电磁波测距原理和其距离测量方式
电磁波测距的原理

电磁波测距的原理
电磁波测距的原理基于电磁波的传播速度恒定不变这一性质,利用发射器发送出的电磁波,经过被测对象的反射后被接收器接收到,然后通过测量电磁波从发射器到接收器的时间差,可以间接得出被测对象与测距设备之间的距离。
具体来说,电磁波测距可利用无线电波、雷达、激光测距等技术实现。
无论采用哪种技术,测距设备都包括一个发射器和一个接收器。
发射器会发出一定频率的电磁波,经过空气传播,当遇到被测对象时,部分电磁波会被对象反射回来并被接收器接收到。
电磁波测距的原理即是利用这部分反射的电磁波来计算距离。
当发射器发出电磁波后,通过计时器记录发射时刻,然后在接收器接收到反射的电磁波后立即停止计时,记录接收时刻。
通过计算发射和接收的时间差,再结合电磁波在真空中传播速度(近似等于光速),就可以推算出被测对象与测距设备之间的距离。
需要注意的是,由于电磁波在不同介质中传播速度会有所变化,所以在实际应用中需要根据介质的不同对测距结果进行修正。
另外,电磁波测距还需要考虑到多路径效应、噪声干扰等因素,以提高测距精度。
测距的原理

测距的原理
测距的原理是基于声波、光波或电磁波的传播速度来计算距离的。
下面将分别介绍这三种测距原理。
声波测距利用声音在空气中传播的速度来计算距离。
测距设备发射一个声波信号,当声波遇到障碍物后会发生反射,并返回到测距设备。
设备接收到反射回来的声波信号后,会根据声音传播的速度和时间间隔来计算出距离。
光波测距利用光在空气或介质中传播的速度来计算距离。
常见的光波测距设备有激光测距仪和红外线测距仪。
激光测距仪发射一个激光束,当激光束遇到物体表面时,会发生反射并返回到设备。
设备通过测量激光束发射和接收的时间间隔来计算距离。
红外线测距仪则利用红外线的传播速度来计算距离,原理类似于激光测距仪。
电磁波测距利用电磁波在空气或介质中传播的速度来计算距离。
电磁波测距常用于雷达系统中。
雷达发射一个电磁波信号,当信号遇到目标物体后会发生反射,并返回到雷达系统。
雷达系统根据信号的传播速度和时间来计算距离。
总之,无论是声波、光波还是电磁波测距,其基本原理都是利用信号从发射源到目标物体的往返时间,再结合信号传播速度的知识来计算距离。
这些测距原理在实际应用中有着广泛的应用,如工程测量、导航、环境监测等。
电磁波测距

电磁波测距电磁波测距是用仪器发射并接收电磁波,通过测量电磁波在待测距离上往返传播的时间解算出距离。
一、概述电磁波测距是用电磁波(光波或微波)作为载波,传输测距信号,以测量两点间距离的一种方法。
与传统的钢尺量距和视距测量相比,具有测程长、精度高、作业快、工作强度低、几乎不受地形限制等优点。
电磁波测距的英文全称是:Electro-magnetic Distance Measuring,所以又简称为EDM。
电磁波测距仪按其所采用的载波可分为:①用微波段的无线电波作为载波的微波测距仪;②用激光作为载波的激光测距仪;③用红外光作为载波的红外测距仪。
后两者又统称为光电测距仪。
微波和激光测距仪多用于长程测距,测程可达60 km,一般用于大地测量;而红外测距仪属于中、短程测距仪(测程为15kffi以下),一般用于小地区控制测量、地形测量。
地籍测量和工程测量等。
本节主要介绍光电测距仪的基本原理和测距方法速发展~红外光电测距仪采用的是CaAs(砷化钦)发光二极管作为光源,不同的caAs发光二极管发光波长范围为0.82~0.93Pm。
由于GaAs发光管具有注人电流小、耗电省、寿命长、体积小、抗震性强及连续发光的特点,使测距仪体积大为减小。
