2020年泉州市初一数学下期中试卷(带答案)
2019-2020学年福建省泉州实验中学七年级(下)期中数学试卷

2019-2020学年福建省泉州实验中学七年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.(4分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(4分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0D.2x﹣3y=xy3.(4分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n24.(4分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.(4分)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣6.(4分)不等式组的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤07.(4分)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6B.7C.8D.98.(4分)如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.489.(4分)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12B.12<x<15C.10<x<15D.11<x<1410.(4分)如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN 上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6B.8C.12D.18二、填空题(每小题4分,共24分)11.(4分)若是方程2x+y=0的解,则6a+3b+2=.12.(4分)若不等式组有解,则a的取值范围是.13.(4分)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.14.(4分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.15.(4分)新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);其中正确的结论有(填写所有正确的序号).16.(4分)如图,长方形ABCD中,AB=CD=6,BC=AD=10,E在CD边上,且CD=3CE,点P、Q为BC边上两个动点,且线段PQ=2,当BP=时,四边形APQE的周长最小.三、解答题(共86分)17.(12分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)18.(8分)解不等式,并把它们的解集表示在数轴上.19.(8分)如图1,每个小正方形边长均为1的网格内有一个△ABC,数轴x⊥数轴y,垂足为原点O.(1)画出△ABC向下平移5个单位后的△A1B1C1;(2)画出△A1B1C1绕原点O顺吋针旋转90°得到的△A2B2C2;(3)连结BA2、BB2,在图中存在格点P(不同于B点),且△P A2B2与△BA2B2面积相等,请在图2中标出所有符合条件的格点P.20.(8分)如图所示的是一个运算程序.例如:根据所给的运算程序可知,当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.(1)填空:当x=10时,输出的值为;当x=2时,输出的值为.(2)若需要经过两次运算才能输出结果,求x的取值范围.21.(8分)阅读:在同一个三角形中,相等的边所对的角相等,简称为“等边对等角”.例如,在△ABC中,如果AB=AC,依据“等边对等角”可得∠B=∠C.请运用上述知识,解决问题:已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若AE=AF,试判断△ABC的形状,并写出证明过程.22.(8分)已知方程组中x为负数,y为非正数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,不等式2ax+3x>2a+3的解集为x<1.23.(10分)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A 的度数.24.(12分)某电器经营业主计划购进一批同种型号的空调和电风扇,若购进8台空调和20台电风扇,需要资金23600元;若购进10台空调和30台电风扇,需要资金31000元.(1)空调和电风扇每台的采购价各是多少元?(2)由于国家大力推行家电下乡政策,每台空调可以比采购价下调15%,每台电风扇可以比采购价打七折.该业主计划用29930元购进两种电器共20台,其中空调不少于13台,该业主能否实现购买计划?如能实现,请帮他列出购买计划;如不能,请说明理由.(3)该业主计划增加购买单价为每台600元的空调扇,且三种电器的总数量共50台,空调扇总数10至20台之间(不包含10、20),恰好投入55000元.若最终实际利润为,每台空调300元,每台电扇30元,每台空调扇100元.该业主决定将本次购买计划的全部利润对口捐给某医院,助益抵抗新冠肺炎疫情,现医院有7500元资金缺口.该业主能否实现日标?如果能,请直接写出进货方案和获得的利润总额.25.(12分)如图,△ABC的点C与C′关于AB对称,点B与B′关于AC对称,连结BB′、CC′,交于点O.(1)如图(1),若∠BAC=30°,①求∠B'AC'的度数;②观察并描述:△ABC'可以由△AB'C通过什么变换得来?求出∠BOC'的角度;(2)如图(2),若∠BAC=α,点D、E分别在AB、AC上,且C′D∥BC∥B′E,BE、CD交于点F,设∠BFD =β,试探索α与β之间的数量关系,并说明理由.2019-2020学年福建省泉州实验中学七年级(下)期中数学试卷试题解析一、选择题(每小题4分,共40分)1.解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选:B.3.解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.4.解:为△ABC中BC边上的高的是A选项.故选:A.5.解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.6.解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.7.解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.8.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:D.9.解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.10.解:连接OP,过点O作OH⊥NM交NM的延长线于H.∵S△OMN=•MN•OH=12,MN=6,∴OH=4,∵点P关于OA对称的点为P1,点P关于OB对称点为P2,∴∠AOP=∠AOP1,∠POB=∠P2OB,OP=OP1=OP2∵∠AOB=45°,∴∠P1OP2=2(∠POA+∠POB)=90°,∴△OP1P2是等腰直角三角形,∴OP=OP1最小时,△OP1P2的面积最小,根据垂线段最短可知,OP的最小值为4,∴△OP1P2的面积的最小值=×4×4=8,故选:B.二、填空题(每小题4分,共24分)11.解:把代入方程2x+y=0,得2a+b=0,∴6a+3b+2=3(2a+b)+2=2.故答案为:2.12.解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.13.解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.14.解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.15.解:①(1.493)=1,故①符合题意;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②不符合题意;③若(x﹣1)=4,则4﹣≤x﹣1<4+,解得:9≤x<11,故③符合题意;④m为非负整数,故(m+2013x)=m+(2013x),故④符合题意;综上可得①③④正确.故答案为:①③④.16.解:∵四边形APQE的周长中AE和PQ是定值,∴要使四边形APQE的周长最小,只要AP+QE最小即可;在AD上截取AF=PQ=2,作点F关于BC的对称点G连接GE与BC交于点Q,过点A作AP∥FQ,过G作GH∥BC交CD于点H,∴GQ=FQ=AP,∵AB=6,BC=10,PQ=2,CD=3CE,∴EC=2,CH=6,GH=8,∴EH=8,∴=,∴=,∴CQ=2,∴BP=10﹣2﹣2=4;故答案为4.三、解答题(共86分)17.解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.18.解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.19.解:(1)如图,△A1B1C1即为平移后的图形;(2)如图,△A2B2C2即为旋转后的图形;(3)因为△P A2B2与△BA2B2面积相等,所以图2中符合条件的格点有4个,分别为P1、P2、P3、P4.20.解:(1)当x=10时,5×10+2=52>37,所以输出52;当x=2时,5×2+2=12<37,把x=12代入,得5×12+2=62>37,所以输出62.故答案为:52;62;(2)由题意得:,解得:1≤x<7.答:x的取值范围是1≤x<7.21.解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=∠ABC=20°,∴∠BFD=90°﹣20°=70°,∴∠AFE=∠BFD=70°;(2)∵AE=AF,∴∠AEF=∠AFE,∵∠ABE=∠DBE,∠AFE=∠BFD,∴∠BAE=180°﹣∠ABE﹣∠AEB,∠BDF=180°﹣∠DBF﹣∠BFD,∴∠BAE=∠BDF=90°,∴△ABC是直角三角形.22.解:(1)解方程组得,,∵x为负数,y为非正数,∴,解得﹣2≤a<3;(2)2ax+3x>2a+3,(2a+3)x>2a+3,∵要使不等式2ax+3x>2a+3的解集为x<1,必须2a+3<0,解得:a<﹣,∵﹣2≤a<3,a为整数,∴a=﹣2,所以当a为﹣2时,不等式2ax+3x>2a+3的解集为x<1.23.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.24.解:(1)设空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意得:,解得:.答:空调每台的采购价是2200元,电风扇每台的采购价是300元;(2)由题意得,每台空调的采购价为2200×(1﹣15%)=1870(元),每台电风扇的采购价为300×0.7=210(元).设该业主购买空调a台,则购买电风扇(20﹣a)台,根据题意得:,解得:13≤a≤15.5,∵a是整数,∴a=13,14,15.故该业主能实现购买计划,购买计划有三种:①购买空调13台,电风扇7台;②购买空调14台,电风扇6台;③购买空调15台,电风扇5台;(3)设该业主购买空调m台,电风扇n台,空调扇p台,则10<p<20,根据题意得:,解得:,∵m、n均为正整数,10<p<20,∴p=13时,m=19,n=18符合题意,此时总利润为:300×19+30×18+100×13=7540(元),∵7540>7500,∴该业主能实现目标,进货方案是:购买空调19台,电风扇18台,空调扇13台,此时获得的利润总额是7540元.25.解:(1)①∵C,C′关于AB对称,B,B′关于AC对称,∴∠CAB=∠BAC′=∠CAB′=30°,∴∠B′AC′=90°.②如图(1)中,设AC交BB′于J.△ABC'可以由△AB'C绕点A顺时针旋转60°得到.∵AC=AC′,AB=AB′,∠CAC′=∠BAB′=60°,∴∠AB′A=∠ACO=60°,∵∠AJB′=∠OJC,∴∠B′OC=∠B′AJ=30°.(2)如图(2)中,结论:β=2α.理由:由对称的性质可知:BC=BC′,DC′=DC,∠ABC′=∠ABC,∵DC′∥BC,∴∠C′DB=∠ABC=∠C′BD,∴C′D=C′B,∴BC=BC′=C′D=DC,∴四边形BCDC′是菱形,∴CD∥BC′,同法可证,BE∥CB′,∴∠FCB+∠CBC′=180°,即∠FCB+2∠ABC=180°,同法可得,∠FBC+2∠ACB=180°,∵∠BFD=∠FBC+∠FCB,∴∠DFB=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB)=360°﹣2(180°﹣∠BAC)=2∠BAC,∴β=2α.。
泉州实验中学2020—2021学年度下学期期中考试初一年数学试卷(定稿)

户型
A
B
成本(万元/套)
25
28
售价(万元/套)
30
34
(1)试求该公司对这两种户型住房将有哪几种建房方案; (2)试问该公司将如何建房,才能使获得的利润最大; (3)若根据市场调查,每套 B 型住房的售价不会改变,每套 A 型住房的售价将会提高 a 万元 (a>0),且所建的两种住房可全部售出.试问该公司又将如何建房,才能使获得的利润最大. (注:利润=售价 - 成本)
边形的边数 n 和这个内角分别是( )
A.11 和 60°
B.11 和 120°
C.12 和 60°
D.14 和 120°
x a 0 9.已知关于 x 的不等式组 5 2x> 3 有且只有 7 个整数解,则 a 的取值范围是( )
A. -4≤a≤ -3
B. -4<a< -3
C. -4<a≤ -3
D. -4≤a< -3
10.已知 x,y,z 为 3 个非负数,且满足 3x+2y+z=5,x+y﹣z=2,若 S=2x+y﹣z,则 S 的最大
值与最小值的和为( )
A.5
B.
