搜索空间U上定义一个适应度函 数f(x),给定种群规模N,交叉率Pc和变异 率Pm,代数T; Step2 随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代 数计数器t=1; Step3 计算S中每个个体的适应度f(x); Step4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算 法结束。否则,转Step5;
四、遗传算法的应用
用遗传算法求解:
f ( x) x sin(10 x) 2.0
分析:由于区间长度为3,求解结果精确到6位小数,因此可将自变量
定义区间划分为3×106等份。又因为221 < 3×106 < 222 ,所以本例的 二进制编码长度至少需要22位,编码过程实质上是将区间[-1,2]内对 应的实数值转化为一个二进制串(b21b20…b0)。
循环交叉(Cycle Crossover)
交叉模拟了生物进化过程中的繁殖现象,通过两个染色体的交换 组合,来产生新的优良品种!
二、遗传算法的基本操作
3 变异(mutation)
变异就是改变染色体某个(些)位上的基因 例如,设染色体s=11001101,将其第三位上的0变为1, 即
遗传算法基本概念

遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。
遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。
二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。
其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。
1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。
常用的编码方式有二进制编码、实数编码和排列编码等。
2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。
适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。
3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。
常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。
4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。
常用的交叉方法有单点交叉、多点交叉和均匀交叉等。
5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。
常用的变异方法有随机变异、非一致性变异和自适应变异等。
三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。
具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。
2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。
3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。
4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。
5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法及其应用摘要:遗传算法是一种基于生物自然选择和遗传机理的随机搜索与优化方法。
近年来,由于遗传算法在求解复杂问题中的巨大潜力及其在工业工程领域的成功应用,受到了国内外学者的广泛关注。
本文详细介绍了遗传算法的基本原理、主要特征以及主要应用。
关键词:遗传算法;选择算子;交叉算子;变异算子Genetic Algorithm and Its ApplicationAbstract: Genetic algorithm is a random search and optimization method based on biological natural selection and genetic mechanism. In recent years,genetic algorithm has attracted many domestic and overseas scholars' attention for its potential in solving many complex problems and its successful application in the field of industrial engineering, This paper introduces the basic principle ,the main characteristics and applications of genetic algorithm in detail.Key words: genetic algorithm, selection operator, crossover operator, mutation operator1.遗传算法发展历史1967年,Holland的学生Bagley在其博士论文中首次提出“遗传算法”[1]。
