土木工程专业英语论文59776

合集下载

关于土木工程英语作文

关于土木工程英语作文

关于土木工程英语作文英文回答:Civil engineering is a broad and challenging field that encompasses the design, construction, and maintenance of the built environment. As a civil engineer, I have the privilege of working on a wide range of projects, from bridges and roads to buildings and water treatment plants.One of the most rewarding aspects of civil engineering is the opportunity to make a tangible difference in the world. The structures that we design and build have adirect impact on the lives of people and communities. For example, a new bridge can connect isolated areas, a new road can improve access to essential services, and a new building can provide shelter and comfort for those who need it.Another aspect of civil engineering that I find particularly interesting is the challenge of constantlyinnovating. The field is constantly evolving, and new technologies and materials are emerging all the time. This means that civil engineers must be adaptable and willing to learn new things.Of course, civil engineering is not without its challenges. One of the biggest challenges is the need to balance the competing demands of safety, cost, and sustainability. Civil engineers must be able to design structures that are safe and reliable, but they must also be mindful of the cost of construction and the environmental impact of the materials used.Another challenge is the need to work with a variety of stakeholders, including clients, architects, contractors, and government agencies. Civil engineers must be able to communicate effectively with all of these stakeholders to ensure that the project is completed successfully.Despite the challenges, civil engineering is a rewarding and fulfilling career. I am proud to be a part of a profession that makes a real difference in the world.中文回答:土木工程是一个既广泛又富有挑战性的领域,涵盖了建造环境的设计、建造和维护。

关于土木工程英语作文

关于土木工程英语作文

关于土木工程英语作文Civil Engineering。

Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works such as roads, bridges, canals, dams, and buildings. It is one of the oldest engineering disciplines and is often considered the backbone of modern society.The field of civil engineering is incredibly diverse,as it encompasses a wide range of sub-disciplines,including structural engineering, geotechnical engineering, transportation engineering, environmental engineering, and construction engineering. Civil engineers are responsiblefor designing and overseeing the construction of infrastructure projects, ensuring that they are safe, efficient, and sustainable.One of the most important aspects of civil engineeringis structural engineering, which focuses on the design and construction of buildings, bridges, and other structures. Structural engineers are responsible for ensuring thatthese structures are able to withstand the forces of nature, as well as the stresses and strains of daily use. They must consider factors such as material strength, building codes, and environmental conditions to create safe and durable structures.Geotechnical engineering is another important sub-discipline of civil engineering, which deals with the behavior of earth materials, such as soil and rock, andtheir interaction with structures. Geotechnical engineers are responsible for assessing the stability of the ground and designing foundations for buildings, bridges, and other infrastructure projects. They also play a crucial role inthe design of retaining walls, tunnels, and other underground structures.Transportation engineering is yet another vital sub-discipline of civil engineering, which focuses on the planning, design, and operation of transportation systems.Transportation engineers are responsible for designing and maintaining roads, highways, railways, airports, and other transportation infrastructure. They must consider factors such as traffic flow, safety, and environmental impact to create efficient and sustainable transportation networks.Environmental engineering is an increasingly important sub-discipline of civil engineering, which focuses on the protection and preservation of the natural environment. Environmental engineers are responsible for designing and implementing systems to manage air and water quality, as well as waste disposal and pollution control. They must consider factors such as public health, sustainability, and regulatory compliance to create environmentally friendly solutions.Construction engineering is the final sub-discipline of civil engineering, which focuses on the management and execution of construction projects. Construction engineers are responsible for coordinating the activities of various construction teams, ensuring that projects are completed on time and within budget. They must consider factors such aslabor, materials, and equipment to ensure the successful completion of construction projects.In conclusion, civil engineering is a diverse and vital field that plays a crucial role in the development and maintenance of the physical and naturally built environment. Civil engineers are responsible for designing, constructing, and maintaining infrastructure projects that are essential for modern society. Whether it's building a new bridge, designing a sustainable transportation system, orprotecting the natural environment, civil engineers are at the forefront of creating a better world for future generations.。