C.
D.
二、填空题:(每小题 4 分,共 24 分)
11.已知方程 4x -y=1,用含 x 的代数式表示 y,则 y=
.
初一年数学试卷 第 1页(共 4 页)
从左到右依次为
和
.
16.在△ABC 内有 1 个点,三边上有三个点(不与顶点重合),则这 4 个点和三个顶点最多可构
成
个互不重叠的小三角形;如果把 1 个点改成 2021 个点,其他条件不变,那么,
最多可构成
个互不重叠的小三角形。
福建省泉州市2020年(春秋版)七年级下学期数学期中考试试卷D卷

福建省泉州市2020年(春秋版)七年级下学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,直线a、b相交,∠1=36°,则∠3=()A . 36°B . 54°C . 144°D . 64°2. (2分) (2017八下·长春期末) 在平面直角坐标系中,点在第三象限,则的取值范围是()A .B .C .D .3. (2分)(2020·高邮模拟) 已知,将线段PQ平移至若则的值是()A .B .C .D .4. (2分) (2016八上·滨湖期末) 若,且,为相邻的整数,则的值为()A . 2B . 3C . 4D . 55. (2分) (2019七下·个旧期中) 下列条件不能判定的是()A .B .C .D .6. (2分) (2016八上·平谷期末) 在实数0,π,,,- 中,无理数的个数有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2019七下·武汉月考) 如图,将下图中的福娃“欢欢”通过平移可得到图为()A .B .C .D .8. (2分)(2019·广西模拟) 如图,数轴上的A,B,C,D四点中,与数- 表示的点最接近的是()A . 点AB . 点BC . 点CD . 点D二、填空题 (共8题;共10分)9. (1分)在同一平面内,________叫做平行线.10. (2分) (2016七下·微山期中) 直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB________7cm.(填>或者<或者=或者≤或者≥).11. (1分) (2019八上·沛县期末) 点N(a﹣3,b+1)与点M(6,﹣3)关于x轴对称,则a=________.b =________,12. (1分) (2016七下·迁安期中) 把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:________.13. (1分) (2019七下·厦门期末) 计算下列各题:⑴2﹣7=________;⑵(﹣3)×(﹣2)=________;⑶ =________;⑷ =________;⑸2 ﹣=________;⑹|1﹣ |=________;14. (1分) (2016八上·济南开学考) 化简: =________, =________, =________.15. (2分) (2019七下·西宁期中) 已经点P(a+1,3a+4)在y轴上,则P点的坐标为________16. (1分) (2020七下·江苏月考) 已知点P(2a-6,a+1),若点P在坐标轴上,则点P的坐标为________.三、解答题 (共6题;共39分)17. (10分) (2017七下·东城期末) 计算: +| ﹣2|+ ﹣(﹣).18. (7分)如图,在平面直角坐标系中,线段AB的两个端点是A(﹣5,1),B(﹣2,3),线段CD的两个端点是C(﹣5,﹣1),D(﹣2,﹣3).(1)线段AB与线段CD关于直线对称,则对称轴是;(2)平移线段AB得到线段A1B1 ,若点A的对应点A1的坐标为(1,2),画出平移后的线段A1B1 ,并写出点B1的坐标为.19. (5分) (2018八上·江阴期中) 已知某正数的两个平方根分别是和,的立方根是.求的算术平方根.20. (5分) (2018八上·汉滨期中) 如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40°,∠C=30°,求∠EDF、∠DBC的度数.21. (2分) (2017七下·嘉兴期末) 如图,已知:EF⊥AC ,垂足为点F ,DM⊥AC ,垂足为点M , DM 的延长线交AB于点B ,且∠1=∠C ,点N在AD上,且∠2=∠3,试说明AB∥MN.22. (10分) (2017七下·莆田期末) 如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB=S平行四边形ABDC ,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP+S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共39分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、22-3、。
2019-2020学年泉州市惠安县七年级下期中数学试卷-有答案(已纠错)

2019-2020学年福建省泉州市惠安县七年级(下)期中数学试卷一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.2.已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1B.3x<3y C.﹣x<﹣y D.3.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=84.不等式组1≤x<2的解集在数轴上可表示为()A.B.C.D.5.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣36.二元一次方程组的解是()A.B.C.D.7.方程+1=,去分母后正确的是()A.3(x+2)+12=4x B.12(x+2)+12=12xC.4(x+2)+12=3x D.3(x+2)+1=4x8.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个9.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>110.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标价为x元,裤子标价为y元,则可列出方程组为()A.B.C.D.二、填空题(每题4分,共24分)11.如果x=6是方程2x+3a=0的解,那么a的值是.12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.13.x的3倍与5的和大于8,用不等式表示为.14.已知:,则x+y+z=.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.16.已知关于x,y的方程组(1)由方程①﹣②,可方便地求得x﹣y=;(2)若方程组的解满足x+y>0,则a的取值范围是.三、计算题(本大题共5小题,共40分)17.(12分)解方程:(1)5x+6=3x+2(2).18.(6分)解二元一次方程组:.19.(6分)解不等式x﹣2(x﹣1)>0,并将它的解集在数轴上表示出来.20.(8分)解不等式组:并写出它的所有的整数解.21.(8分)二元一次方程组的解满足2x﹣ky=1,求k的值.四、解答题(本大题共4小题,共46分)22.(8分)某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.24.(14分)某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?25.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?2019-2020学年福建省泉州市惠安县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.【分析】利用一元一次方程的定义判断即可.【解答】解:各方程中,是一元一次方程的是3y﹣1=4,故选:C.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1B.3x<3y C.﹣x<﹣y D.【分析】根据不等式的性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变.故本选项错误.故选:C.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=8【分析】方程组中两方程相减消去x得到结果,即可做出判断.【解答】解:,①﹣②得:﹣7y=8,故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.不等式组1≤x<2的解集在数轴上可表示为()A.B.C.D.【分析】先在数轴上表示不等式组的解集,再选出即可.【解答】解:不等式组1≤x<2的解集在数轴上可表示为:,故选:C.【点评】本题考查了在数轴上表示不等式的解集,能把不等式组的解集在数轴上表示出来是解此题的关键.5.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣3【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选:B.【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.6.二元一次方程组的解是()A.B.C.D.【分析】方程组的解,指的是该数值满足方程组中的每一方程,用代入消元法可解方程组.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.【点评】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.7.方程+1=,去分母后正确的是()A.3(x+2)+12=4x B.12(x+2)+12=12xC.4(x+2)+12=3x D.3(x+2)+1=4x【分析】根据等式的性质方程两边都乘以12即可.【解答】解:+1=,去分母得:3(x+2)+12=4x,故选:A.【点评】本题考查了解一元一次方程的应用,能正确根据等式的性质进行变形是解此题的关键,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.8.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【分析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选:C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.10.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标价为x元,裤子标价为y元,则可列出方程组为()A.B.C.D.