近几年来又将光电测距仪与电子经纬仪和野外记录及数据处理器结合,;组成电子速测仪,同时进行角度和距离的测量,还能自动记录、存储、输出观测值及有关处理数据也能直接显示乎距、高差、坐标增量等,使测量工作大为简化。
所以红外测距仪在小面积的控制测量、地形测量和各种工程测量中得到广泛的应用。
二、红外测距仪基本原理若用红外测距仪测定AB二点间的距离D.如图5-12。
测距仪安置在A点,反光镜安置在B点。
由仪器发出的光束经过待测距离D到达反光镜,经反射回到仪器。
如果能测出光在距离D上往返传播为时间,则距离可按公式(5-19)求得。
如果测距仪发出的是光脉冲,通过测定发射的光脉冲和接收到波光脉冲的时间差t测定距离,称为脉冲法测距。
测绘技术中的无线电测距原理与方法

测绘技术中的无线电测距原理与方法近年来,随着科技的发展和测绘技术的不断创新,无线电测距作为一种新型的测绘方法备受关注。
无线电测距技术主要基于电磁波的传播原理,通过测量电磁波的传输时间和速度,来确定目标物体与测距设备之间的距离。
本文将详细介绍无线电测距原理与方法,并探讨其在测绘领域中的应用。
一、无线电测距原理无线电测距技术主要依赖于电磁波在空间中的传播速度。
根据电磁波的特性,无线电测距可以分为两种主要的原理:时间差测距和多普勒测距。
1. 时间差测距时间差测距是通过测量电磁波从发射器到目标物体的传播时间来计算距离的一种方法。
在时间差测距中,通常会发送一束电磁波并记录下发射和接收之间的时间差。
由于电磁波在空间中传播的速度是已知的,通过测量时间差可以反推出目标物体与测距设备之间的距离。
这种方法在传输时间精确的情况下,可以实现较高的距离测量精度。
2. 多普勒测距多普勒测距则是利用物体运动引起的频率改变来进行测距的方法。
当物体靠近或远离测距设备时,电磁波的频率会发生变化,这是由于多普勒效应造成的。
根据频率的变化,可以计算出目标物体与测距设备之间的距离。
多普勒测距主要应用于对运动目标的测距,例如航空领域的飞机速度测量。
二、无线电测距方法无线电测距方法主要分为两种:主动测距和被动测距。
1. 主动测距主动测距是通过发送信号以测量目标物体与测距设备之间的距离。
主动测距通常采用雷达技术,即利用无线电波的特性发送脉冲信号并接收其反射信号。
通过测量脉冲信号的传播时间和接收到的反射信号的强度,可以计算出目标物体与测距设备之间的距离和方位。
主动测距广泛应用于航空、海洋等领域的远距离测距。
2. 被动测距被动测距则是通过接收已经存在的信号进行测距,而不需要发送信号。
被动测距的一个常见方法是利用全球导航卫星系统(GNSS)来定位和测距。
GNSS系统包括了GPS(全球定位系统)、GLONASS(格洛纳斯)等多个卫星系统。
通过接收卫星发出的信号,测距设备可以计算出接收器与卫星之间的距离,从而实现测距定位。
测距仪工作原理

测距仪工作原理
测距仪是一种用来测量两点间距离的仪器。
其工作原理可以分为几种不同的方式,包括声波测距、激光测距和电磁测距。
声波测距原理:声波测距利用声波在空气中传播时的速度恒定这一特性进行测距。
仪器发出一个短脉冲声波信号,当这个声波信号遇到障碍物后会反射回来,仪器会计算出声波的往返时间,并使用声波传播速度(通常为声速)乘以时间来计算两点间的距离。
激光测距原理:激光测距利用激光束在空气中传播时的速度快且准确的特性进行测距。
仪器发出一个激光束,激光束会遇到障碍物并反射回来,仪器会计算出激光的往返时间,并使用光速乘以时间来计算两点间的距离。
电磁测距原理:电磁测距利用电磁波在空间中传播时的速度恒定这一特性进行测距。
