胶凝材料学
《胶凝材料学》课程教学中加强学生创新教育研究与实践[论文]
![《胶凝材料学》课程教学中加强学生创新教育研究与实践[论文]](https://img.taocdn.com/s3/m/d047c38dbceb19e8b8f6ba98.png)
《胶凝材料学》课程教学中加强学生创新教育的研究与实践《胶凝材料学》是无机非金属材料类专业方向的重要专业知识课程。
随着高校教育改革的深化,培养创新型人才势在必行,本文分析了我校《胶凝材料学》课程教学现状,并从教学观念、教学内容、教学方式、考核体系、实践教学五方面入手,对加强胶凝材料学课程教学创新教育进行了探索。
胶凝材料问题创新教育课程教学《胶凝材料学》是高等学校建筑材料与制品专业、胶凝材料与制品专业、无机非金属材料专业的一门专业基础课,主要任务是要求学生从材料科学的基本原理出发,以硅酸盐水泥为重点,掌握胶凝材料的组成、结构与性能的关系;胶凝材料水化、硬化过程的基本规律;胶凝材料硬化体结构与工程性质的关系;硬化体形成过程与工艺参数的关系;胶凝材料硬化体结构、性能与环境的关系等。
作为我校材料专业无机非金属材料方向专业知识的延续和补充,它不仅巩固了硅酸盐水泥生产原理、过程及方法,水泥水化反应及机理,水泥组成、结构与性能间的关系,水泥硬化体形成及工程应用等相关知识,而且进一步要求学生掌握石膏、石灰、镁质胶凝材料等多种胶凝材料的特性和应用,课程教学中内容繁多而抽象枯燥,学生学习兴趣不大,自主学习动力不足,仍存在为考试而学的不良习惯。
然而,我校卓越工程师培养计划实施要求教师着力培养基础理论扎实,知识面广,实践能力强,思想道德素质高,且具有创新精神的工程性人才,以适应社会对创新人才的需求。
本文结合多年的教学经验,分析《胶凝材料学》课程教学现状,对加强学生创新教育提出一些建议。
一、课程教学存在的问题随着材料类高校课程体系的调整,我校《胶凝材料学》课程内容被压缩到24学时,而课程内容涉及众多常用胶凝材料,而不同的胶凝材料拥有不同的特点,课程要求学生掌握常用胶凝材料的特点和应用,课程内容繁多。
大部分知识仍以叙述的方式存在,逻辑性差。
并且,胶凝材料科学本身还处于发展之中,课程教学要求学生对各种材料的掌握程度不同,直接导致学生对于课程重点认识不足,易使学生中出现因重点众多而厌学的现象,不利于学习兴趣的培养。
胶凝材料学

浅析胶凝材料学发展摘要:基于胶凝材料的发展历史,提出了非传统胶凝材料的概念,根据工业废渣的化学组成、矿物特征以及胶凝固结特征对其进行了分类并探讨了工业废渣在胶凝材料中的应用途径,指出工业废渣在胶凝材料中的应用不仅有助于解决环境污染,节约能源,而且可降低产品成本,不同程度地改善胶凝材料的性能,具有显著的社会经济效益,并对以土聚水泥为例,介绍其研究现状及应用发展前景。
关键词:胶凝材料;工业废渣;利用;土聚水泥0引言胶凝材料是指经过自身的物理化学作用后,能够由液态或半固态变成坚硬固体的物质。
胶凝材料按其化学成分可分为有机和无机两大类。
无机胶凝材料按其硬化时的条件又可分为:气硬性胶凝材料与水硬性胶凝材料。
气硬性胶凝材料只能在空气中硬化,也只能在空气中保持或继续提高其强度,如石灰、石膏、水玻璃等[1-2]。
水硬性胶凝材料不仅能在空气中硬化,而且能更好地在水中硬化,保持并继续提高其强度[3]。
1胶凝材料学的发展历程1.1传统胶凝材料1.1.1古代胶凝材料人类发现和利用胶凝材料,有着悠远的历史。
新石器的前陶器时代人们就开始使用天然胶凝材料粘土和姜石,并且在9000年前开始使用最早的人造胶凝材料—石灰。
公元前2500~3000年,人们就开始使用石膏—石灰类胶凝材料。
公元初期,石灰—火山灰水硬性胶凝材料开始使用。