【分析】根据“上衣标价为x元,裤子标价为y元”可得x+y=250;由“上衣按标价打九折,裤子按标价打八五折”可得0.9x+0.85y=180,可得方程组.【解答】解:设上衣标价为x元,裤子标价为y元,由题意得,,故选:C.【点评】本题主要考查了二元一次方程组的实际运用,根据题意找出等量关系是解答此题的关键.二、填空题(每题4分,共24分)11.如果x=6是方程2x+3a=0的解,那么a的值是﹣4.【分析】把x=6代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=6代入方程2x+3a=0得:12+3a=0,解得:a=﹣4,故答案为:﹣4.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=3.【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得m﹣3=1,2﹣n=1,解出m、n的值可得答案.【解答】解:由题意得:m﹣3=1,2﹣n=1,解得:m=4,n=1,m﹣n=4﹣1=3,故答案为:3.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.13.x的3倍与5的和大于8,用不等式表示为3x+5>8.【分析】先表示出x的3倍,再表示出与5的和,最后根据大于8可得不等式.【解答】解:根据题意可列不等式:3x+5>8,故答案为:3x+5>8;【点评】本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.已知:,则x+y+z=6.【分析】三个式子左右两边分别相加即可求解.【解答】解:三个式子相加得:2(x+y+z)=12,则x+y+z=6.故答案是:6.【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为x<﹣6.【分析】首先转化成一般的不等式,然后解不等式即可.【解答】解:根据题意得:2x+12<0,解得:x<﹣6.故答案是:x<﹣6.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.已知关于x,y的方程组(1)由方程①﹣②,可方便地求得x﹣y=2a;(2)若方程组的解满足x+y>0,则a的取值范围是a>﹣1.【分析】(1)直接用①﹣②,即可得出答案;(2)直接用①+②,即可得出x+y,根据x+y>0,再求出a的取值范围.【解答】解:(1),①﹣②得,2x﹣2y=1+3a﹣1+a,即x﹣y=2a;(2)①+②得,4x+4y=1+3a+1﹣a,即x+y=a+;∵x+y>0,∴a+>0,解得a>﹣1;故答案为2a;a>﹣1.【点评】本题考查了解二元一次方程组,是基础知识要熟练掌握.三、计算题(本大题共5小题,共40分)17.(12分)解方程:(1)5x+6=3x+2(2).【分析】(1)依次移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项,系数化成1可得.【解答】解:(1)移项,得:5x﹣3x=2﹣6,合并同类项,得:2x=﹣4,系数化为1,得:x=﹣2;(2)去分母得:2x+4=20﹣5x+5,移项,得:2x+5x=20+5﹣4,合并同类项,得:7x=21,系数化为1,得:x=3.【点评】本题考查了解一元一次方程,解一元一次方程的步骤是:去分母、去括号、移项、合并同类项,系数化成1.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(6分)解不等式x﹣2(x﹣1)>0,并将它的解集在数轴上表示出来.【分析】解不等式的步骤为:去括号;移项及合并;系数化为1;再将它的解集在数轴上表示出来即可.【解答】解:去括号得x﹣2x+2>0,移项得x﹣2x>﹣2,合并得﹣x>﹣2,系数化为1,得x<2.解集在数轴上表示为:【点评】本题考查了解不等式的一般步骤,需注意在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.20.(8分)解不等式组:并写出它的所有的整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:解不等式①得,x≥1,解不等式②得,x<4,所以不等式组的解集是1≤x<4,所以不等式组的所有整数解是1、2、3.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.21.(8分)二元一次方程组的解满足2x﹣ky=1,求k的值.【分析】利用加减消元法求出x、y的值,将x、y的值代入方程得出关于k的方程,解之可得答案.【解答】解:,①+②×2得:7x=7,即x=1,把x=1代入①得:y=2,∴方程组的解为,代入2x﹣ky=1中得:2﹣2k=1,解得:.【点评】本题主要考查二元一次方程组的解,解题的关键是掌握解二元一次方程的方法和二元一次方程的解的定义.四、解答题(本大题共4小题,共46分)22.(8分)某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.【分析】设每辆A型车售价为x万元,B型车的售价为y万元,根据1辆A型车和3辆B型车的销售总额为96万元,2辆A型车和1辆B型车的销售总额为62万元,列出二元一次方程组,求解即可.【解答】解:设每辆A型车售价为x万元,B型车的售价为y万元,根据题意,得,解得:,答:每辆A型车售价为18万元,B型车的售价为26万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.【分析】(1)设甲、乙合作x天才能把该工程完成,根据总工程量=甲单独做4天完成的部分+甲、乙合作完成的部分即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总费用=单天费用×工作时间即可算出甲、乙两队的费用,将其相加即可得出结论.【解答】解:(1)设甲、乙合作x天才能把该工程完成,根据题意得:×4+(+)x=1,解得:x=20.答:甲、乙合作20天才能把该工程完成.(2)甲队的费用为2500×(20+4)=60000(元),乙队的费用为3000×20=60000(元),60000+60000=120000(元).答:完成此项工程需付给甲、乙两队共120000元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据总工程量=甲单独做4天完成的部分+甲、乙合作完成的部分列出关于x的一元一次方程;(2)根据数量关系列式计算.24.(14分)某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?【分析】(1)本题首先找出题中的等量关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.(2)根据题意列出W与x之间的函数关系式,利用一次函数的增减性和(1)得到的取值范围即可求得最大利润.【解答】解:(1)设安排生产A种产品x件,则生产B种产品(50﹣x)件,根据题意有:,解得:30≤x≤32,∵x为整数,∴x30,31,32,所以有三种方案:①安排A种产品30件,B种产品20件;②安排A种产品31件,B种产品19件;③安排A种产品32件,B种产品18件.(2)设安排生产A种产品x件,那么利润为:W=700x+1200(50﹣x)=﹣500x+60000,∵k=﹣500<0,∴W随x的增大而减小,∴当x=30时,对应方案的利润最大,W=﹣500×30+60000=45000,最大利润为45000元.∴采用方案①所获利润最大,为45000元.【点评】本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.25.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.。
福建省泉州市2020版七年级下学期数学期中考试试卷D卷

福建省泉州市2020版七年级下学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七下·高新期中) 指大气中直径小于或等于微米的颗粒物微米用科学记数法表示为()A .B .C .D .2. (2分)计算2a3•a2的结果是()A . 2aB . 2a5C . 2a6D . 2a93. (2分)下列运算正确的是()A . x2+x3=x5B . x8÷x2=x4C . 3x-2x=1D . (x2)3=x64. (2分)下列各式计算正确的是()A .B .C .D .5. (2分)下列图中∠1与∠2是同位角的是()A .B .C .D .6. (2分)等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A . 8B . 9C . 8或9D . 127. (2分) (2016八上·南宁期中) 为了扩大绿化面积,把一块原边长为x的正方形草地加长了am,加宽了bm,增加的草地面积为()A . (a+b)x+abB . x2+abx+abC . x2+(a+b)x+abD . (x+a)(x+b)-ax-bx8. (2分) (2016八上·长春期中) 下列式子从左到右的变形中,属于因式分解的是()A . (x+1)(x﹣1)=x2﹣1B . x2﹣2x+1=x(x﹣2)+1C . a2﹣b2=(a+b)(a﹣b)D . (m﹣n)m=m2﹣mn9. (2分)如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A . 19°B . 29°C . 63°D . 73°10. (2分)(2020·新疆模拟) 如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A . y=x+zB . x+y﹣z=90°C . x+y+z=180°D . y+z﹣x=90°二、填空题 (共8题;共9分)11. (1分) (2017八下·闵行期末) 一个多边形的内角和是1440°,那么这个多边形边数是________.12. (1分) (2020七下·泰兴期末) 若,,则 ________.13. (1分) (2019七下·深圳期中) 若则的值是________.14. (1分) (2019七下·海港期中) (﹣3x3)•4x4=________.15. (2分) (2017七上·汕头期中) 比较大小:﹣|﹣2|________﹣(﹣2);﹣ ________ .16. (1分) (2017七下·江苏期中) 如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为________.17. (1分) (2018八上·南召期末) 已知a+b=3,ab=1,则a2﹣ab+b2=________.18. (1分)(2016·龙湾模拟) 在一堂关于“折纸问题”的数学综合实践探究课中,小明同学将一张矩形ABCD 纸片,按如图进行折叠,分别在BC、AD两边上取两点E,F,使CE=AF,分别以DE,BF为对称轴将△CDE与△ABF 翻折得到△C′DE与△A′BF,且边C′E与A′B交于点G,边A′F与C′D交于一点H.