1970年,Cavicchio把遗传算法应用于模式识别[2]。
Hollstien最早把遗传算法应用于函数优化[3]。
20世纪70年代,Holland教授提出了遗传算法的基本定理—模式定理[4],从而奠定了遗传算法的理论基础。
1975年,Holland教授出版了第一本系统论述遗传算法和人工自适应系统的专著《Adaptation in Natural and Artificial Systems》。
同年,K.A.De Song在博士论文《遗传自适应系统的行为分析》结合模式定理进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,为遗传算法及其应用打下了坚实的基础,他所得出的许多结论迄今仍具有普遍的指导意义。
2.遗传算法理论2.1遗传算法的基本思想遗传算法借鉴Darwin 的物竞天择、优胜劣汰、适者生存的自然选择和自然遗传的机理。
与传统搜索算法不同,遗传算法从一组随机产生的初始解(称为群体)开始。
群体中的每个个体是问题的一个解,称为“染色体”,这些染色体在后代迭代过程中不断进化。
遗传算法主要通过选择、交叉和变异来实现,其本质是一种求解问题的高效并行全局搜索方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。
遗传算法是一个迭代的过程,在每次迭代过程中都保留一组候选解,按解的好坏进行排序,按照约束条件从中选取一组解,利用遗传算法中的三个算子对其进行计算,产生新一代的候选解,重复此过程直到满足某种收敛条件为止。
2.2遗传算法的数学基础定义1:模式是指种群个体基因串中的相似样板,它用来描述基因串中某些特征位相同的结构。
在二进制编码中,模式是基于三个字符集(0,1,*)的字符串,符号*代表(0,1)中的任意字符。
例如:10**1定义2:模式H中确定位置的个数称为模式H的阶,记O(H)。
例如O(10**1)=3。
定义3:模式H中第一个确定位置和最后一个确定位置之间的距离称为模式H的定义距,记作δ(H)。
例如δ(10**1)=4。
模式阶用来反映不同模式间确定性的差异,模式阶数越高,模式的确定性就越高,所匹配的样本数就越少。
在遗传操作中,即使阶数相同的模式,也会有不同的性质,而模式的定义距就反映了这种性质的差异。
定义4:个体即要处理的对象、结构,也就是可行解。
定义5:适应度即可行解对应的适应函数的值,表现为个体对于环境的适应程度。
模式定理:具有低阶、短定义距以及平均适应度高于种群平均适应度的模式在子代中呈指数增长。
模式定理保证了较优的模式(遗传算法的较优解)的数目呈指数增长,为解释遗传算法机理提供了数学基础。
2.3群体的规模群体规模的确定,根据模式定理,受遗传操作中选择算子的影响最大。
一般来说,群体规模越大,群体中个体的多样性越高,算法陷入局部解的危险越小。
但群体规模太大,从计算效率着眼,群体越大其适应度评估次数增加,所以计算量增加,从而影响计算性能。
太小会使遗传算法的搜索空间中分布范围有限,因而搜索有可能停在未成熟阶段,引起早收敛现象。
初始群体的确定通常采用以下两个方法:(1)用随机方法产生,只有这样选取才能达到所有状态的遍历,使最优解在遗传算法的进化中最终得以生存。
(2)使用其他优化方法或启发式方法选取使初始群体更优良。
2.4遗传算子简介2.4.1选择算子把当前群体中的个体按与适应值成比例的概率复制到新的群体中,遗传算法中最常用的选择方式是轮盘赌选择方式。
轮盘赌选择步骤如下:(1)求群体中所有个体的适应值总和S;(2)产生一个0到S之间的随机数M;(3)从群体中编号为1的个体开始,将其适应值与后续个体的适应值相加,直到累加和大于等于M,则停止。
其中,那个最后加进去的个体即为新选择的个体。
选择算子作用的效果是提高了群体的平均适应值及最差的适应值,低适应值的个体趋于被淘汰,高适应值的个体趋于被复制,但是是以损失群体的多样性为代价,选择算子并没有产生新的个体,当然群体中最好个体的适应值不会改进。