土木工程英语作文

土木工程英语作文

Civil engineering is a branch of engineering that deals with the design,construction, and maintenance of the physical and naturally built environment.This includes public works such as roads,bridges,canals,dams,and buildings.The field is built upon the principles of physics,materials science,and mathematics,and it requires a deep understanding of various engineering concepts.Introduction to Civil Engineering:Civil engineering is one of the oldest forms of engineering,dating back to the construction of the pyramids in Egypt and the aqueducts of ancient Rome.It has evolved significantly over the years,incorporating modern technology and innovative materials to create more efficient and sustainable structures.Subdisciplines of Civil Engineering:1.Structural Engineering:This involves the design and analysis of structures to ensure they can withstand various loads and forces.This includes buildings,bridges,and other infrastructure.2.Geotechnical Engineering:This focuses on the engineering behavior of earth materials, such as soil and rock,and their interaction with structures.3.Transportation Engineering:This deals with the planning,design,operation,and maintenance of transportation systems,including highways,railways,and airports.4.Environmental Engineering:This is concerned with the protection and improvement of the environment,including air,water,and land resources.5.Water Resources Engineering:This involves the management and development of water resources,including dams,reservoirs,and irrigation systems.6.Construction Engineering:This is the application of engineering principles to the construction process,ensuring projects are completed safely,efficiently,and within budget.Education and Skills Required:To become a civil engineer,one typically needs to complete a bachelors degree in civil engineering or a related field.Courses may include mechanics,materials science, structural analysis,and construction management.Additionally,civil engineers must have strong problemsolving skills,creativity,and the ability to work well in a team.Career Opportunities:Civil engineers can work in a variety of sectors,including construction,consulting, government,and research.They may be involved in the planning and design of new infrastructure,the maintenance and repair of existing structures,or the development of new materials and technologies.Challenges and Innovations:Civil engineering faces numerous challenges,such as adapting to climate change, managing urban growth,and ensuring the sustainability of infrastructure.To address these challenges,civil engineers are constantly innovating,using advanced materials like highperformance concrete,developing smart infrastructure systems,and integrating renewable energy sources into their designs.Conclusion:Civil engineering plays a crucial role in shaping our built environment.It is a dynamic field that requires a combination of technical knowledge,creativity,and a commitment to improving the quality of life for all.As our world continues to evolve,the role of civil engineers will only grow in importance.。

为什么选择土木工程专业英语作文

为什么选择土木工程专业英语作文

为什么选择土木工程专业英语作文English:I chose to major in civil engineering because I have always been fascinated by the process of designing and constructing infrastructure that serves society. Civil engineers have the opportunity to create buildings, bridges, roads, and other structures that have a direct impact on the way people live and work. I am drawn to the challenge of tackling complex problems and finding innovative solutions to improve the quality of life for communities. Additionally, civil engineering is a versatile field that allows for specialization in areas such as structural engineering, transportation engineering, or environmental engineering, providing me with the opportunity to explore different interests within the profession. Overall, I believe that studying civil engineering will not only allow me to pursue a fulfilling and rewarding career but also make a positive difference in the world through my work.Translated content:我选择主修土木工程,因为我一直对设计和建造为社会服务的基础设施的过程着迷。

对土木工程的认识英语作文

对土木工程的认识英语作文

对土木工程的认识英语作文Civil engineering is one of the oldest and most crucial branches of engineering. It plays a vital role in shaping the infrastructure and environment of our world. As societies evolve and grow, the demand for sustainable and resilient structures increases, making civil engineering an indispensable field. This essay aims to explore the significance, challenges, and future of civil engineering.Firstly, civil engineering encompasses a wide array of disciplines including structural, environmental, geotechnical, transportation, and water resources engineering. Each ofthese sub-disciplines focuses on different aspects of construction and infrastructure. For instance, structural engineers design buildings and bridges that can withstand various loads and forces, ensuring safety and durability. Environmental engineers work to address issues such aspollution and waste management, developing systems that protect natural resources while accommodating urban development.One of the primary challenges civil engineers face today is balancing the needs of infrastructure development with environmental sustainability. As populations grow, there is an increasing need for new roads, bridges, and buildings. However, the impact of these developments on the environment and ecosystems cannot be overlooked. Civil engineers are tasked with designing projects that minimize harm to the environment. This includes incorporating green technologies and sustainable materials, as well as considering the long-term effects of their designs on the surrounding landscape.Additionally, the growing effects of climate change present significant challenges for the civil engineering field. Rising sea levels, increased flooding, and severe weather conditions require innovative solutions and adaptivedesigns. Civil engineers must develop infrastructure that is resilient to these changes, ensuring safety and functionality even in the face of extreme conditions. This requires notonly technical skills but also a deep understanding of environmental science and policy.Looking towards the future, the integration of technology in civil engineering is set to transform the field. Theadvent of Building Information Modeling (BIM), drones, and artificial intelligence is revolutionizing how projects are designed, managed, and executed. These technologies allow for improved accuracy, efficiency, and collaboration among engineers, architects, and contractors. As the industry continues to evolve, learning and adapting to these advancements will be essential for future civil engineers.In conclusion, civil engineering is a vital field that significantly impacts our daily lives and the world around us. By addressing current challenges and embracing technologicaladvancements, civil engineers can contribute to a sustainable future. The discipline not only requires technicalproficiency but also a commitment to improving the quality of life for communities and protecting our environment. As we face unprecedented challenges, the role of civil engineering will undoubtedly become more important in shaping a resilient and sustainable world.。