已知tan∠EBG= ,A′G=6,C′G=1,则矩形纸片ABCD的周长为________.三、解答题 (共9题;共75分)19. (5分) (2017七下·金牛期中) 化简:(x+y)(x﹣y)﹣(2x3y﹣4xy3)÷2xy.20. (20分) (2019八上·凉州月考) 分解因式:(1) 3x﹣12x3(2)(3)(x﹣1)(x﹣3)+1(4)(a2+1)2﹣4a221. (5分)计算和化简⑴⑵⑶⑷⑸⑹22. (5分)如图,将直角三角形ABC沿AB方向平移AD距离得到直角三角形DEF.已知BE=4cm,EF=7cm,CG=3cm,求图中阴影部分的面积.23. (5分) (2018八上·大同月考) 一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形24. (5分)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0 , y=2.25. (10分)(2019·鄂托克旗模拟) 如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC ,AD⊥CD于D .(1)求证:CD是⊙O的切线:(2)若AB=10,AD=2,求cos∠OAC的值.26. (10分) (2018七上·天河期末) 解答下面问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题.)(1)若代数式 2 x + 3 y 的值为− 5 ,求代数式的值;(2)已知,求当时的值.27. (10分) (2017七下·宁波月考) 如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共75分)19-1、20-1、20-2、20-3、20-4、21-1、22-1、23-1、24-1、25-1、25-2、26-1、26-2、27-1、27-2、。
福建省泉州市安溪县2020-2021学年七年级下学期期中数学试题

福建省泉州市安溪县2020-2021学年七年级下学期期中数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程中是一元一次方程的是()A.12x x-= B.12x = C.32x y +=+ D.210x -=【答案】A2.已知x y >,则下列不等式不成立的是()A.22x y ->- B.22x y > C.x y ->- D.33x y -<-【答案】C3.下列方程变形中,正确的是()A.方程 4455x =-,未知数系数化为1,得1x =B.方程3541x x +=+,移项,得3415x x -=-+C.方程()371323()x x x --=-+,去括号,得377323x x x -+=--D.1231337x x -+=-,去分母,得7(12)3(31)63x x -=+-【答案】D4.如果1134120+--+=m n x y 是关于x y 、的二元一次方程,那么m n 、的值分别为()A. 01m n ==, B. 12m n =-=, C. 02m n ==, D. 11m n =-=,【答案】C5.一元一次方程2152236x x -+-=,去分母后变形正确的是()A.42522x x --+= B.42522x x ---=C.425212x x --+= D.425212x x ---=【答案】D 6.下列在数轴上表示的不等式组13x x ≤⎧⎨>-⎩的解集,正确的是()A. B.C.D.【答案】A7.不等式3x <﹣4(x ﹣6)的正整数解的个数为()A.1个B.2个C.3个D.4个【答案】C 8.三元一次方程组345+=⎧⎪+=⎨⎪+=⎩x y x z y z 的解是()A.123x y z =⎧⎪=⎨⎪=⎩B.231x y z =⎧⎪=⎨⎪=⎩C.312x y z =⎧⎪=⎨⎪=⎩D.321x y z =⎧⎪=⎨⎪=⎩【答案】A 9.某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩?设大盒装x 个,小盒装y 个,则下列方程组中正确的是()A.238053110x y x y +=⎧⎨+=⎩ B.248052110x y x y +=⎧⎨+=⎩C.248035110x y x y +=⎧⎨+=⎩ D.238052110x y x y +=⎧⎨+=⎩【答案】C 10.小涵在2020年某月的月历上圈出了三个数a ,b ,c ,并求出了它们的和为30,则这三个数在月历中的排位位置不可能是()A.B.C.D.【答案】D二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.方程2x +a =2的解是x =2,则a =_____.【答案】-212.已知方程531x y +=,用含x 的式子表示y ,则y =__________.【答案】153xy -=13.“x 的3倍与12的差不大于4”用不等式表示是__________.【答案】1342x -≤14.已知方程组3421a b a b +=⎧⎨-=⎩,则23a b +的值是______.【答案】315.若|35|x y +-与2(33)x y --互为相反数,则2x y +=__________.【答案】416.已知关于x 的不等式组23030x x a +>⎧⎨-⎩有且只有四个整数解,则a 的取值范围为_____【答案】6≤a <9三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程、正确作图或演算步骤.17.解方程:(1)421x x =-+;(2)1123x x +-=.【答案】(1)x =1;(2)x =818.解二元一次方程组:3329x y x y +=⎧⎨-=⎩.【答案】30x y =⎧⎨=⎩19.解不等式组:2173112x x x -<⎧⎪⎨-≥+⎪⎩,并在数轴上表示出不等式组的解集.【答案】34x ≤<,数轴见解析20.已知关于x 的方程45x a -=与方程317x +=的解相同,求a 的值.【答案】a =321.在解方程组42136ax y x by +=⎧⎨-=⎩时,由于粗心,甲同学看错了方程组中的a ,而得到解为43x y =⎧⎨=⎩,乙同学看错了方程组中的b ,而得到解为14x y =⎧⎨=⎩.(1)求正确的a ,b 的值;(2)求原方程组的解.【答案】(1)5a =,2b =;(2)332x y =⎧⎪⎨=⎪⎩22.如图,8块相同的小长方形地砖拼成一个大长方形,每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)【答案】长是30cm ,宽是10cm23.2021年元旦班级活动中,西大附中初2023级(1)班决定到晨光文具店采购一批本子和笔对本学年各方面表现优异的学生作为奖励.已知购买3个本子,4支笔需要花费29元;购买2个本子,5支笔需要花费24元.(1)试问本子和笔的单价分别是多少钱?(2)根据班级商量,决定购进本子和笔共150件,要求购买本子的数量不低于购买笔的25,且购买本子和笔所用班费不超过525元,请通过计算设计出所有可能的购买方案.【答案】(1)本子单价是7元,笔的单价是2元;(2)有三种购买方案:购进本子43件,笔购进107件;购进本子44件,笔购进106件;购进本子45件,笔购进105件.24.被人们视为枯燥无味的数字,一旦与规律“联姻”就能获得新的生机,显示出浓厚的数趣,因此我们把遵循一定规律的数字视为“趣味数”.阅读一:一个大于2的正整数,若能满足被不大于 N ( 2N >的整数)的每一个整数除余数均为2,那么称这个正整数为“趣 N 味”数( N 取最大).例如:98(被5除余3)被4除余2,被3除余2,那么98为“趣四味”数.阅读二:设不大于 N ( 2N >的整数)的所有正整数的最小公倍数为k ,那么“趣 N 味”数可以表示为2kx +(x 为正整数).例如:不大于8的所有正整数8,7,6,5,4,3,2,1的最小公倍数是840,那么“趣八味”数可以表示为8402x +(x 为正整数).(1)请你判断,422是“趣___味”数;(2)求出最小的三位“趣三味”数;(3)一个“趣三味”数与一个“趣四味”数的和34,求出这两个数.【答案】(1)七;(2)104;(3)“趣三味”数为20,“趣四味”数为14;或“趣三味”数为8,“趣四味”数为2625.已知:M N 、两点相距60cm ,点A 沿线段MN 自点M 向点N 运动.(1)点A 的速度为2cm/s ,同时点 B 从N 点出发,沿———N M N M 以4cm/s 的速度做往返运动(当点A 运动到点N 时,点A B 、均停止运动).①点B 出发几秒后,与点A 第一次相遇?②点B 出发几秒后,A B 、两点相距12cm ?(2)如图,点O 在 M N 上,ON=10cm ,点B 在MN 的上方,OB=8cm ,且80BOM ∠=︒,设点A 的速度为acm/s ,点B 绕着点O 以 40/s ︒的速度顺时针旋转一周后停止,若 A B 、两点同时出发,问两点能否相遇?若能,请求出 a 的值;若不能,请说明理由.【答案】(1)①10秒;②8秒或12秒或24秒;(2)23.2或6。
2019 2020泉州市惠安县七年级下期中考试数学试卷有答案