这种胶凝材料表现出极强的耐久性[4-7]。
古代胶凝材料的最大不同是AL203和SiO2含量高而且有大量(40%)的方沸石存在。
方沸石是一种化学稳定性较高的水化产物,溶解度小,与Ca(OH)2几乎完全反应。
因此古代的胶凝材料的溶解度小,其内的成分不会因为时间的流失而流失,所以古代胶凝材料有卓越的耐久性。
1.1.2现代胶凝材料。
现代胶凝材料一般指硅酸盐水泥、石灰、石膏等最常用的胶凝材料。
而铝酸盐水泥、硫铝酸盐水泥、则又称为非硅酸盐水泥。
现代以波特兰水泥为主的胶凝材料的最大特点是强度主要由硅酸盐熟料四种矿物质和石膏水解水化而形成强度[8]。
胶凝材料学复习试题

绪论1胶凝材料:凡在物理化学作用下,从具有可塑性浆体逐渐变成坚固石状的过程中,能将其他物料胶结为整体,并具有一定的机械强度的物质。
一、石膏1、CaSO4 H2O有几种石膏相及其生成条件(温度等)CaSO4 H2O系统中的石膏相有五种:二水石膏、α型与β型半水石膏、α与βⅢ型硬石膏、Ⅱ型硬石膏、Ⅰ型硬石膏。
半水石膏有α型与β型两个变种。
当二水石膏在。
>45°加压水蒸气条件下,在酸和盐的溶液中加热时,可以形成α型半水石膏。
如果二水石膏的脱水过程是在45°干燥环境中进行的,则可以形成β型半水石膏。
Ⅲ型硬石膏也存在α型与β型两个变种,他们分别由α型与β型半水石膏加热脱水而成。
前者是在100度加压水蒸气条件生成,后者是在107度干燥空气条件下生成。
如果二水石膏脱水时,水蒸气分压过低,二水石膏也可以不经过半水石膏直接转变为Ⅲ型硬石膏。
Ⅱ型硬石膏是二水石膏、半水石膏和Ⅲ型硬石膏经高温(200度-1180度)脱水后在常温下稳定的最终产物。
Ⅰ型硬石膏只有在温度高于1180℃时才能存在,如果低于此温度,他会转化为Ⅱ型硬石膏。
故Ⅰ型硬石膏在常温下是不存在的。
2、为什么α型半水石膏比β型的强度高?两者的差别主要表现在亚微观状态下晶体的形态大小以及分散度方面的不同。
1.α型半水石膏是致密的完整的,粗大的原生颗粒,而β型半水石膏是片状的,不规则的,由细小的单个晶粒组成的次生颗粒。
2.β型半水石膏分散度比α大得多。
所以,β型半水石膏的水化速度快、水化热高、需水量大、硬化体强度低。
3、简述半水石膏水化机理。
半水石膏加水后进行的水化反应用下式表示:CaSO4.1/2H2O+3/2H2O=CaSO4.H2O=Q,关于半水石膏水化有两个理论:1,溶解析晶理论。
2,局部化学理论。
1理论认为半水石膏与水拌合后,首先是半水石膏在水溶液中溶解,因为半水石膏的饱和溶解度对于二水石膏的平衡溶解度来说是高度过饱和的,所以在半水石膏的溶液中,二水石膏的晶核会自发地形成和长大。
第3讲-胶凝材料汇总

分缓慢。 缺陷:大量水蒸发,收缩很大,会出现干裂,所以,纯石灰膏
不能单独使用。常掺砂、纸筋、麻刀等。
4. 石灰的应用 ① 砂浆和石灰乳 石灰砂浆、石灰水泥混合砂浆 用于砌筑、
抹灰, 石灰乳用于粉刷墙面。 ② 灰土和三合土 灰土:石灰+粘土;三合土:石灰、粘土、
经过长时间(几个月甚至几年)的水化以后,多数水泥颗粒仍 剩余尚未水化的内核。因此,硬化后的水泥石是由凝胶体、未水化 的水泥颗粒和毛细孔组成的不均质结构体。
影响水泥凝结硬化的主要因素有:水泥熟料的矿物组成、水泥 的细度、拌和水量、硬化环境(温度和湿度)、硬化时间等。
采用蒸汽养护是加速凝结和硬化的方法之一。水泥石的强度只 有在潮湿的环境中才能不断增长,若处于干燥环境中,当水分蒸发 完毕后,水化作用将无法继续进行,硬化即行停止,强度也不再增 长,所以混凝土工程在浇筑后2~3周的时间内,必须注意洒水养护。
13.水玻璃用涂刷法或浸渍法可使建筑材料表面提高其密实性和抗风化能 力,但下列哪种材料不能涂刷水玻璃?