土木工程专业英语论文

土木工程专业英语论文

Take the road of sustainable development civil engineeringAbstract: Civil Engineering is the oldest in human history "technical science" as a system of industrial activity, the essence of civil engineering production process, is a technical process摘要:土木工程是人类历史上年代最久远的“技术科学”,作为一种系统的产业活动,土木工程的实质是生产的过程,是一种技术过程。

Civil engineering is the construction of various facilities in science and technology, collectively, both refer to the construction of the object, that is built on the ground, underground, water facilities, a variety of projects, but also refers to the application of materials, equipment and carried out survey and design , construction, maintenance, repair and other technology.As an important basis for discipline, civil engineering has its important attributes: a comprehensive, social, practical, technical and economic and artistic unity. With the progress of human society and development, civil engineering has already evolved into large-scale comprehensive subject, and has many branches, such as: construction, railroad engineering, road engineering, bridge engineering, specialty engineering structures, water supply and drainage projects, port engineering, hydraulic engineering, environmental engineering and other disciplines. There are six professional civil engineering: architecture, urban planning, civil engineering, built environment and equipment engineering, water supply and drainage works and road and bridge projects. Introduction to Engineering through a semester course of study, I have been deeply impressed by the Civil Engineering covers a wide range, appreciate the achievements of their predecessors, but also understand that as a civil engineer of great responsibility. Of course, we can not have been immersed in the brilliant achievements, stalled. We should also advance with the times, to dig, to discover, to think, to imagine, to be innovative. In this, China's future as a civil engineer, I would like to combine the history of civil engineering, combined with China's national conditions and the world situation, to talk about civil engineering and sustainable development.My knowledge about civil engineering has been broadened since I became a student of Tongji University.Civil engineering is a form of human activity. Human beings pursued it to change the natural environment for their own benefit. Buildings, transportations, facilities, infrastructures are all included in civil engineering.The development of civil engineering has a long history. Our seniors had left a lot of great constructions to us. For example, Zhao Zhou Bridge is the representative of our Chinese civil engineering masterpieces. It has a history of more than 1300 years and is still service at present. Civil engineering has been so rapid development of the period. A lot of new bridges have been constructed, and many greater plans are under discussion. China is a large county. And she is still well developing. So this era will be both exciting and rewarding for the Chinese Civil Engineers. And of course, civil engineering’s futu re is promising.However, civil engineers will be facing more complex problems. We should pay attention to the growing population and a lot of deteriorating infrastructures. We should prepare for the possibility of natural disasters. To meet grow needs in the future; we should also try to update all the transportation systems.To deal with these problems, we will have to develop innovative and enterprising skills. And we should choose a way that we can go continuously. Hazard Mitigation may be a great choice. Not only can it save money in the long run, but also avoid getting into an embarrassing situation in which we have to rebuild all the broken buildings. And we should also use more environmentally friendly materials when designing or constructing new buildings.Well, to be a brilliant civil engineer is not easy. Today, engineering is a synthetic system. It not only depends on traditional mechanics, but also closely related to advanced science. So Physics, Chemistry, Material Science, Computer Science and perhaps more are all in our civil engineering program.To be a good civil engineer, we should have the ability to apply the knowledge, to design a system, a component, or a procedure of construction. We should also be able to conduct experiments and explain the results. Furthermore, an engineer never works alone, so we shall cooperate with working team, and try our best to communicate effectively.I’m very glad to be a student in this wonderful field. And I will try my best to be a successful civil engineer, to make contributions to our motherland.1. Of civil engineering history, current situation and future development of knowledge 1.1.1 Ancient Civil EngineeringAncient Civil Engineering has a very long time span, it is roughly from 5000 BC to the Neolithic Age to the mid-17th century, around about 7000 years. In housing construction, bridge engineering, hydraulic engineering, tower engineering have made brilliant achievements. Some of the masterpieces of ancient civilization handed down a lot, so far stand tall. For example, China's Great Wall, Egyptian pyramids and so on. Built in the 6th century arch bridge, is the world's first open shoulder arch bridge, in 1991, American Society of Civil Engineers was selected as the world in 12 civil engineering landmark. 