数字图像处理论文,图像去噪

合集下载

数字图像处理中去噪算法的研究共3篇

数字图像处理中去噪算法的研究共3篇

数字图像处理中去噪算法的研究共3篇数字图像处理中去噪算法的研究1数字图像处理中去噪算法的研究数字图像处理是现代计算机科学领域的一个重要研究方向,其在各个行业中都扮演着重要的角色。

去噪算法是数字图像处理中一个非常基础而且也是非常重要的问题。

图像中的噪声往往会影响到图像的质量,一般常见的噪声主要有热噪声、椒盐噪声、高斯噪声等。

因此,研究去噪算法是数字图像处理中的一个必要环节,也是现代数字图像处理技术中的重要研究内容。

目前,数字图像处理中的去噪算法主要可以分为两类,一类是基于滤波器的方法,另一类是基于图像重建的方法。

基于滤波器的方法基于滤波器的去噪算法是去除图像中噪声最传统的方法之一。

其中,最常用的滤波器包括均值滤波、中值滤波、高斯滤波等等。

这些方法的原理都是通过对图像进行滤波,去除噪声的影响,从而达到降噪的效果。

均值滤波器最常见,其将图像中的每个像素看成是一个像素块,然后根据像素块的均值来进行滤波。

中值滤波器通过将像素块中的像素进行排序并选择中间值,从而达到去噪的效果。

高斯滤波器则是通过加权平均的方法来计算像素块值,从而降噪。

基于图像重建的方法基于图像重建的方法也是数字图像处理中去噪算法的一种重要方法。

这种方法的主要思想是进行图像的预处理,然后通过对去噪后的图像进行重建,恢复图像的质量。

这种方法的最大优点是可以保持图像的细节特征,这点是传统滤波方法所不具备的。

这种方法通常可以通过对图像进行分解,然后对分解后的图像进行加权、平均等处理。

总结数字图像处理中的去噪算法可以分为基于滤波器的方法和基于图像重建的方法,其中基于滤波器的方法是最常用的方法之一,但是其对图像细节的保留相对较小。

而基于图像重建的方法虽然优点明显,但是其计算复杂度较高,因此在实现过程中需要多进行优化。

未来,数字图像处理领域的发展将越来越快,去噪算法也将会越来越成熟,达到更加智能化的程度。

同时,各种新的算法方法也将不断涌现,这些方法将不断推动数字图像处理技术的发展,从而在图像处理领域中发挥更加广泛的作用随着数字图像处理技术的不断发展,去噪算法将会越来越成熟,实现更加智能化的处理效果。