A.粘土砖 B.石膏 C.硅酸盐制品 D.矿渣空心砖
14.生石灰加水熟化成石灰浆,使用前应在储灰坑中“陈伏”两星期 以上,其目的是:
A.有利于Ca(OH)2结晶 B.减少熟化产生的热量 C.消除过火石灰的危害 D.使石灰浆变稠 15.关于水玻璃的优点中,哪项不正确? A.耐酸性好 B.耐热性好 C.耐水性好 D.粘结力大、强度较高 16.以下有关气硬性胶凝材料的叙述中,哪一项是正确的? A.三合土垫层是用石灰、粘土、砂石或炉渣、碎砖等填料拌合铺设 而成;
砂(或煤渣、炉渣、石渣等) 主要用于地基基础和垫层。 ③硅酸盐制品 灰砂砖、蒸养粉煤灰砖、粉煤灰砌块或板材 ④ 碳化石灰板 磨细生石灰+纤维+轻质骨料,加水强制搅拌,
胶凝材料学

石膏矿-二水石膏的结晶结构
二水石膏属单斜晶系
❖一般向a轴和c轴发展 形成 对{010}晶面发育的板状晶体
❖有时也只向c轴生长延长 形成拄状或针状晶体。
❖由于二水石膏的{010}晶面发 育好, {010}面解理完全,所 以在显微镜下常看到菱形薄 板状,柱板状或针状晶体。
石膏矿-二水石膏性质及特征
建筑石膏的性质、结构与特征
❖ 结晶形态分析-小角度X-ray分析
建筑石膏的性质、结构与特征
❖ 结晶形态分析-差热分析DSC
放 热
190℃吸热峰:半水石膏
Ⅲ 型硬石膏
230℃、370 ℃放热峰:Ⅲ 型硬石膏
Ⅱ型硬石膏
建筑石膏的性质、结构与特征
❖ 结晶形态分析- X-ray分析
谱线基本一致,但衍 射峰强度差异大
硬石膏 Ca[SO4] (Anhydrite)
化学组成: Ca[SO4]
结构特点: 正交晶系。晶体结构中, 在(100)和(010)面上 Ca2+和[SO4]2-分布成层,而在(001)面上[SO4]2-则成不平 整的层。Ca2+居于四个[SO4]2-之间而为八个O2-所包围, 配位数为8。每个O2-则与一个S6+和两个Ca2+相连接,故配 位为3。
❖β型一般为60—80%
强度
❖α型半水石膏的强度要高得多
❖原因:半水石膏完全水化所需要的水仅为18.6%,多 余的水分在石膏硬化体内留下大量的孔隙,使密实度 和强度大降低
❖降低半水石膏的需水量的措施:加入糖蜜(与石灰 混合使用))、亚硫酸酒精废液及水解血等稀释 剂)。
凝结时间,β型半水石膏的凝结时间更快。
❖ 石膏相的组成和晶型:
二水石膏CaSO4·2H2O
胶凝材料学06

(2)碳硫硅钙石型硫酸盐侵蚀的作用机理与钙矾石、 石膏等硫酸盐侵蚀明显不同,并且国内外学者对其发 生机理、形成条件和影响因素仍没有统一认识。
18
TSA研究的重要性及其机理
(3)对TSA发生机理还没有形成统一的观点,特别是 没有提出基于材料设计的有效可行的防治技术,在 我国,TSA侵蚀研究还只处于认识阶段,对其发生 机理和防治技术的研究处于空白。
2、外界环境
(1)水分:在混凝土施工过程中要尽量提高混凝土的防
水能力,如加强振捣操作、在混凝土表面涂刷防水涂层等;
(2)硫酸盐:尽量减少硫酸盐来源,如应避免采用风化
土进行回填;
(3)碳酸盐:减少碳酸盐来源,如应减少石灰石粉作为