2019-2020学年福建省泉州市惠安县七年级(下)期中数学试卷一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()yxyxy. 43D﹣1=4B.==4CA..﹣2xy,则下列不等式成立的是( 2.已知)>yxxyxy..﹣ B.3<﹣<3DA.﹣1<C﹣1x消去后得到的方程是(.用“加减法”将方程组中的)3yyyy=78=2A.3D=2B.7C=8.﹣7.﹣x<2的解集在数轴上可表示为()4.不等式组1≤.. AB D..C xx等于().若代数式5 +2的值为1,则A.1B.﹣1C.3D.﹣3)6.二元一次方程组的解是(.. CAD. B.=,去分母后正确的是( +17).方程xxxx=4+2)12A .3(+12B.12(+2)+12=xxxx3)+12C.=+144 (=+2D.3(+2).不等式组的整数解的个数为()8B.2个个 C.3个 D.无数个.A0axxaxa必须满足的条件是()>1+ 的解集是<19.若不等式+,则aaaa>1D>﹣1.A.<﹣1B.<1C.10.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标xy元,则可列出方程组为(价为元,裤子标价为)1 . A. B. C.D二、填空题(每题4分,共24分)xxaa的值是的解,那么是方程2.+3 =11.如果0=6mn﹣32﹣mxyn= 12.已知方程.6=是二元一次方程,则+ ﹣x的3倍与5的和大于8,用不等式表示为. 13.xyz=,则.++14 .已知:abab.如:1⊕5=2×⊕1+3=2+3×5=15.在实数范围内定义一种新运算“⊕”,其运算规则为:x⊕4<0的解集为.17.则不等式yx的方程组16.已知关于,xy=﹣;(1)由方程①﹣②,可方便地求得xya的取值范围是.+ >0,则2()若方程组的解满足三、计算题(本大题共5小题,共40分)17.(12分)解方程:xx+2 =+61)53().(2分)解二元一次方程组:.(6. 18xx﹣1)>0(﹣2,并将它的解集在数轴上表示出来.分)解不等式19.(6分)解不等式组:并写出它的所有的整数解. 20.(8xkyk的值.﹣1=,求的解满足.(218分)二元一次方程组2四、解答题(本大题共4小题,共46分)2ABAB型车,辆型车和、3两种型号的新能源汽车.上周售出1辆22.(8分)某汽车专卖店销售AB型车,两种车型的销售总额为1辆万元;本周销售2辆62型车和两种车型的销售总额为96万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.kgkgAB两种产品共,乙种原料290、24.(14分)某工厂有甲种原料360,计划用这两种原料生产Akgkg,可获利润700元;生产一件,乙种原料件,已知生产一件503种产品,需用甲种原料9Bkgkg,可获利润120010,乙种原料元.种产品,需用甲种原料4AB两种产品的生产件数,有哪几种方案?请你设计出来;)按要求安排、(1ABW(元),设生产采用哪种生产方案获总利润最大?最大利润为多少?、两种产品总利润是)(225.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重ABAB型公110辆,若购买辆,的公交车,计划购买型和型公交车型两种环保节能公交车共AB型公交车1辆,共需350万元;若购买400万元.型公交车2辆,交车2辆,共需AB型公交车每辆各需多少万元?型和(1)求购买AB型公交车每辆年均载客量分别为60万人次和100万人次.若该公司(2)预计在该线路上型和AB型公交车的总费用不超过1200万元,型和且确保这10辆公交车在该线路的年均载客总购买和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?32019-2020学年福建省泉州市惠安县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()yxyxy. 43D﹣1=4B.==4C.A.2﹣【分析】利用一元一次方程的定义判断即可.y﹣1=4【解答】解:各方程中,是一元一次方程的是3,C.故选:【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.xy,则下列不等式成立的是(>) 2.已知yyxxyx. 3 C.﹣A.D﹣1<1﹣B.3<﹣<【分析】根据不等式的性质逐项分析即可.A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方【解答】解:向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变.故本选项错误.C.故选:【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.x消去后得到的方程是()中的3.用“加减法”将方程组yyyy=8D.﹣7C.﹣7=8.2.A3=B7=2x得到结果,即可做出判断.【分析】方程组中两方程相减消去【解答】解:,y 8①﹣②得:﹣7=, 4D.故选:【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.x<2的解集在数轴上可表示为( 4.不等式组1≤). BA .. CD.【分析】先在数轴上表示不等式组的解集,再选出即可.x的解集在数轴上可表示为:,2【解答】解:不等式组1≤<C.故选:【点评】本题考查了在数轴上表示不等式的解集,能把不等式组的解集在数轴上表示出来是解此题的关键.xx),则等于(5.若代数式 +2的值为13.﹣C.3DA.1B.﹣1x的值.【分析】根据题意列出方程,求出方程的解即可得到x+2=1【解答】解:根据题意得:,x=﹣1,解得:B.故选:【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键..二元一次方程组的解是()6.. CAD. B.【分析】方程组的解,指的是该数值满足方程组中的每一方程,用代入消元法可解方程组.【解答】解:二元一次方程组,即,x.=2解得y=﹣3.则【点评】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.=,去分母后正确的是(.方程+1) 7xxxx 4+12(.=)12B.(+2+1212 A3+2)=5xxxx=4+2)3+1 D.3(C.4(+2)+12=【分析】根据等式的性质方程两边都乘以12即可.=,【解答】解: +1xx,4 )+12去分母得:3(=+2A.故选:【点评】本题考查了解一元一次方程的应用,能正确根据等式的性质进行变形是解此题的关键,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1..不等式组的整数解的个数为()8B.2个 C.A.0个 3个 D.无数个x的取值范围,然后找出整数解的个数.【分析】先根据一元一次不等式组的解法求出xx≤1,﹣1≤1【解答】解:解不等式2得:xx>﹣2,<1得:解不等式﹣x≤1,则不等式组的解集为:﹣2<整数解为:﹣1,0,1,共3个.C.故选:xx的取值范围,得出【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.axxaxa必须满足的条件是()1+的解集是<9.若不等式1+,则>aaaa>1DC..>﹣A.B<﹣1.1<1a+1<03【分析】根据不等式的性质:不等式两边除以同一个负数时,不等式的方向改变,可知,a满足的条件.由此得到axa,)>【解答】解:由原不等式可得(1+1+ax<1,两边都除以1+,得:a<0,∴1+a<﹣1,解得:A.故选:a+1<【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出0是解题的关键.10.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标6xy元,则可列出方程组为(元,裤子标价为)价为. A. B. C.Dxyxy=250元”可得【分析】根据“上衣标价为;由“上衣按标价打九折,裤子元,裤子标价为+xy=180,可得方程组.+0.85 按标价打八五折”可得0.9xy元,由题意得,【解答】解:设上衣标价为元,裤子标价为,C.故选:【点评】本题主要考查了二元一次方程组的实际运用,根据题意找出等量关系是解答此题的关键.二、填空题(每题4分,共24分)xxaa的值是﹣4 .=011.如果的解,那么=6是方程2 +3xa的一元一次方程,求出方程的解即可. 6【分析】把代入方程,即可得出一个关于=xxaa=0,=【解答】解:把0=6代入方程2得:+312+3a=﹣4,解得:故答案为:﹣4.a的一元一次方程是解此题【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于的关键.mn﹣32﹣mxyn= 3 .12.已知方程=6是二元一次方程,则+﹣【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得mnmn的值可得答案.﹣、=1,解出=﹣31,2mn=1,,2﹣【解答】解:由题意得:﹣3=1mn=1,4,解得:=mn=4﹣1=﹣3,故答案为:3.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.xx+5>8 . 85313.的倍与的和大于,用不等式表示为37x的3倍,再表示出与5的和,最后根据大于8可得不等式.【分析】先表示出x+5>8【解答】解:根据题意可列不等式:3,x+5>83;故答案为:【点评】本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.xyz= 6 14+.已知:,则.+【分析】三个式子左右两边分别相加即可求解.xyz)=12+2【解答】解:三个式子相加得:(,+xyz=6+则.+故答案是:6.xyz的关系是++【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与关键.abab.如:1⊕5=2.在实数范围内定义一种新运算“⊕”,其运算规则为:×⊕1+3=2×+35=15xx<﹣6 .<0的解集为17.则不等式⊕4【分析】首先转化成一般的不等式,然后解不等式即可.x+12<0【解答】解:根据题意得:2,x<﹣6.解得:x<﹣6.故答案是:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.yx的方程组, 16.已知关于xya;2﹣=(1)由方程①﹣②,可方便地求得xyaa >﹣1 .的取值范围是)若方程组的解满足 +>0,则 2(【分析】(1)直接用①﹣②,即可得出答案;xyxya的取值范围.,再求出+ +(2)直接用①②,即可得出>+,根据0),【解答】解:(1ayxa 1+32①﹣②得,﹣2=﹣1+,8xya;2﹣即=xyaa,﹣1+3+②得,4 +4+1=(2)①ayx+=即;+xy>0+,∵a+>0,∴a>﹣1解得;aa>﹣1.故答案为2;【点评】本题考查了解二元一次方程组,是基础知识要熟练掌握.三、计算题(本大题共5小题,共40分)17.(12分)解方程:xx+2 3+61)5=().2 (【分析】(1)依次移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项,系数化成1可得.xx=2﹣6,【解答】解:(1)移项,得:5 ﹣3x=﹣4,合并同类项,得:2x=﹣2,得:;系数化为1xx+5,5 +4=20﹣)去分母得:(22xx=20+5﹣4+5,移项,得:2x=21,合并同类项,得:7 x=3,得:1.系数化为【点评】本题考查了解一元一次方程,解一元一次方程的步骤是:去分母、去括号、移项、合并同类项,系数化成1.分)解二元一次方程组:.6 18.(【分析】方程组利用加减消元法求出解即可.【解答】解:,xx=2, 2+②得:7=14,即①×xy=﹣3,2把=代入①得:9 .则方程组的解为【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.xx,并将它的解集在数轴上表示出来.)>2(0﹣19.(6分)解不等式1﹣;再将它的解集在数轴上表示出来1【分析】解不等式的步骤为:去括号;移项及合并;系数化为即可.xx 0>﹣2,【解答】解:去括号得+2xx 2﹣2,移项得>﹣x 2合并得﹣,>﹣x 2,得.<系数化为1 解集在数轴上表示为:【点评】本题考查了解不等式的一般步骤,需注意在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除. 8并写出它的所有的整数解.