1.1.2 Modern Civil EngineeringThe time span of the modern civil engineering from the mid-17th century to the mid-20th century, after about 300 years. In the meantime, construction materials mainly from a shift to natural materials mainly man-made materials, the construction of theory building from the main to sum up the experience long-term experience to take into account the importance of scientific change. Construction techniques, some of the performance of large machinery along with a variety of highly effective methods of construction there, so people began to construct the complex structure or a poor environment in which civil engineering. During the completion of the Eiffel Tower, Empire State Building and Golden Gate suspension bridge, is still regarded as the great civil engineering.1.1.3 Modern Civil EngineeringModern civil engineering began in the mid-20th century. Development to date,civil engineering in building materials, structural theory and constructiontechniques have made very great progress.Building materials, high-strength concrete, high strength low alloy steel,polymers, glass more and more appear in the buildings. Structure theory, theuse of powerful computing and computer graphics, mechanical analysis and theresults more in line with the results of the calculation of the actual situation inwhich the design is more reliable. For building technology, have been developedto machine - electrical - computer integration, the construction process, whetherit is God, and crosses into the earth or the sea, are not the construction of thebarrier; and the widespread use of welding technology, but also makes the steelstructure development has entered a new stage.Created by world-renowned modern civil engineering construction are: China'sTaipei International Financial Center, Shanghai Jin Mao T ower, Kuala Lumpur,Malaysia's oil and building the twin towers, the French Normandy cable-stayedbridge and so on.1.2 pairs of understanding of the status of civil engineeringToday's civil engineering, are increasingly using the same function or itsproduction process closely.Requirements of public and residential buildings in the architectural, structural,water supply and drainage, heating, ventilation for gas, electricity and othermodern technical equipment increasingly integrated as a whole.Industrial buildings require constant temperature and humidity, anti-vibration,anti-corrosion, radiation, fire, explosion, magnetic, dust, high (low) temperature,resistance to high (low) wet, to a large span, ultra-heavy-duty, flexible spacedirection.In addition, a growing number of high-rise buildings, underground engineeringhigh-speed development, urban elevated highways, overpasses appeared inlarge numbers, and the progressive realization of high-speed transportation,large-scale water conservancy projects.It is worth mentioning that China's reform and opening up, the comprehensivenational strength has greatly improved, and already has more large-scaledevelopment and use of water conditions, such as the Three Gorges Dam,water diversion project are all world-class large-scale water project.1.3 pairs of understanding the future development of Civil EngineeringWith the constant deepening of China's reform and opening up and rapideconomic development, China will face a more massive building boom. We cansay that we are faced with a leap of civil engineering along with the greatdevelopment of the national economy a good period. And such a gooddevelopment environment has been and will continue to be the West's urgentattention.As a cross-century generation, this situation provides us with excellent rareShizhancaigan unprecedented, the impact to the international standards of goodopportunities. At the same time, we feel deeply that this is an "opportunity" and"challenge" coexist, "cooperation" and "competition" intertwined, "innovation"and "follow the old" era of competing, how to grasp the turn of the century whenthe Civil disciplines, trends, and create with Chinese characteristics, world-classnew era of civil engineering disciplines, a generation of our century's challenges.2. My feelings and understanding: China's Civil Engineering to go the road of sustainabledevelopmentChina's civil engineering has its own particularity."China is the world's most populous country, a great resource in addition to that by 13 $ 110 to become negligible, while a small problem multiplied by 1.3 billion becomes a big problem." Professor Liu Xila this language effectively tells our the difficulty lies.China's coal, oil, gas, water, forests are living in the world total, and per capita, but all below the world average. Population, energy, education, pollution problems have become severe problems faced by the four. Path of sustainable development is imminent. And civil engineering, also will be when a long-term, out of a sustainable development.World, the modernization process of the United States can be described as advanced, and now data indicate that: the future of the United States to invest $ 1.6 trillion construction projects to address the unsafe condition, for example, chloride-induced corrosion of buildings and so on. As a contemporary civil engineer, in the tradition of the brilliant achievements of our predecessors, but also have a lot of the lessons learned have been an