仪器发出一个电磁波信号,当信号遇到障碍物会发生反射,反射信号由接收器接受并测量时间延迟,然后使用电磁波在空间中的传播速度乘以时间来计算两点间的距离。
这些测距原理在实际的测距仪中可能会有一些变化和改进,但基本的原理是相同的。
通过测量信号的往返时间和使用特定的物理参数(例如声速,光速或电磁波速度),测距仪可以计算出两个点之间的距离。
微波雷达测距原理

微波雷达测距原理
微波雷达测距原理是利用微波信号的传播速度来测量目标物体的距离。
微波是一种电磁波,其频率范围在300MHz到
300GHz之间。
在雷达系统中,发射器会产生一束微波信号,
并将其发送到目标物体上。
当微波信号与目标物体相互作用时,一部分信号会被目标物体反射回来。
接收器会接收到经过反射的微波信号,然后计算信号的往返时间。
由于电磁波在真空中的传播速度是已知的,所以可以通过测量时间来计算出距离。
具体而言,距离可以通过以下公式计算得出:
距离 = 传播速度 ×时间 / 2
其中,传播速度是电磁波在真空中的速度,大约为3×10^8米/秒。
时间指的是从发射微波信号到接收到反射信号所经过的时间。
为了提高测量精度,微波雷达通常会发送连续的微波信号,并采用多普勒效应来分析目标物体相对于雷达的运动状态。
多普勒效应是指当目标物体和雷达相对运动时,反射回来的微波信号的频率会发生改变。
通过测量这种频率变化,可以得出目标物体的速度信息。
总结来说,微波雷达测距原理利用微波信号的传播速度和多普勒效应来测量目标物体的距离和速度。
通过测量探测信号的往
返时间和频率变化,可以精确地确定目标物体的位置和运动状态。
电磁波测距及其距离测量

2020年5月13日4时42分
7
控制测量学
4.2 电磁波测距仪的原理及分类
二、电磁波测距仪的分类
按测程
长程 几十公里 中程 数公里至十多公里 短程 3公里以下
按载波数
单载波 可见光,红外光,微波 双载波 可见光与可见光 ,可见光与红外光 三载波 可见光可见光和微波 ,可见光红外光微波
4.2 电磁波测距仪的原理及分类
二、电磁波测距仪的分类
(1)脉冲式测距仪。它是直接测定仪器所发射的脉冲信号 往返于被测距离的传播时间,从而求得距离值。
这种测距仪可以达到较远的测程,但精度较低,通常适
用于精度较低的远距离测量、地形测量等。
(2)相位式测距仪。它是测定仪器所发射的连续的测距信 号往返于被测距离的滞后相位来间接推算信号的传播时间, 从而求得所测距离。
控制测量学
4.9 测距成果的归算
(2)仪器乘常数改正△DR 乘常数是指测距仪的精测调制频率偏离其标准值而引起
的一个计算改正数的乘系数,也称为比例因子。 乘常数的检测需要由专门的鉴定机构进行检测。 总之,对于加常数和乘常数,我们在测距前先进行检定。
目前的测距仪都具有设置常数的功能,我们将加常数和乘常 数预先设置在仪器中,然后在测距的时候仪器会自动改正。
2020年5月13日4时42分
3
控制测量学
4.2 电磁波测距仪的原理及分类
一、电磁波测距原理
电磁波测距是用电磁波(光波或微波)作为载波,来传输测 距信号,以测量两点间距离的一种方法。
它的基本原理是利用仪器发出的电磁波,通过测定出电磁 波在测线两端点间往返传播的时间t来测量距离D:
电磁波测距基本原理

§4.1 电磁波测距基本原理4.1.1 概述建立高精度的水平控制网,需要测定控制网的边长。
过去精密距离测量,都是用因瓦基线尺直接丈量待测边的长度,虽然可以达到很高的精度,但丈量工作受地形条件的限制,速度慢,效率低。