分)解不等式组:20.(【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:x≥1解不等式①得,,x4解不等式②得,,<x41≤,<所以不等式组的解集是.、2、3所以不等式组的所有整数解是1【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.kxky 2,求﹣的值.=1.(218的解满足分)二元一次方程组kxyyx解之可得答案.的值代入方程得出关于【分析】利用加减消元法求出的方程,、的值,将、,【解答】解:xx,,即72+①②×得:=7=1 10xy=2,1代入①得:把=∴方程组的解为,xkyk=12,﹣中得:=12代入2﹣解得:.【点评】本题主要考查二元一次方程组的解,解题的关键是掌握解二元一次方程的方法和二元一次方程的解的定义.四、解答题(本大题共4小题,共46分)ABAB型车,辆型车和、3两种型号的新能源汽车.上周售出122.(8分)某汽车专卖店销售辆AB型车,两种车型的销售总额为辆2辆62型车和1两种车型的销售总额为96万元;本周销售万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.AxByAB型车的销3辆【分析】设每辆万元,根据型车售价为1万元,辆型车的售价为型车和AB 型车的销售总额为62万元,列出二元一次方程组,求解型车和1辆售总额为96万元,2辆即可.AxBy万元,型车的售价为万元,【解答】解:设每辆型车售价为根据题意,得,解得:,AB型车的售价为26万元,万元.答:每辆型车售价为18【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.x天才能把该工程完成,根据总工程量=甲单独做4天完成的部分+(1)设甲、乙合作甲、【分析】x的一元一次方程,解之即可得出结论;乙合作完成的部分即可得出关于(2)根据总费用=单天费用×工作时间即可算出甲、乙两队的费用,将其相加即可得出结论.x天才能把该工程完成,)设甲、乙合作【解答】解:(1x=1,4+×(+根据题意得:)x解得:=.20 11答:甲、乙合作20天才能把该工程完成.(2)甲队的费用为2500×(20+4)=60000(元),乙队的费用为3000×20=60000(元),60000+60000=120000(元).答:完成此项工程需付给甲、乙两队共120000元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据总工程量=甲单独做4天完x的一元一次方程;(2)根据数量关系列式计算.+甲、乙合作完成的部分列出关于成的部分kgkgAB两种产品共290、.(14分)某工厂有甲种原料360,计划用这两种原料生产,乙种原料24Akgkg,可获利润700,乙种原料350件,已知生产一件9种产品,需用甲种原料元;生产一件Bkgkg,可获利润120010元.种产品,需用甲种原料4 ,乙种原料AB两种产品的生产件数,有哪几种方案?请你设计出来;)按要求安排、(1ABW(元),采用哪种生产方案获总利润最大?最大利润为多少?)设生产、两种产品总利润是(2【分析】(1)本题首先找出题中的等量关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.Wx之间的函数关系式,利用一次函数的增减性和(1与(2)根据题意列出)得到的取值范围即可求得最大利润.AxBx)件,﹣件,则生产种产品(【解答】解:(1)设安排生产种产品50根据题意有:,x≤,≤32解得:30x∵为整数,x,31,∴3230,BA种产品所以有三种方案:①安排20种产品30件,件;BA 19件;种产品31件,种产品②安排BA 18种产品32件,件.③安排种产品xA种产品)设安排生产件,(2xxWx +60000﹣+1200(50,)=﹣那么利润为:500=700k 0∵,=﹣500<xW随∴的增大而减小,Wx元.=30+6000045000,最大利润为45000×时,对应方案的利润最大,∴当=30=﹣500 45000元.∴采用方案①所获利润最大,为【点评】本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.1225.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重ABAB型公辆,型公交车型两种环保节能公交车共10的公交车,计划购买辆,若购买型和1AB型公交车1辆,共需辆,350万元.万元;若购买交车2辆,共需400 型公交车2AB型公交车每辆各需多少万元?型和(1)求购买AB型公交车每辆年均载客量分别为60万人次和型和100万人次.若该公司(2)预计在该线路上AB型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总购买型和和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?AxByA型公交车万元,购买【分析】(1)设购买万元,根据“型公交车每辆需型公交车每辆需BAB 型公交车1辆,共需350400万元;万元”列出型公交车2辆,1辆,型公交车2辆,共需方程组解决问题;AaBaAB型公交车的总费用不)辆,由“购买辆,则型和型公交车((2)设购买10型公交车﹣超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.AxBy万元,由题意得)设购买型公交车每辆需型公交车每辆需万元,购买【解答】解:(1,解得AB型公交车每辆需150万元.100型公交车每辆需万元,购买答:购买AaBa)辆,由题意得﹣辆,则(2)设购买型公交车(型公交车10,a≤8,6≤解得:a=6,7,所以8;a)=4,3,10﹣2;则(三种方案:AB型公交车4辆:100×6+150×①购买4型公交车6辆,则=1200万元;AB型公交车3辆:100×7+150×3=1150万元;②购买型公交车7辆,则AB型公交车2辆:100×8+150×③购买8型公交车辆,则2=1100万元;AB型公交车2辆费用最少,最少总费用为1100万元. 8购买型公交车辆,则【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.13。
2019-2020学年泉州市惠安县七年级下期中数学试卷-有答案(精校版)

2019-2020学年福建省泉州市惠安县七年级(下)期中数学试卷一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.2.已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1B.3x<3y C.﹣x<﹣y D.3.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=84.不等式组1≤x<2的解集在数轴上可表示为()A.B.C.D.5.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣36.二元一次方程组的解是()A.B.C.D.7.方程+1=,去分母后正确的是()A.3(x+2)+12=4x B.12(x+2)+12=12xC.4(x+2)+12=3x D.3(x+2)+1=4x8.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个9.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>110.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标价为x元,裤子标价为y元,则可列出方程组为()A.B.C.D.二、填空题(每题4分,共24分)11.如果x=6是方程2x+3a=0的解,那么a的值是.12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.13.x的3倍与5的和大于8,用不等式表示为.14.已知:,则x+y+z=.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.16.已知关于x,y的方程组(1)由方程①﹣②,可方便地求得x﹣y=;(2)若方程组的解满足x+y>0,则a的取值范围是.三、计算题(本大题共5小题,共40分)17.(12分)解方程:(1)5x+6=3x+2(2).18.(6分)解二元一次方程组:.19.(6分)解不等式x﹣2(x﹣1)>0,并将它的解集在数轴上表示出来.20.(8分)解不等式组:并写出它的所有的整数解.21.(8分)二元一次方程组的解满足2x﹣ky=1,求k的值.四、解答题(本大题共4小题,共46分)22.(8分)某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.24.(14分)某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?25.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?2019-2020学年福建省泉州市惠安县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.下列各方程中,是一元一次方程的是()A.x﹣2y=4B.xy=4C.3y﹣1=4D.【分析】利用一元一次方程的定义判断即可.【解答】解:各方程中,是一元一次方程的是3y﹣1=4,故选:C.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.已知x>y,则下列不等式成立的是()A.x﹣1<y﹣1B.3x<3y C.﹣x<﹣y D.【分析】根据不等式的性质逐项分析即可.【解答】解:A、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D、不等式两边乘(或除以)同一个正数,等式两边加(或减)同一个数(或式子),不等号方向不变.故本选项错误.故选:C.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=8【分析】方程组中两方程相减消去x得到结果,即可做出判断.【解答】解:,①﹣②得:﹣7y=8,故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.不等式组1≤x<2的解集在数轴上可表示为()A.B.C.D.【分析】先在数轴上表示不等式组的解集,再选出即可.【解答】解:不等式组1≤x<2的解集在数轴上可表示为:,故选:C.【点评】本题考查了在数轴上表示不等式的解集,能把不等式组的解集在数轴上表示出来是解此题的关键.5.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣3【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选:B.