accident, in future work to improve innovation and achieve sustainable development.2.1 the development of high-tech, structural health monitoring applications, toachieve sustainable developmentCivil Engineering in actual use, there will be varying degrees of damage orperformance degradation, since this will affect the carrying capacity anddurability, and even lead to serious construction accidents, caused significantcasualties and economic losses, resulting in serious social impact . Therefore,from the moment of completion of construction, we must make health monitoring,repair and reinforcement of the preparation.With modern sensor technology, computer and communications technology,signal processing techniques and structural analysis and dynamic analysis ofthe rapid development of the theory, it is proposed the concept of structuralhealth monitoring, to revolutionize the development of civil engineering changes.Structural health monitoring system installed in the structure through a variety ofsensors, automatic, real-time measurement of the structure of the environment,load, response, etc., on the structure of health status assessment, scientific andeffective conservation and management structure to provide basis for decisionmaking, to ensure the structural safety of the operation to extend the structurallife.In recent years, large-scale civil engineering structures, especially large-spanbridge health monitoring domestic and international engineering and technologyas the focus of attention in the academic community through research andengineering and technical personnel research efforts have yielded fruitful results.Home and abroad in recent years, new bridges were installed in many largestructural health monitoring systems, such as China's Shanghai Xupu Bridge,Jiangyin Yangtze River Highway Bridge, the Donghai Bridge, Hong Kong's TsingMa Bridge, the bridge and Youngjong Korea Seohae bridge, U.S. CommodoreBarry Bridge and Canada Confedration bridges.Like this, through the development of structural health monitoring and safetywarning, the first time found that the construction problems that may arise,timely repair and reinforcement, both to avoid the possible constructionaccidents, construction has been largely solved the rapid aging of damage, haveRemove the restoration of the embarrassing situation, and the resulting largenumber of economic resources, a waste of time to achieve the sustainabledevelopment of building use.2.2 The rational use of natural resources, focusing on re-use of existing civilengineering infrastructure, to achieve sustainable development"Sustainable development is achieved without sacrificing the ability of futuregenerations to meet their needs and conditions, to meet current needs."Rational use of natural resources, will have in the civil engineering construction,use and maintenance process, the civil engineer to take the initiative to besaving energy, and maximize the role of both civil engineering facilities.For example, we can take advantage of building green, gray brick walls in thesummer, reduce the surface temperature, thereby reducing air conditioning use;can use energy-saving type of brick or insulation composite wall as the wallmaterial, to the role of thermal insulation in winter ; also solar energy, groundheat and other new energy sources, reducing the amount of non-renewableresources to reduce.In addition, the reuse of existing buildings is also an important means ofsustainable development. This regard, Shanghai has made a lot of successfulexperience: do not plant a lot, a lot has been transformed into exhibition halls,offices, artists studios. This transformation of re-use, consistent with therequirements of modern use, but also save energy, avoid waste, is an effective 2.3 Development and utilization of renewable resources and green resources toachieve sustainable developmentRemoval of waste each year the world of concrete, concrete waste generated byconstruction etc will have a huge amount of construction waste. China's annualconstruction of the building construction waste generated by 4,000 tons, haveproduced 13.6 million tons of waste concrete, removal processing a largeamount of environmental pollution. In addition, China is the world's cementproduction 20 years of superpower, which in itself is a high consumption ofresources, high energy consumption, pollution of the environment industry.Compared with other materials, steel and recycled concrete is more in line withgreen building standards, this should be to develop the green building materials.In this regard, Japan's Aichi World Expo, give us a vivid lesson: materials, theExpo will be a variety of construction materials on the surface is very high, butmany are recycling. Many plank wood construction waste by processing, placedaround the chair, TV cabinet is made of crush. Toyota Pavilion wall is made fromrecycled waste paper processing, long-term venue Japan Pavilion, only thepursuit of harmony between man and nature, but also saves the expenditure,the use of most of the steel and wood, can be recycled. At the same time, theadvantages of bamboo wall to September 3 Aichi summer also showedexhaustive. Bamboo greatly reduces the performance of their indoortemperature, air-conditioning use is also significantly reduced. This gave me anumber of thought: in the building material