图像处理 毕业论文

图像处理 毕业论文

图像处理毕业论文图像处理是计算机科学领域中的一个重要研究方向,它涉及到对图像的获取、处理、分析和识别等多个方面。

随着科技的不断发展,图像处理在各个领域都扮演着重要的角色,如医学影像、安防监控、虚拟现实等。

本文将从图像处理的基础原理、应用领域以及未来发展方向等方面进行探讨。

首先,图像处理的基础原理是数字图像处理。

数字图像处理是将图像从连续的模拟信号转换为离散的数字信号,通过对数字信号的处理来实现对图像的改变和分析。

其中,最基础的操作包括图像的采集、预处理、增强、压缩和恢复等。

图像采集是指通过摄像头或扫描仪等设备将现实世界中的图像转化为数字信号。

预处理是对采集到的图像进行去噪、去除伪影等操作,以提高后续处理的效果。

增强是通过调整图像的亮度、对比度、色彩等参数,使图像更加清晰、鲜艳。

压缩是为了减小图像文件的大小,方便存储和传输。

恢复是指对经过压缩或传输过程中丢失的信息进行恢复,以还原原始图像。

图像处理的应用领域非常广泛。

在医学影像方面,图像处理可以帮助医生进行疾病的诊断和治疗。

例如,通过对CT扫描图像的处理,可以清晰地显示出患者体内的器官结构,帮助医生准确判断病变部位。

在安防监控方面,图像处理可以用于人脸识别、行为分析等功能,提高监控系统的智能化水平。

在虚拟现实方面,图像处理可以实现对虚拟场景的渲染和交互,为用户带来更加逼真的虚拟体验。

此外,图像处理还应用于图像搜索、图像检索、图像合成等领域,为用户提供更加便捷和高效的图像处理服务。

未来,图像处理领域的发展方向主要包括以下几个方面。

首先,随着人工智能技术的快速发展,图像处理将与机器学习、深度学习等技术相结合,实现更加智能化的图像分析和识别。

其次,虚拟现实技术的兴起将推动图像处理向更加真实和沉浸式的方向发展,为用户带来更加逼真的虚拟体验。

再次,图像处理技术将与物联网、云计算等技术相结合,实现对大规模图像数据的处理和分析,为用户提供更加个性化和精准的图像服务。

数字图像处理中的去噪技术研究

数字图像处理中的去噪技术研究

数字图像处理中的去噪技术研究第一章:引言数字图像处理是一门涉及将图像进行数字化和处理的学科,随着数字图像技术的迅速发展,我们越来越需要对图像进行去噪处理,以提高图像的质量。