【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.6.二元一次方程组的解是()A.B.C.D.【分析】方程组的解,指的是该数值满足方程组中的每一方程,用代入消元法可解方程组.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.【点评】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.7.方程+1=,去分母后正确的是()A.3(x+2)+12=4x B.12(x+2)+12=12xC.4(x+2)+12=3x D.3(x+2)+1=4x【分析】根据等式的性质方程两边都乘以12即可.【解答】解:+1=,去分母得:3(x+2)+12=4x,故选:A.【点评】本题考查了解一元一次方程的应用,能正确根据等式的性质进行变形是解此题的关键,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.8.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【分析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选:C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.10.林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元?设上衣标价为x元,裤子标价为y元,则可列出方程组为()A.B.C.D.【分析】根据“上衣标价为x元,裤子标价为y元”可得x+y=250;由“上衣按标价打九折,裤子按标价打八五折”可得0.9x+0.85y=180,可得方程组.【解答】解:设上衣标价为x元,裤子标价为y元,由题意得,,故选:C.【点评】本题主要考查了二元一次方程组的实际运用,根据题意找出等量关系是解答此题的关键.二、填空题(每题4分,共24分)11.如果x=6是方程2x+3a=0的解,那么a的值是﹣4.【分析】把x=6代入方程,即可得出一个关于a的一元一次方程,求出方程的解即可.【解答】解:把x=6代入方程2x+3a=0得:12+3a=0,解得:a=﹣4,故答案为:﹣4.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.12.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=3.【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得m﹣3=1,2﹣n=1,解出m、n的值可得答案.【解答】解:由题意得:m﹣3=1,2﹣n=1,解得:m=4,n=1,m﹣n=4﹣1=3,故答案为:3.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.13.x的3倍与5的和大于8,用不等式表示为3x+5>8.【分析】先表示出x的3倍,再表示出与5的和,最后根据大于8可得不等式.【解答】解:根据题意可列不等式:3x+5>8,故答案为:3x+5>8;【点评】本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.已知:,则x+y+z=6.【分析】三个式子左右两边分别相加即可求解.【解答】解:三个式子相加得:2(x+y+z)=12,则x+y+z=6.故答案是:6.【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为x<﹣6.【分析】首先转化成一般的不等式,然后解不等式即可.【解答】解:根据题意得:2x+12<0,解得:x<﹣6.故答案是:x<﹣6.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.已知关于x,y的方程组(1)由方程①﹣②,可方便地求得x﹣y=2a;(2)若方程组的解满足x+y>0,则a的取值范围是a>﹣1.【分析】(1)直接用①﹣②,即可得出答案;(2)直接用①+②,即可得出x+y,根据x+y>0,再求出a的取值范围.【解答】解:(1),①﹣②得,2x﹣2y=1+3a﹣1+a,即x﹣y=2a;(2)①+②得,4x+4y=1+3a+1﹣a,即x+y=a+;∵x+y>0,∴a+>0,解得a>﹣1;故答案为2a;a>﹣1.【点评】本题考查了解二元一次方程组,是基础知识要熟练掌握.三、计算题(本大题共5小题,共40分)17.(12分)解方程:(1)5x+6=3x+2(2).【分析】(1)依次移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项,系数化成1可得.【解答】解:(1)移项,得:5x﹣3x=2﹣6,合并同类项,得:2x=﹣4,系数化为1,得:x=﹣2;(2)去分母得:2x+4=20﹣5x+5,移项,得:2x+5x=20+5﹣4,合并同类项,得:7x=21,系数化为1,得:x=3.【点评】本题考查了解一元一次方程,解一元一次方程的步骤是:去分母、去括号、移项、合并同类项,系数化成1.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(6分)解不等式x﹣2(x﹣1)>0,并将它的解集在数轴上表示出来.【分析】解不等式的步骤为:去括号;移项及合并;系数化为1;再将它的解集在数轴上表示出来即可.【解答】解:去括号得x﹣2x+2>0,移项得x﹣2x>﹣2,合并得﹣x>﹣2,系数化为1,得x<2.解集在数轴上表示为:【点评】本题考查了解不等式的一般步骤,需注意在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.20.(8分)解不等式组:并写出它的所有的整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:解不等式①得,x≥1,解不等式②得,x<4,所以不等式组的解集是1≤x<4,所以不等式组的所有整数解是1、2、3.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.21.(8分)二元一次方程组的解满足2x﹣ky=1,求k的值.【分析】利用加减消元法求出x、y的值,将x、y的值代入方程得出关于k的方程,解之可得答案.【解答】解:,①+②×2得:7x=7,即x=1,把x=1代入①得:y=2,∴方程组的解为,代入2x﹣ky=1中得:2﹣2k=1,解得:.【点评】本题主要考查二元一次方程组的解,解题的关键是掌握解二元一次方程的方法和二元一次方程的解的定义.四、解答题(本大题共4小题,共46分)22.(8分)某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车,两种车型的销售总额为62万元,已知这两周两种型号汽车销售价格不变,求它们的销售单价.【分析】设每辆A型车售价为x万元,B型车的售价为y万元,根据1辆A型车和3辆B型车的销售总额为96万元,2辆A型车和1辆B型车的销售总额为62万元,列出二元一次方程组,求解即可.【解答】解:设每辆A型车售价为x万元,B型车的售价为y万元,根据题意,得,解得:,答:每辆A型车售价为18万元,B型车的售价为26万元.【点评】本题考查了二元一次方程组的应用,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出正确的二元一次方程组并求解.23.(10分)一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作.(1)求甲、乙合作多少天才能把该工程完成.(2)在(1)的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.【分析】(1)设甲、乙合作x天才能把该工程完成,根据总工程量=甲单独做4天完成的部分+甲、乙合作完成的部分即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总费用=单天费用×工作时间即可算出甲、乙两队的费用,将其相加即可得出结论.【解答】解:(1)设甲、乙合作x天才能把该工程完成,根据题意得:×4+(+)x=1,解得:x=20.答:甲、乙合作20天才能把该工程完成.(2)甲队的费用为2500×(20+4)=60000(元),乙队的费用为3000×20=60000(元),60000+60000=120000(元).答:完成此项工程需付给甲、乙两队共120000元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据总工程量=甲单独做4天完成的部分+甲、乙合作完成的部分列出关于x的一元一次方程;(2)根据数量关系列式计算.24.(14分)某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件,已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润是W(元),采用哪种生产方案获总利润最大?最大利润为多少?【分析】(1)本题首先找出题中的等量关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.(2)根据题意列出W与x之间的函数关系式,利用一次函数的增减性和(1)得到的取值范围即可求得最大利润.【解答】解:(1)设安排生产A种产品x件,则生产B种产品(50﹣x)件,根据题意有:,解得:30≤x≤32,∵x为整数,∴x30,31,32,所以有三种方案:①安排A种产品30件,B种产品20件;②安排A种产品31件,B种产品19件;③安排A种产品32件,B种产品18件.(2)设安排生产A种产品x件,那么利润为:W=700x+1200(50﹣x)=﹣500x+60000,∵k=﹣500<0,∴W随x的增大而减小,∴当x=30时,对应方案的利润最大,W=﹣500×30+60000=45000,最大利润为45000元.∴采用方案①所获利润最大,为45000元.【点评】本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.25.(14分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.90° C.100°
B.108° D.80°
8.请你观察、思考下列计算过程:因为 112=121,所以 121 =11:,因为 1112=12321 所以
12321 =111…,由此猜想 12345678987654321 =( )
A.111111
B.1111111
C.11111111
D.111111111
有多少人,物品的价格是多少?”设有 x 人,物品价格为 y 钱,可列方程组为
8x 3 y A. 7x 4 y
y 8x 3
B.