填料或骨料在水泥混凝土中的应用。
17
TSA研究的TS重A研要究性的重要性及其机理
(4)针对TSA影响因素复杂,各地区环境条件差异较 大等特点,加强其机理、影响因素及预防措施的研 究,对确保水泥混凝土工程的耐久性意义深远。
19
20
的温度(通常低于15℃)和pH值(通常为10.5-13.0)
下,硫酸盐、碳酸盐、C-S-H凝胶和钙离子在水中
发生反应生成碳硫硅钙石,无需任何铝相参与
反应。
12
TSA国内外研究现状
反应途径二 (the woodfordite route) Ca6[Al(OH)6]2(SO4)3·26H2O+CaCO3+Ca3Si2O7·3H2O+xH2O→Ca6[S i(OH)6]2(SO4)2(CO3)2·24H2O+Al2O3·xH2O+CaSO4·2H2O+Ca(OH)2
胶凝材料学

第一篇胶凝材料学第一章气硬性胶凝材料在物理、化学作用下,能从浆体变成坚固的石状体,并能胶结其它散粒物料(如砂、石等),制成有一定机械强度的复合固体的物质称为胶凝材料,又称为胶结料。
胶凝材料根据其化学组成可分为有机胶凝材料和无机胶凝材料两大类。
无机胶凝材料是按一定要求制备的粉状物料,能以一定速度与水或电介质溶液作用,生成真溶液或胶体溶液,经过一定的时间能形成可塑性浆体,最后凝结硬化,粘结骨料形成有承受外力能力的整体,并可以在一定的介质中(空气、水或一定浓度的酸、碱、盐溶液及温度的变化)仍然保持强度及增加强度。
这类材料在常温下,当其与水或适当的盐类水溶液混合后,经过一定的物理化学变化过程,由浆状或可塑状逐渐失去塑性,进而硬化,并能将松散材料胶结成具有一定强度的整体——人造石。
无机胶凝材料按硬化条件义可分为气硬性胶凝材料和水硬性胶凝材料。
水硬性胶凝材料是指和水成浆后,既能在空气中硬化并保持强度,又能在水中硬化并长期保持和提高其强度的材料,这类材料常统称为水泥,如硅酸盐水泥、铝酸盐水泥、硫铝酸盐水泥等。
气硬性胶凝材料是指不能在水中硬化,只能在空气中硬化,保持或发展强度,如石膏、石灰、镁质胶凝材料,水玻璃等。
气硬性胶凝材料只适用于地上或干燥环境,而水硬性胶凝材料既适用于地上,也可用于地下潮湿环境或水中。
第一节石膏胶凝材料石膏是一种应用历史悠久的材料。
它与石灰、水泥并列为无机胶凝材料中的三大支柱。
在化工、医药、工艺美术、建筑雕塑,建筑材料工业等方面都有广泛的用途。
如在水泥工业中,石膏可作为硅酸盐型水泥的缓凝剂,可用于配制硅酸盐与铝酸盐自应力水泥,也可用作生产硫铝酸钙早强水泥的原料。
在硅酸盐建筑制品生产中,石膏作为外加剂能有效改善产品的性能。
石膏胶凝材料包括建筑石膏、高强石膏、硬石膏水泥等,不仅用于粉刷和制备砌筑砂浆,而且还可制成各种石膏制品。
我国天然石膏储量丰富,随着工业的日益发展而相应的伴生出多种副产化学石膏。
胶凝材料学

从而形成一种紧密的微结构
玉津桥始建于明末,桥墩台为石灰砂浆灌筑,拱圈为 糯米纸浆灰黏结糯米纸浆灰是由糯米粥、棉纸浆以及 石灰搅拌成的黏稠物。
罗马斗兽场(公元70-80 年) :石材、石灰砂浆