本文将围绕数字图像处理中的去噪技术展开研究。

第二章:去噪技术的现状和意义2.1 去噪技术的现状随着数字图像处理技术的发展,各种去噪技术层出不穷。

目前常用的去噪技术包括加权最小二乘法、小波变换、总变差正则化等。

2.2 去噪技术的意义图像中的噪声对图像质量有很大的影响,去噪技术可以帮助我们恢复受损的图像,提高图像的视觉效果。

去噪技术在医学影像、无损检测等领域有着广泛的应用。

因此,研究数字图像处理中的去噪技术具有重要的理论和应用价值。

第三章:加权最小二乘法去噪技术3.1 加权最小二乘法原理加权最小二乘法是一种常用的去噪技术,其基本思想是寻找一个最优化的加权平均值,使得图像噪声最小化。

3.2 加权最小二乘法在去噪中的应用加权最小二乘法可以应用于图像降噪、图像滤波等方面。

通过对噪声模型进行建模,利用加权最小二乘法,可以有效降低图像的噪声水平。

第四章:小波变换去噪技术4.1 小波变换原理小波变换是一种将信号分解成不同频率的成分的技术,在数字图像处理中,小波变换被广泛用于去噪处理。

小波变换具有多尺度分析的特点,可以对不同频率的噪声进行处理。

4.2 小波变换在去噪中的应用小波变换可以将图像分解成不同频率的子带,并根据子带的特性对噪声进行处理。

通过选择适当的小波类型和阈值,可以实现对图像的去噪处理。

第五章:总变差正则化去噪技术5.1 总变差正则化原理总变差正则化是一种基于图像中的变化度量的去噪技术。

它通过最小化图像的总变差来去除图像中的噪声。

5.2 总变差正则化在去噪中的应用总变差正则化在去噪中的应用相对较为简单和直观。

通过最小化图像的总变差,可以充分利用图像中的空间信息,去除图像中的噪声。

第六章:去噪技术比较与总结6.1 去噪技术的比较对于不同类型的图像,选择合适的去噪技术至关重要。

数字图像处理中图像去噪的算法实现方法

数字图像处理中图像去噪的算法实现方法

数字图像处理中图像去噪的算法实现方法数字图像处理是指对数字化的图像进行处理、分析和修改的过程。

图像去噪是其中一项重要的任务,它的目标是尽量降低图像中的噪声,并使图像保持尽可能多的细节信息。

本文将介绍数字图像处理中常用的图像去噪算法及其实现方法。

一、图像噪声的分类在了解图像去噪算法之前,我们需要了解图像中可能存在的噪声类型。

常见的图像噪声主要有以下几种:1. 高斯噪声:是一种符合高斯分布的噪声,其特点是随机性较强,像素值呈现连续分布。

2. 盐噪声和胡椒噪声:分别指图像中像素值变为最大值和最小值的噪声。

这种噪声会导致图像呈现颗粒状或斑点状的亮点和暗点。

3. 椒盐噪声:是指图像中同时存在盐噪声和胡椒噪声。

4. 均匀噪声:是指图像中像素值随机增减的噪声,使图像呈现均匀的亮度变化。

二、常用的图像去噪算法1. 均值滤波算法均值滤波算法是一种简单直观的图像去噪方法。

它的基本原理是用邻域像素的平均值来代替当前像素的值。

具体实现方法如下:(1)选择一个固定大小的滑动窗口,如3×3或5×5。

(2)将窗口中的像素值求平均,并将平均值赋给当前像素。

均值滤波算法的优点是简单易懂、计算量小,但它对于去除噪声的效果有限,特别是对于像素值发生较大变化的情况效果较差。

2. 中值滤波算法中值滤波算法是一种基于排序统计的图像去噪方法。

它的基本原理是用邻域像素的中值来代替当前像素的值。

具体实现方法如下:(1)选择一个固定大小的滑动窗口,如3×3或5×5。

(2)对窗口中的像素值进行排序,并取中间值作为当前像素的值。

中值滤波算法的优点是对于不同类型的噪声都有较好的去除效果,但它在去除噪声的同时也会对图像细节产生一定的模糊。

3. 双边滤波算法双边滤波算法是一种基于像素相似性的图像去噪方法。

它的基本原理是通过考虑像素的空间距离和像素值的相似程度来进行滤波。

具体实现方法如下:(1)选择一个固定大小的滑动窗口,如3×3或5×5。

数字图像处理论文

数字图像处理论文

数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。

图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。

本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。

此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。

最后,对数字图像增强技术的发展趋势进行了展望。

关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。

随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。

图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。

图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。

2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。

其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。

直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。

3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。

常用的滤波方法有均值滤波、中值滤波和高斯滤波等。

均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。

中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。

高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。

4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。

常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。

拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。

Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。

数字图像处理中的图像去噪技术研究

数字图像处理中的图像去噪技术研究

数字图像处理中的图像去噪技术研究随着数字图像的广泛应用,人们对图像质量的要求也越来越高,而噪声的存在对图像的清晰度和细节信息都有很大影响。

因此,图像去噪技术的研究已经成为数字图像处理中的热点问题之一。

一、噪声的分类及其在图像中的表现噪声可分为多种类型,如加性噪声、乘性噪声、impulse噪声等。

不同的噪声类型对图像的影响不同。

加性噪声会引起图像灰度值的整体变化,使图像变得模糊,而乘性噪声则会把图像的灰度值缩放到一个更小的范围内,使图像变得更加黑暗或亮度,impulse噪声则会在图像中产生噪点。