从六十年代起,由于电磁波测距仪不断更新、完善和愈益精密,它以速度快,效率高取代了因瓦基线尺,广泛用于水平控制网和工程测量的精密距离测量中。
随着近代光学、电子学的发展和各种新颖光源(激光、红外光等)相继出现,电磁波测距技术得到迅速的发展,出现了以激光、红外光和其他光源为载波的光电测距仪和以微波为载波的微波测距仪。
因为光波和微波均属于电磁波的范畴,故它们又统称为电磁波测距仪。
由于光电测距仪不断地向自动化、数字化和小型轻便化方向发展,大大地减轻了测量工作者的劳动强度,加快了工作速度,所以在工程控制网和各种工程测量中,多使用各种类型的光电测距仪。
光电测距仪按仪器测程大体分三大类:(1)短程光电测距仪:测程在3km以内,测距精度一般在lcm左右。
这种仪器可用来测量三等以下的三角锁网的起始边,以及相应等级的精密导线和三边网的边长,适用于工程测量和矿山测量。
这类测程的仪器很多,如瑞士的ME3000,精度可达±(0.2mm+0.5 ×10-6D);DM 502、 DI3S、DI4,瑞典的AGA-112、AGA-116,美国的HP3820A,英国的CD6,日本的RED2,SDM3E,原西德的ELTA 2,ELDI2等,精度均可达±(5mm+5×10-6D);原东德的EOT 2000,我国的HGC-1、DCH-2、DCH3、DCH-05等。
短程光电测距仪,多采用砷化镓(GaAs或GaAlAs)发光二极管作为光源(发出红外荧光),少数仪器也用氦-氖(He-Ne)气体激光器作为光源。
砷化镓发光二极管是一种能直接发射调制光的器件,即通过改变砷化镓发光二极管的电流密度来改变其发射的光强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
2
c f1
1 2
f2 2
相位法测距的基本原理
▪ 相位法
间接测尺频率 相当于测尺频率 测尺长度 精度
f1=15MHZ
15MHZ
10m
1cm
f2=0.9f1
f1-f2=1.5MHZ 100m 10cm
f3=0.99f1 f4=0.999f1 f5=0.9999f1
f1-f3=150KHZ f1-f4=15KHZ f1-f5=1.5KHZ
相位法测距的基本原理
▪ 相位法
u D N 0 D u N
u增大,误差大
一组测尺: 精测尺保证精度 粗测尺保证测程
频率相差大 仪器不稳定
频率相近 频率差为测尺频率
测尺频率 15MHZ 1.5MHZ 150KHZ 15KHZ 1.5KHZ 测尺长度 10m 100m 1km 10km 100km
e1
Δφ
φ1 φ
ek e2
光波测距仪的检验
▪ 周期误差
▪ 改正计算公式
D0 d d 123
d n-1 n
▪ 平V台i 法 Asin(0 i )
D0 v0 D1z V1 K Asin(0 1) D0 v0 d D2z V2 K Asin(0 2 )
D0 v0 39d D40z V40 K Asin(0 40 )
1
D1z
2
360
i
1
d
(i
1)
2
360
1
(i
1)ቤተ መጻሕፍቲ ባይዱ
光波测距仪的检验
▪ 仪器常数
▪ 仪器加常数 ▪ 仪器加常数 ▪ 通过电子路线补偿 ▪ 反光镜常数
▪ 乘常数
相位法测距的基本原理
▪ 相位法
2
N 2
N 2
D vt 1 c 1 c c 2 2 2 2f 4f
D
c
4f
2N
c 2f
N
2
2
N
N
D u(N N ) 测尺:多义性
电磁波测距原理和其距离测量 方式
本章提要
4.1 电磁波测距的物理原理及分类 4.2 电磁波测距的基本原理和应用 4.3 光波测距仪的合作目标及检验 4.4 电磁波在大气中的传播 4.5 测距成果的归算 4.6 误差来源及精度估计 4.7 微波测距概要