y
7x
4
8x y 3 C. 7x y 4
8x 3 y D. 7x 4 y
5.对于两个不相等的实数 a, b ,我们规定符号 maxa,b 表示 a, b 中较大的数,如
x y 2m 1
19.若关于
x、y
的二元一次方程组
x
3y
3
的解满足 x+y>0,则 m 的取值范围
是____.
2x y 3
20.已知方程组
x
y
6
的解满足方程 x+2y=k,则 k 的值是__________.
三、解答题
21.解下列方程组:
4x y 30
(1)
x
2
y
10
x
y
1
(2) 3 4
A.(2,﹣1)
B.(4,﹣2)
C.(4,2)
D.(2,0)
4.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:
“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个
人一起去购买某物品,如果每人出 8 钱,则多了 3 钱;如果每人出 7 钱,则少了 4 钱.问
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】 【分析】
根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别. 【详解】
解:由题意可知点 P 的坐标为 2 5,1 3 ,
即 P 3,2 ;
故选:A. 【点睛】 本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下 移减是解题的关键.
3x 4 y 2
22.某水果店计划进 A,B 两种水果共 140 千克,这两种水果的进价和售价如表所示
进价 ( 元 / 千克 )
售价 ( 元 / 千克 )
A 种水果
5
8
B 种水果
9
13
1 若该水果店购进这两种水果共花费 1020 元,求该水果店分别购进 A,B 两种水果各多
少千克?
2 在 1 的基础上,为了迎接春节的来临,水果店老板决定把 A 种水果全部八折出售,B
9.在平面直角坐标中,点 M(-2,3)在( )
A.第一象限
B.第二象限
C.第三象
限
D.第四象限
10.如图,AB∥CD,∠1=45°,∠3=80°,则∠2 的度数为( )
A.30°
B.35°
C.40°
D.45°
11.过一点画已知直线的垂线,可画垂线的条数是( )
A.0
B.1
12.在平面直角坐标系中,点 P(1,-2)在(
C.2 )
D.无数
A.第一象限
B.第二象限
C.第三象限
D.第四象限
二、填空题
13.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有 1 和 0;③
若 ab,bc,则 ac;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其 线 l2:y=k2x 在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式 k2xk1x+b 的解集为______.
7.C
解析:C 【解析】 【分析】 在图中过 E 作出 BA 平行线 EF,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加 即可. 【详解】
过 E 作出 BA 平行线 EF, ∠AEF=∠A=30°,∠DEF=∠ABC
AB∥CD,BC∥DE, ∠ABC=180°-∠BCD=180°-110°=70°, ∠AED=∠AEF+∠DEF=30°+70°=100° 【点睛】 本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.
种水果全部降价10% 出售,那么售完后共获利多少元?
23.求不等式 2m 2 3m 1 9 的所有正整数解.
2
x y 2 ①
24.解方程组
2x
1 3
y
5 3
②
25.如图,已知 BC//GE 、 AF //DE 、 1 50 .
(1) AFG ________°. (2)若 AQ 平分 FAC ,交直线 BC 于点 Q ,且 Q 15 ,求 ACQ 的度数.
名学生的体重,就这个问题,下面说法正确的是( )
A.1600 名学生的体重是总体
B.1600 名学生是总体
C.每个学生是个体
D.100 名学生是所抽取的一个样本
3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为 A(﹣2,
1)和 B(﹣2,﹣3),那么第一架轰炸机 C 的平面坐标是( )
x
去分母得: x2 2x 1 0,代入公式得: x 2 2 2 1 2 , 2
解得: x3 1 2,x4 1 2 (舍去), 经检验 x 1 2 是分式方程的解, 综上,所求方程的解为1 2 或-1.
故选 D. 【点睛】 本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.
6.C
8.D
解析:D 【解析】 分析:被开方数是从 1 到 n 再到 1(n≥1 的连续自然数),算术平方根就等于几个 1.
详解:∵ 121 =11, 12321 =111…,…, ∴ 12345678987654321 ═111 111 111.
故选 D. 点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
11.B
解析:B 【解析】 【分析】
根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】 在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】 此题考查了直线的垂直的性质,注意基础知识的识记和理解.
12.D
解析:D 【解析】 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 ∵点 P(1,-2),横坐标大于 0,纵坐标小于 0,∴点 P(1,-2)在第三象限,故选 D. 【点睛】 本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符 号.
2020 年泉州市初一数学下期中试卷(带答案)
一、选择题 1.在平面直角坐标系中,将点 P 先向左平移 5 个单位,再向上平移 3 个单位得到点
Q2,1, 则点 P 的坐标是( )
A. (3, 2)
B. 3, 4
C. 7, 4
D. (7, 2)
2.为了了解天鹅湖校区 2019-2020 学年 1600 名七年级学生的体重情况,从中抽取了 100
15.下面是二元一次方程组的不同解法,请你把下列消元的过程填写完整:
x 2y 4
①
对于二元一次方程组 3x 2 y 6
②
(1)方法一:由 ① ,得 2y 4 x ③
把 ③ 代入 ② ,得________________.
(2)方法二: ① 3,得 3x 6 y 12 ④
④ ② ,得________________.
y 轴上,那么点 C 的坐标为 ____________
18.下列说法: ① 102 -10 ;②数轴上的点与实数成一一对应关系;③两条直线
被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理
数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________
解析:C 【解析】 【分析】 折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次 连接起来.以折线的上升或下降来表示统计数量增减变化. 【详解】 解:①由图象可知,当 A 车速度超过 40km 时,燃油效率大于 5km/L,所以当速度超过 40km 时,消耗 1 升汽油,A 车行驶距离大于 5 千米,故此项错误; ②B 车以 40 千米/小时的速度行驶 1 小时,路程为 40km,40km÷10km/L=4L,最多消耗 4 升汽油,此项正确; ③对于 A 车而言,行驶速度在 0﹣80km/h 时,越快越省油,故此项错误; ④某城市机动车最高限速 80 千米/小时,相同条件下,在该市驾驶 B 车比驾驶 A 车燃油效 率更高,所以更省油,故此项正确. 故②④合理, 故选:C. 【点睛】 本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.
2.A
解析:A 【解析】 【分析】 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本 容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的 这一部分对象找出样本,最后再根据样本确定出样本容量. 【详解】 解:A、1600 名学生的体重是总体,故 A 正确; B、1600 名学生的体重是总体,故 B 错误; C、每个学生的体重是个体,故 C 错误; D、从中抽取了 100 名学生的体重是一个样本,故 D 错误; 故选:A. 【点睛】 本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本, 关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大 小.样本容量是样本中包含的个体的数目,不能带单位.
5.D
解析:D 【解析】 【分析】
分 x x 和 x x 两种情况将所求方程变形,求出解即可.