二、常见的图像去噪技术1、中值滤波中值滤波是一种非常简单的图像去噪技术,其原理是将每个像素周围的像素值进行排序,然后选取中间的值作为该像素的灰度值。

由于中值滤波只考虑了周围像素的大小,并不关心周围像素的位置,因此对于去除impulse噪声非常有效。

但对于连续性的噪声效果就并不理想。

2、高斯滤波高斯滤波是一种基于统计学原理的图像去噪技术。

其原理是利用高斯分布函数对图像进行滤波,然后根据概率分布计算出每个像素的灰度值。

这种方法对于去除高斯噪声非常有效,但对于其他类型的噪声,它的效果并不理想。

3、小波变换去噪小波变换在图像处理中非常常见。

利用小波变换对图像进行去噪时,我们可以将图像分解成低频和高频部分,然后根据信噪比的不同来决定哪些部分需要保留。

小波变换去噪技术对于去除噪声的效果非常好,特别是在其它技术难以去除高频噪声的情况下。

三、综合比较不同的图像处理技术各有特点,因此我们在实际应用中应该根据特定的噪声类型和图像特点来选择适合的技术。

对于加性噪声,中值滤波和高斯滤波都可以起到很好的效果,而对于impulse噪声,中值滤波的效果比其他方法更好。

小波变换去噪技术最适合处理高频噪声。

四、结论图像去噪技术在数字图像处理中有着非常广泛的应用。

随着数字图像技术的发展,我们需要不断探索提高图像去噪效果的新方法,并且在实际应用中根据不同的噪声类型和图像特点进行适当的选择。

数字图像处理中的图像去噪算法

数字图像处理中的图像去噪算法

数字图像处理中的图像去噪算法数字图像处理(Digital Image Processing,DIP)已经成为了一个热门的研究领域,在许多领域都有广泛的应用。

而在数字图像处理中,图像去噪是一个十分重要的问题。

噪声是数字图像中不可避免的一部分,因为图像在获取、传输以及存储时,都可能受到各种各样的噪声的干扰。

因此,图像去噪算法的研究意义重大。

本文将介绍数字图像处理中一些经典的图像去噪算法并进行简单的比较。

这些算法包括:中值滤波、高斯滤波、双边滤波、小波变换去噪、总变差去噪以及基于深度学习的去噪算法。

1. 中值滤波中值滤波是最基本和常用的图像去噪方法之一,它是一种非线性滤波方法。

中值滤波的思想是对图像中的每个像素取相邻像素的中值作为输出像素的灰度值。

这个方法常常用于去除椒盐噪声。

中值滤波的优点是噪声抑制效果好,适用于去除离群点等类型的噪声。

但如果噪声的分布为高斯分布,则中值滤波的效果会变得不太好。

此外,在中值滤波时,窗口大小的选取会对滤波结果产生影响,较小的窗口易产生伪影,而较大的窗口易导致较大的模糊。

2. 高斯滤波高斯滤波是一种线性的滤波方法,它利用高斯函数对像素进行加权平均来减小噪声的影响。

高斯滤波的优点是保留了图像的整体特征,同时对噪声的抑制效果也不错。

此外,该算法计算快速,适合处理大尺寸的图像。

3. 双边滤波双边滤波是一种非线性的滤波方法,它在进行像素平均的同时,同时考虑像素的空间距离和灰度值距离。

通过像素间的空间距离和灰度值差异来决定权值,从而使得该算法在保留图像细节的同时,对噪声具有很好的抑制效果。

双边滤波在去除高斯噪声和椒盐噪声方面都有不错的效果。

4. 小波变换去噪小波变换去噪是基于小波分析的一种非线性滤波方法。

该算法首先将图像分解为不同尺度的局部频率信号,然后利用小波系数来判断像素是否为噪声。

接着,将噪声部分所对应的小波系数进行修正,最终再进行反变换得到去噪后的图像。

该算法在处理非线性噪声效果也很好。

图像处理中的去噪算法优化及应用

图像处理中的去噪算法优化及应用

图像处理中的去噪算法优化及应用随着数字图像处理技术的飞速发展,图像处理算法中的去噪算法一直备受关注。

去噪算法的目标是在尽可能保持图像细节的情况下,减少或删除图像中由噪声引起的不需要的信息。

本文将探讨如何优化图像处理中的去噪算法,并介绍其在实际应用中的重要性。

首先,优化去噪算法的一种方法是改进传统的滤波算法。

传统的低通滤波器在去除高频噪声的同时,也会减少图像的细节信息。

为了克服这个问题,研究人员提出了一系列的改进算法。

其中,基于小波变换的去噪方法如小波阈值去噪和小波软阈值去噪,利用小波分解将图像分为不同的频率子带,再对每个子带进行阈值处理。

这样可以更好地保留图像的细节信息。

其他的去噪算法如基于偏最小二乘回归的方法、非局部均值算法等也都具有一定的优势和应用价值。

其次,深度学习算法在图像去噪领域也取得了巨大的突破。

以卷积神经网络(CNN)为代表的深度学习算法可以自动学习图像的特征,并根据学习到的特征进行去噪处理。

通过训练大量的图像数据,深度学习算法可以学习到图像中的噪声模型,并根据模型进行去噪。

与传统的算法相比,深度学习算法更加有效,能够处理更复杂的噪声情况,并且在一定程度上提高了图像的质量。

然而,深度学习算法也存在着计算复杂度高、需要大量的训练数据和训练时间长等问题,对硬件设备和计算资源要求较高。

除了优化算法,去噪算法在现实世界的应用中也发挥着重要作用。

首先,去噪算法在医学图像处理中具有广泛的应用。

医学图像中通常存在噪声,会对诊断结果产生负面的影响,因此在医学图像处理中进行噪声去除十分重要。

去噪算法可以有效地去除噪声,提高医学图像的质量,帮助医生准确判断和诊断疾病。

其次,去噪算法在摄影、电影等领域也广泛应用。

图像中的噪声会降低图像的清晰度和质量,影响观众对作品的体验。

通过应用去噪算法,可以提高图像的质量,增强作品的观赏性。

此外,去噪算法还在安防监控、图像增强和图像压缩等领域得到了广泛应用。

在实际应用中,去噪算法还面临一些挑战和限制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图象处理(论文)
学院计算机学院
专业计算机科学与技术
图像去噪算法论文
图像在生成或传输过程中常常因受到各种噪声的干扰和影响而使图像爱那个的质量下降,对后续的图像处理(如分割、理解等)产生不利影响。