金茂大厦:共88层,高420.5米,建筑面积达29万平方米,1998年建成。
三峡大坝 :世界第一大水电工程,大坝为混凝土重力坝,坝顶总长3035 米,坝顶高程185米。工期自1993年到2009年共17年,分三期进行,工 程总投资约为1000亿元人民币。
第八章 铝酸盐水泥
第九章 其它品种水泥
本书要求学生具有《材料科学基础》、《物理化
学》等相关知识。
本书是学习《混凝土学》、《土木工程材料》、 《新型建筑材料》等课程的基础课程
思考题
1.胶凝材料的定义、特征、用途。
2.按照硬化条件,胶凝材料可以分为哪两类,其
意义是什么?
三、胶凝材料发展简史
新石器时代 公元前2000-3000年 公元初期
粘土
石灰、石膏
石灰+火山灰质材料
18世纪后半期
1824年
粘土和粘土煅烧制得天然水泥
硅酸盐水泥
糯米-石灰浆砂浆
古代石造建筑砂浆是一种特殊的有机-无机复合材料。
无机成分即碳酸钙,而有机成分则是来自糯米汤的胶淀
粉,而且胶淀粉充当着抗化剂的作用,抑制碳酸钙结晶,
(1)对胶凝材料的认识由宏观到微观,把性能与内
(2)对胶凝材料生产过程的规律和水化硬化过程的 规律的认识由经验上升到理论,从现象到本质, 为有效控制胶凝材料与制品的生产过程以及采用 新工艺、新技术提供理论基础
本书章节内容
第一章 石膏
第二章 石灰
第三章 镁质胶凝材料 第四章 硅酸盐水泥 第六章 高炉矿渣和矿渣水泥 第七章 火山灰混合材料和火山灰水泥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胶凝材料学历史回顾:古埃及人发现尼罗河流域盛产的石膏可以做成很好的粘结材料。
他们发现,把开采出来的石膏碾碎磨细,再加上少量粘土一起煅烧,就会失去一部分结晶水成为熟料。
熟料中加水,调成糊状,过不了多久又会重新变硬,而且石膏糊粘性甚好。
由此,埃及人发明了与水泥相似的石膏粘结剂,并用它创造了世界建筑史上的奇迹——金字塔。
这些金字塔是由巨大的石块以石膏复合胶凝材料粘结而成的具有良好的耐久性。
一、石灰1.石灰的生产及分类:生石灰粉:石灰在制备过程中,采用石灰石、白云石、白垩、贝壳等原料经煅烧后,即得到块状的生石灰,生石灰粉是由块状生石灰磨细而成。
消石灰粉:将生石灰用适量水经消化和干燥而成的粉末,主要成分为Ca(OH)2,称为消石灰粉。
石灰膏:将块状生石灰用过量水(约为生石灰体积的3~4倍)消化,或将消石灰粉和水拌和,所得的一定稠度的膏状物,主要成分为Ca(OH)2和水。
2.石灰的熟化与硬化:a.石灰的熟化生石灰与水反应生成氢氧化钙,称为石灰的熟化。
石灰的熟化过程会放出大量的热,熟化时体积增大1~2.5倍。
为了消除过火石灰的危害,石灰膏在使用之前应进行陈伏。
陈伏是指石灰乳在储灰坑中放置14d以上的过程。
b.石灰浆体的硬化石灰浆体的硬化包括干燥结晶和碳化,后者过程缓慢。
(1)干燥结晶硬化过程石灰浆体在干燥过程中,游离水分蒸发,形成网状孔隙,使石灰粒子更紧密并使Ca(OH)2从饱和溶液中逐渐结晶析出。