2.4.2 交叉算子交叉算子(又称杂交算子)每次作用在种群随机选取的两个个体上产生两个不同的子个体,它们一般与父个体不同,但又包含父个体的遗传物质,交叉运算是遗传算法区别于其它进化算法的重要特征。
交叉规则内容包括两个方面:(1)从种群中对个体随即配对,并按预定的交叉概率来决定是否进行交叉操作。
(2)设定个体的交叉点,并对这些点前后的配对个体的基因相互交换。
例如:首先产生一个1到h(其中h为染色体分量的个数)的随机数i(称为交叉点),然后配对的两个个体相互交换从(i+1)到h的位子,如对以下两个数进行交叉且交叉点选择在2,即i=2,则 1 1 |0 1 1 10 1 |1 0 1 0对种群要确定交叉概率。
随机选择N×个个体进行交叉,其余不变。
显然,利用选择、交叉算子可以产生具有更高平均适应值和更好个体的群体。
但仅仅如此,容易导致局部最优解。
2.4.3 变异算子变异算子能使个体发生突然变异,导入新的遗传信息,使寻优有可能指向未探知区域,是提高全局最优搜索能力的有效步骤,也是保持群体差异,防止过早出现收敛现象的重要手段。
以一个很小的变异概率,随机的改变染色体上的某个基因),具有增加群体多样性的效果。
例如:010 0002.5遗传算法求解步骤(1)选择问题解的一个编码,给出一个有N个染色体的初始群体pop(1),t=1。
(2)对群体中的每一个染色体,计算它的适应函数值f()。
(3)若停止规则满足,则算法停止,否则计算概率=,并以此概率分布,从pop(t)中随机选取N个染色体构成一个新的种群newpop(t)。
(4) 通过交叉(交叉概率为),得到N个染色体的crosspop(t+1)。
(5) 以较小的变异概率,使得某染色体的一个基因发生变异,形成新的群体mutpop(t+1)。
令t=t+1,pop(t)=mutpop(t),重复第(2)步。
流程如图一所示。
2.6遗传算法特点遗传算法的优越性:(1)作为数值求解方法具有普适性,对目标函数几乎没有要求,总能以极大概率找到全局最优解。
(2)遗传算法在求解很多组合优化问题时,不需要很高的技巧和对问题有非常深入的了解,在给问题的决策变量编码后,其计算过程比较简单。
(3)与其他启发式算法有较好的兼容性,易于别的技术相结合,形成更优的问题解决方法。
遗传算法的欺骗性问题:(1)在遗传进化的初期,通常会产生一些超常个体,按比例选择,这些个体竞争力太强而控制了选择过程,影响算法的全局优化性能。
(2)在遗传进化的后期,即算法接近收敛时,由于种群中个体适应度差异较小,继续优化的潜能降低,可能获得某个局部最优解。
3. 遗传算法的改进与应用遗传算法的初期应用研究主要围绕组合优化问题求解,但近年来已迅速扩展到机器学习、设计规划、神经网络优化、自律分布控制和人工生命等众多领域。
此外,还在核反应控制和喷气发动机设计等工程应用中进行了十分有意义的尝试。
下面是遗传算法的一些主要应用领域[7]。
3.1 在组合优化中的应用组合优化问题是遗传算法最基本也是最重要的应用领域。
所谓组合优化问题是指在离散的、有限的数学结构上,寻找一个满足给定约束条件并使其目标函数达到最大或最小的解。
在日常生活中,特别是在工程设计中,有许多这样的问题。
最典型的是旅行商问题和背包问题。
3.2 在生产调度中的应用在很多情况下,生产调度问题建立起来的数学模型难以精确求解,即使经过一些简化之后可以进行求解,也会因简化的太多而使得求解结果与实际相差甚远。
目前,在现实生产中,主要靠一些经验来进行调度。
现在遗传算法已成为解决复杂调度问题的有效工具,在单件生产车间调度、流水线生产调度、任务分配等方面遗传算法都得到了有效的应用。
3.3在自动控制中的应用在自动控制领域中,有很多与优化相关的问题需要求解。
例如,用遗传算法进行航空控制系统的优化、设计空间交会控制器等都显示出在这些领域中应用的可能性。
3.4 在图像处理中的应用图像处理是计算机视觉中的一个重要研究领域,目前已在模式识别、图像恢复、图像边缘特征提取等方面得到了应用。
3.5 在机器学习方面的应用基于遗传算法的机器学习是当前遗传算法应用研究的热点,特别是分类器系统,在很多领域中的到了应用。
3.6 遗传算法在数据挖掘方面的应用数据挖掘是近几年出现的数据库技术,它能够从大型的数据库中提取隐含、未知、有潜力、有应用价值的知识和规则。
许多数据挖掘问题可看成是搜索问题,数据库可看作搜索空间,挖掘算法看作是搜素策略。
因此,应用遗传算法在数据库中进行搜索,对随机产生的一组规则进化,直到数据库能被该组规则覆盖,从而挖掘出隐含在数据库中的规则。
由于传统遗传算法的缺陷,现已提出许多改进后的遗传算法,例如:(1)免疫遗传算法(Immune Genetic Algorithm,IGA),免疫遗传算法就是将免疫理论(Immune Algorithm,IA)和基本遗传算法(Simple Genetic Algorithm,SGA)各自的优点结合起来的一个多学科相互交叉、渗透的优化算法。