因此,图像爱那个去噪是图像处理中的一个重要环节。

而对图像去噪的方法又可以分为两类,一种是在空间域内对图像进行去噪,一种是将图像变换到频域进行去噪的处理。

一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声,还有加性、乘性噪声等,如上,减少噪声的方法,可以在图像空间域或在图像频率域完成。

在空间域对图像处理主要有均值滤波算法和中值滤波算法。

图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。

将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。

在这节课上我学习的是借助Matlab软件对图像进行处理。

在图像去噪方面,在Matlab 中常用的去噪函数有imfilter( ), wiener2( ), medfilt2( ), ordfilt2( )以及小波分析工具箱提供的wrcoef2( )和wpdencmp( )等,好像随着Matlab的发展,有些函数变了,不过早大致上变化不大,也有可能是我下载的Matlab不完整吧,总之在实践过程中有些错误让我很纠结。

因为我是刚接触到这类知识,所以很多都还不懂,虽然从课上有了一些了解,但我觉得还远远不够,然而最近实在时间不多,只
能等以后再去详细的学习了。

我不敢说我以后会有多熟悉它,只能尽量,因为每一款出名的软件都有各自的市场,而我很难涉及到每个市场,只能当作业余去了解如今有这么一款什么软件可以做什么,如果在以后在这方面有需要时不至于两眼一抹黑。

现在我只能照搬看到的代码,观察比较各个算法对于图像去噪的效果。

刚开始时,我原本以为我可以将一些像素较低的图像处理成较清晰的图像,而现在我仍然这样想,只是却不是我现在能做的了的了。

我们所拍摄出来的照片因为不同的设备而有不同的结果,不同的图像格式就会有不同的信息,不同的格式所需要的内存也会不一样,还跟图像的像素有关,不同的格式所采集到的信息也会有所不同,那么就可以这样认为,高质量的可以向低质量的转换,但低质量要转换成高质量的却不是那么容易的,不过我认为这仍然可以,而且我也相信现在的科技能够实现了,不过这个我就不知道了,对于现在的我来说有点远。

因为这里是借助Matlab来实现的,也就是通过编译代码实现的,而我觉得代码类的学习刚开始都需要大量的进行读、写代码,让它们留在自己的脑海里并能随时调用。

而且不单单是代码,还要了解这个行业的发展。

如下是我在观察图像去噪算法的效果截取的一些图片,以供比较。

对添加高斯噪声的图像进行算术均值和几何均值滤波:
I = imread('imge.jpg');%读取图像
I = im2double(I);
J = imnoise(I,'gaussian',0.05);%添加高斯噪声
PSF = fspecial('average',3);
K = imfilter(J,PSF);%算术均值滤波
L = exp(imfilter(log(J),PSF));%几何均值滤波
%按I、J、K、L顺序显示:
K1=imfilter(J,fspecial('average',3)); %模板尺寸为3
K2=imfilter(J,fspecial('average',5));% 模板尺寸为5
K3=imfilter(J,fspecial('average',7)); %模板尺寸为7
K4=imfilter(J,fspecial('average',9)); %模板尺寸为9
通过上面的效果比较可以看出,对于有高斯噪声的图像来说,
这两种去噪算法显然是算术均值滤波较好,虽然整体图像变得模糊了,但噪声确实是去掉了,随着模版尺寸越大,图像变得更加模糊,所以我觉得它是因为图像整体平滑模糊才使得噪声隐去而已;而几何均值滤波虽然看来比之算术均值滤波丢失的图像细节要少,但效果也不是很好。