(2)碳化过程Ca(OH)2与空气中的CO2和水反应,形成碳酸钙。
由于碳化作用主要发生在颗粒表层,且生成的CaCO3膜层较致密,阻碍了空气中CO2的渗入,也阻碍了内部水分蒸发,因此硬化缓慢。
3.石灰的性质与技术要求石灰的性质是可塑性好;硬化较慢,强度低,硬化时体积收缩大,耐水性差,吸湿性强。
a. 石灰乳将消石灰粉或熟化好的石灰膏加入大量的水搅拌稀释,成为石灰乳。
主要用于内墙和天棚刷白,石灰乳中加入各种耐碱颜料,可形成彩色石灰乳。
b. 配制砂浆由于石灰膏和消石灰粉中氢氧化钙颗粒非常小,调水后具有很好的可塑性。
因而,常可用石灰膏或消石灰粉配制成石灰砂浆或水泥石灰混合砂浆。
c. 石灰土和三合土石灰与粘土拌合后称为灰土或石灰土,再加砂或炉渣等即成为三合土。
用于建筑物的地基和道路工程的基层、垫层。
d. 制作硅酸盐制品以磨细的石灰与硅质材料为胶凝材料,必要时加入少量石膏,经蒸汽养护或蒸压养护制作硅酸盐制品。
工程实例:a.内外墙粉刷层爆裂现象:上海某新村四幢六层楼1989年9-11月进行内外墙粉刷,1990年4月交付甲方使用。
此后陆续发现内外墙粉刷层发生爆裂。
至5月份阴雨天,爆裂点迅速增多,破坏范围上万平方米。
爆裂源为微黄色粉粒或粉料。
该内外墙粉刷用的“水灰”,系宝山某厂自办的“三产”性质的部门供应,该部门由个人承包。
经了解,粉刷过程已发现“水灰”中有一些粗颗粒。
对采集的微黄色爆裂物作X射线衍射分析,证实除含石英、长石、CaO、Ca(OH)2、CaCO3外,还含有较多的MgO、Mg(OH)2以及少量白云石。
原因分析:该“水灰”含有相当数量的粗颗粒,相当部分为CaO与MgO,这些未充分消解的CaO和MgO在潮湿的环境下缓慢水化,分别生成Ca(OH)2和Mg(OH)2,固相体积膨胀约2倍,从而产生爆裂破坏。
还需说明的是,MgO的水化速度更慢,更易造成危害。
使用劣质建材,就是给工程埋下定时炸弹,危害人民利益。
b.石灰的选用现象:工地急需配制石灰砂浆。
当时有消石灰粉、生石灰粉及生石灰三种材料可供选用。
因生石灰价格相对较便宜,便选用,并马上加水配制石灰膏,再配制石灰砂浆。
使用数日后,石灰砂浆出现众多凸出的膨胀性裂缝。
原因分析:该石灰的陈伏时间不够。
数日后部分过火石灰在已硬化的石灰砂浆中熟化,体积膨胀,以致产生膨胀性裂纹。
因工期紧,若无现成合格的石灰膏,可选用消石灰粉或生石灰粉。
消石灰粉在磨细过程中,把过火石灰磨成细粉,克服了过火石灰在熟化时造成的体积安定性不良的危害。
故可不必陈伏可直接使用,且生石灰熟化时放出的热可大大加快砂浆的凝结硬化,加水量亦较少,硬化后的砂浆强度亦较高。
二、石膏1.石膏的种类a. 天然二水石膏(CaSO4•2H2O)天然二水石膏又称生石膏或软石膏。
它是生产石膏胶凝材料的主要原料。
纯净的天然二水石膏矿石呈无色透明或白色,但天然石膏常含有各种杂质而呈灰色,褐色,黄色,红色,黑色等颜色。
b.化工石膏化工石膏是指一些含有CaSO4·2H2O与CaSO4混合物的化工副产品及废渣,如磷石膏是制造磷酸时的废渣,此外还有盐石膏、硼石膏、钛石膏等。