本章提要
[知识点及学习要求] 1、电磁波在大气中的传播 2、测距成果的归算 3、误差来源及精度估计
mD 3mm 1ppm D
▪ Wild DIOR-3200
相位法测距的基本原理
▪ 相位法
▪ 测量连续的调制信号在待测距离上往返传播产生 的相位变化间接测定传播时间
e1 em sint
e2 em sint t2D
t2D
t2D
D vt 1 c 1 c c 2 2 2 2f 4f
精度 1cm 10cm 1m 10m 100m
相位法测距的基本原理
▪ 相位法
D c 1 2 f1 2
D c 2 2 f2 2
1
2 2
2
D c 2 f1
D c
2
f
2
相减
1 2 2
D c
2 f1
f2
D us (Ns Ns )
▪ 全反射棱镜(反光镜)
▪ 四面体的光学玻璃,三面互相垂直 ▪ 平行性:反射光线与入射光线平行
光波测距仪的合作目标
▪ 全反射棱镜(反光镜)
▪ 单棱镜、三棱镜、六棱镜、九棱镜
光波测距仪的检验
▪ 周期误差 ▪ 加常数
▪乘常数
光波测距仪的检验
▪ 周期误差
▪ 来源:仪器内部固定的串行信号 ▪ 周期误差的周期来源于精测尺的尺长 ▪ 周期为2π,等于精测尺的长度 ▪ 加大测距信号强度,可减小周期误差
[重点] 误差来源及精度估
电光调制和光电转换
▪ 省略
电磁波测距仪的分类
▪ 按时间测量方式分类
▪ 电磁波作为载波和调制波进行距离测量
D 1 vt 2
脉冲式
相位式
t 2f
D 1 vt v 2 4f
直接测定脉冲信 号往返传播时间
测定测距信号往返的相位 滞后相位,转化为时间
D0 D'Ki Kr D'K
D标 D实(1 R)
光波测距仪的检验
▪ 仪器常数
▪ 六段解析法
D
n1 n2 n3 nd
n
D K (d1 K ) (d2 K ) (dn K ) (di K )
i 1
n
D di
K
i 1
n 1
电磁波在大气中的传播
▪ 大气对电磁波测距的影响
▪ 速度变化,增加传播时间 ▪ 电磁波传播的波道弯曲,观测距离大于实际距离 ▪ 需要解决的问题
▪ 确定具体工作条件下的电磁波的实际传播速度 ▪ 电磁波波道的弯曲改正
电磁波在大气中的传播
▪ 电磁波在大气中传播时的现象
▪ 电磁波辐射能量的大气衰减,测程减少 ▪ 电磁波有关参数的随机变化
▪ 降低了信噪比 ▪ 解决方法
1km 10km 100km
1m 10m 100m
相位法测距的基本原理
▪ 相位法
Mekometer ME5000
mD 0.2mm 0.2 ppm D
干涉法测距的基本原理
略
光波测距仪的合作目标
▪ 反射器
▪ 激光、红外、微波测距仪的合作目标 ▪ 全反射棱镜:激光、红外测距仪 ▪ 有源反射器:微波测距仪
2mm 2 ppm
脉冲法测距的基本原理
▪ 脉冲
▪ 直接测定器发射的脉冲信号往返于被测距离的传播 时间,而得到距离值
f 1 T
脉冲法测距的基本原理
▪ 脉冲法的时间测定
光脉冲发生器
主脉冲
回波脉冲
计数系统
高频 电脉冲
优点:免棱镜 缺点:精度低,米级
脉冲法测距的基本原理
▪ 脉冲法的时间测定
▪ Wild DI-3000脉冲式测距仪
电磁波测距仪的分类
▪ 按测程
▪ 长程、中程、短程
▪ 按载波源
▪ 光波、微波
▪ 按载波数
▪ 单载波、双载波、三载波
▪ 按反射目标
▪ 射目标、合作目标、有源反射器
电磁波测距仪的分类
▪ 电磁波测距仪精度
▪ 精度公式
▪ A:mD固定误差A BD
▪ BD :比例误差
B : ppm 106
m m偶2 然 m系2 统 A2 BD 2