再看看逆谐波均值滤波的效果,同时与之前两种均值滤波比较。

Q1 = 1.6;Q2 = -1.6;
k1 = imfilter(I.^(Q1+1),PSF);k2 = imfilter(I.^Q1,PSF);
l1 = imfilter(I.^(Q2+1),PSF);l2 = imfilter(I.^Q2,PSF);
K = k1./k2;L = l1./l2;
这个图像去噪算法相比之前的两种好的太多了,虽然也会有点模糊,但它丢失的细节不多。

在查阅资料时也看到逆谐波均值滤波器比较适合脉冲噪声的减少或消除,当Q 值为正数时,对“胡椒”噪声的消除有一定效果;当Q值为负数时,适用于消除“盐”噪声。

当Q=- 1 时,逆谐波均值滤波器就等同于谐波均值滤波器;当Q=0
时,为算术均值滤波器。

谐波均值滤波器比较适合去除高斯噪声,对正脉冲(即盐点)噪声的处理效果也比较好,但是不适合于负脉冲(即胡椒点)噪声的消除。

下面是顺序统计滤波的几个算法比较。

顺序统计滤波器的原理为:滤波器在任意点的输出由滤波器包围的图像区域中像素点的排序结果决定。

二维中值滤波复原图像:
J = imnoise(I,'salt & pepper',0.05);
K = medfilt2(J, [3 3]);%按I、J、K顺序显示:
二维排序滤波复原图像:
J = imnoise(I,'salt & pepper',0.1);
domin = [0 1 1 0; 1 1 1 1; 1 1 1 1; 0 1 1 0];
K = ordfilt2(J,6,domin);
在观察以上两种二维滤波后发现,我所举的两个代码结果我没看出来有什么区别,最大的区别就是添加的噪声多少而已。

而且和逆谐波均值滤波器比较,因为例子单一,所以效果哪个更好我没看出来。

采用最大值最小值进行滤波:
>> J = imnoise(I,'salt & pepper',0.01);
>> K = ordfilt2(J,1,ones(4,4));%最大值滤波
>> L = ordfilt2(J,9,ones(3));%最小值滤波
从图像显示中可以看出,最大值滤波会将色度降低,觉得处理
后的图像有点蒙尘的感觉。

因为图像各部分具有不同的特征,我们不可能用均值等算法来去噪,我们在去噪的同时还要保留图像的特征,所以还有自适应滤波:
RGB = imread('imge.jpg');
I = rgb2gray(RGB);
I = imcrop(I,[0, 0, 1024, 1024]);
J = imnoise(I,'gaussian',0,0.03);
[K, noise] = wiener2(J, [5, 5]);
以上说的都是空间域上的去噪,还有频域上的去噪,如小波图像去噪等。

小波变换和中值滤波实现图像去噪:
X = imread('imge.jpg');
X = double(rgb2gray(X));
init = 2055615866;
randn('seed',init)
X1 = X+25*randn(size(X));
[thr,sorh,keepapp] = ddencmp('den','wv',X1);
X2 = wdencmp('gbl',X1,'sym4',2,thr,sorh,keepapp); X3 = X;
for i=2:577;
for j=2:579
Xtemp=0;
for m=1:3
for n=1:3
Xtemp = Xtemp+X1((i+m)-2,(j+n)-2);
end
end
Xtemp = Xtemp/9;
X3(i-1,j-1) = Xtemp;
end
end
再看了小波调用wdencmp 函数去噪后的效果后,我只感觉不咋的,比之空间域的去噪不如,而小波的中值滤波,感觉对图像没有什么改变,或者颜色变淡了点算一个吧。

我觉得是我看不懂吧,因为在for 循环里面的语句我不理解它的作用。

总的来说,这是一门博大精深的技术,而每一个如此大内存的软件它所代表的也是一个市场。

图像去噪在很多方面起着重要作用,无论是个人还是组织都好,都有需求。

日常中,我们再看图像时,总是希望它很清晰,即使放大之后,但是很多因为格式、像素等问题导致一旦放大就表示看不了了。

所以在刚接触时,我就在想,什
么时候我自己能够将我需要清晰的图像处理出来,这就是我所想的,也是我会去做的,有一天我会实现的!
参考:王英和曾光宇的图像去噪算法研究论文---《电脑与信息技术》。

相关文档
最新文档