c.天然无水石膏(CaSO4)天然无水石膏结晶紧密,结构比天然二水石膏致密,质地较硬,难溶于水,又称天然硬石膏。
天然硬石膏一般作为生产水泥的原料。
d.建筑石膏(β-CaSO4•H2O)建筑石膏是以β半水石膏为主要成分,不预加任何外加剂的粉状胶结料,主要用于制作石膏建筑制品。
e.高强石膏(α-CaSO4•H2O)将二水石膏置于0.13MPa、124℃的过饱和蒸压条件下,或置于某些盐溶液中沸煮,可获得晶粒较粗、较致密的α型半水石膏即高强石膏。
2.建筑石膏的水化硬化石膏浆体中的自由水分因水化和蒸发而逐渐减少,粒子总表面积增加,因而浆体可塑性逐渐减小,浆体渐渐变稠,这一过程称为凝结。
其后,浆体继续变稠,逐渐凝聚成为晶体。
晶体逐渐长大,共生和相互交错,浆体逐渐产生强度,并不断增长,直到完全干燥。
晶体之间的摩擦力和粘结力不再增加,强度才停止发展。
这一过程称为建筑石膏的硬化。
石膏浆体的凝结和硬化是一个连续的过程。
凝结可以分为初凝和终凝两个阶段:将浆体开始失去可塑性的状态称为浆体初凝,从加水至初凝的这段时间称为初凝时间;浆体完全失去可塑性,并开始产生强度称为浆体终凝,从加水至终凝的时间称为终凝时间。
3.建筑石膏的性质与技术要求a. 建筑石膏的性质建筑石膏凝结硬化快,其制品具有以下特性:硬化时体积微膨胀;硬化后孔隙率较大,表观密度和强度较低;隔热、吸声性良好;防火性能良好;具有一定的调温调湿性;耐水性和抗冻性差;加工性能好。
b. 建筑石膏的技术要求根据GB 9776-88《建筑石膏》规定,建筑石膏按强度、细度、凝结时间指标分为优等品、一等品和合格品三个等级。
4.建筑石膏的应用a.粉刷石膏粉刷石膏是二水石膏或无水石膏经煅烧,产生的生成物(β-CaSO4·1/2H2O 和Ⅱ型CaSO4)单独或两者混合后掺入外加剂,也可加入集料制成的胶结料。
粉刷石膏按用途分为面层粉刷石膏(M)、底层粉刷石膏(D)和保温层粉刷石膏(W)。
b.建筑石膏制品建筑石膏制品的种类很多,如纸面石膏板、空心石膏板、石膏砌块、装饰石膏板、石膏角线、灯圈、罗马柱等,主要用于分室墙、内隔墙、吊顶及装饰。
工程实例:a.石膏饰条粘贴失效现象:某工人用建筑石膏粉拌水,拌成一桶石膏浆,用以在光滑的天花板上直接粘贴石膏饰条,前后半小时完工。
几天后最后粘贴的两条石膏饰条突然坠落。
原因分析:1.建筑石膏拌水后一般数分钟至半小时左右凝结,后来粘贴石膏饰条时石膏浆已初凝,粘结性能差。
可掺入缓凝剂,延长凝结时间;或者分多次配制石膏浆,即配即用。
2.在光滑的天花板上直接贴石膏条,粘贴难以牢固,宜对表面予以打刮,以利粘贴。
或者,在粘结的石膏浆中掺入部分粘结性强的粘结剂。
b.石膏制品的发霉变形现象:某住户喜爱石膏制品,全宅均用普通石膏浮雕板作装饰。
使用一段时间后,客厅、卧室效果相当好,但厨房、厕所、浴室的石膏制品出现发霉变形。
原因分析:厨房、厕所、浴室等处一般较潮湿,普通石膏制品具有强的吸湿性和吸水性,在潮湿的环境中,晶体间的粘结力削弱,强度下降、变形,且还会发霉。
建筑石膏一般不宜在潮湿和温度过高的环境中使用。
欲提高其耐水性,可于建筑石膏中掺入一定量的水泥或其他含活性SiO2、Al2O3及CaO的材料,如粉煤灰、石灰。
掺入有机防水剂亦可改善石膏制品的耐水性。
三、其他气硬性胶凝材料1.水玻璃a.水玻璃的组成和硬化水玻璃俗称泡花碱,是由不同比例的碱金属氧化物和二氧化硅化合而成的一种可溶于水的硅酸盐。
建筑常用的为硅酸钠(Na2O·n SiO2)水溶液,又称钠水玻璃。
要求高时也使用硅酸钾(K2O·n SiO2)的水溶液,又称钾水玻璃。
液体水玻璃是一种具有胶体特征,又具有溶液特征的胶体溶液。
b.水玻璃的性质与应用水玻璃在凝结硬化后,粘结力强,强度较高,耐酸性好,耐热性好,耐碱性和耐水性差。
利用水玻璃凝结硬化后的性能,在建筑工程中主要有以下几方面用途:涂刷材料表面,提高抗风化能力;加固土壤;配制速凝防水剂;修补砖墙裂缝。
2.菱苦土菱苦土,又称镁质胶凝材料或氯氧镁水泥,其主要成分为MgO。
菱苦土硬化后的主要产物为x Mg(OH)2;若加入氧化镁固化剂,硬化后主要为x Mg(OH)2·y MgCl2·z H2O,其吸湿性大,耐水性差。
遇水或吸湿后易产生翘曲变形,表面泛霜,且强度大大降低。
因此菱苦土制品不宜用于潮湿环境。
使用玻璃纤维增强的菱苦土制品具有很高的抗折强度和抗冲击能力,其主要产品为玻璃纤维增强菱苦土波瓦。
工程实例:a.水玻璃表面处理现象:把水玻璃涂在粘土砖表面,可以提高抗风化能力;但涂在石膏制品表面则会使石膏制品破坏原因分析:水玻璃浸入粘土砖表面,可使材料更致密,提高风化能力;但浸入石膏制品,水玻璃与石膏反应生成硫酸钠晶体,在制品孔隙内产生体积膨胀,使石膏制品破坏。
b.水玻璃与铝合金窗表面的斑迹现象:某些建筑物的室内墙面装修过程中可以观察到,使用以水玻璃为成膜物质的腻子作为底层涂料,施工过程往往散落到铝合金窗上,造成了铝合金窗外表形成有损美观的斑迹。
原因分析:1.铝合金制品不耐酸碱。
2.水玻璃呈强碱性。
当含碱涂料与铝合金接触时,引起铝合金窗表面发生腐蚀反应,使铝合金表面锈蚀而形成斑迹:Al2O3+2NaOH→2NaAlO2+H2O2Al+2H2O+2NaOH→2NaAlO2+3H2↑防治措施:1.避免使用酸碱性比较大的涂料。
2.铝合金表面涂塑保护。
3.精心、文明施工。
四、通用硅酸盐水泥的组成与技术要求1.通用硅酸盐水泥的定义及生产概况a.通用硅酸盐水泥的定义通用硅酸盐水泥( Common Portland Cement)是以硅酸盐水泥熟料和适量的石膏、或/和混合材料制成的水硬性胶凝材料。
通用硅酸盐水泥按混合材料的品种和掺量分为硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。
其中允许用不超过水泥质量8%且符合标准的非活性混合材料或不超过水泥质量5%且符合标准的窑灰代替。
2.本组分材料为符合GB/T203或GB/T18046的活性混合材料,其中允许用不超过水泥质量8%且符合标准的活性混合材料或非活性混合材料或窑灰中的任一种材料代替。