selection, the appropriate place in theapplication of renewable natural resources, save money, but also to achieve aharmonious and sustainable ecological development and architecture, why not?In addition, the World Expo in Aichi Japan Nagakute, Japan Pavilion cocoon-likein order to reduce heat load, the use of green walls, bio-degradable plasticmaterials and thinning wood (forest wood to be cut fine) to achieve theenvironmental protection function. "Nature's Wisdom" as the theme of the AichiWorld Expo, pavilion building large-scale application of modern scientific andtechnological achievements, highlighting the environmental and functional,reflecting the natural beauty of the human diligently pursuing. This should alsobe the future civil engineers to learn and develop.China's building, Professor Li Guohao Yangpu Bridge is also designed classic.Approach part of the spiral structure, saving several hundred million RMB, is acivil and sustainable economic development model.Of course, sustainable development, by no means blind pursuit of savings, butthe most reasonable to seek a middle state, we must ensure there is enoughcreative architecture, but also the pursuit of the perfect technical and economicindicators, with minimum investment for maximum benefits. We still still want tocreate classic, but must not be built on the squandering of money, based onconsuming more resources and energy basis. T oday, building the world hasentered an era of eco-aesthetics, focusing on culture, ecology, engineering andenvironmental relationship between the human-oriented, energy saving andsustainable development, the focus is the direction of contemporary engineers.3.Civil Engineering expertise should have the qualityA good civil engineer, must have the "four elements", that is, knowledge structure,practical skills, ability to structure and the overall quality and innovation.Knowledge structure, including: public basic knowledge, professional knowledge and expertise.First, the good civil engineer must have a solid basic knowledge of the public, and, in the familiar basis of natural science, a good psychological and moral humanities, social science-based knowledge is also essential.Second, the best engineers must also have excellent professional knowledge. Ofengineering mathematics, fluid mechanics, geotechnical engineering, structural engineering and so have a solid understanding and ability to apply strong.Third, also in-depth expertise. Whether engaged in railway engineering, tunnels, underground works or construction projects, each engineer has to be advanced for the emphasis on industry expertise. The only way to make our civil engineering business, walking in the forefront of the world.Inseparable from the practice of Civil Engineering. Therefore, engineers have to have superb practical skills. For example: drawing skills, computer application skills, measurement skills and structural engineering testing skills.As a Civil Engineering undergraduate students, I will be four years of college learning process, and strive to master the computer language and programming skills, treasure every opportunity to practice on the machine, and in college physics experiments, material testing and structural experiments The general structure of the experiment to master the basic method, with the structure of the initial test of skills, and providing technical training, curriculum design, structural design for the contest winners.In addition, the difference between engineers and scientists not only by the constraints of the laws of nature, will be bound by the laws of society. Engineering and technical personnel complete each project is a program of "social activities" may not rely on a person in the room alone. Therefore, to have sufficient capacity to deal with social, follow the laws of good society.In school life, I will continue to improve their learning ability, from the engineering capabilities to enhance learning, students work to enhance the management capacity, and gradually improve their own knowledge structure, from which to develop a science and technology development capabilities and skills and the ability of public relations to do more.However, these skills also help to constitute a truly sustainable development of China's civil engineer. Because the engineer is the most important cultural enrichment with high moral and intellectual quality. In order to state and national interests, dedicated to the cause of the motherland. For the country's honor, to have a strong sense of competition. With dialectical materialist way of thinking, there is step on solid, rigorous, hard working style. The only way to be a qualified civil engineer in China.We should also note that China's civil engineering industry with world-class level there is a gap. For example, many domestic high-rise buildings (including the Shanghai World Financial Center), almost all of its engineering design borne from abroad, almost all steel products imported from abroad, the general contractor were mostly borne by the foreign countries, only the steel structure fabrication and installation work by domestic unit commitment. Be completely independent intellectual property rights, engineering and construction to achieve the localization, catch up with international standards, we need the young generation to complete!附录:参考资料:《土木工程》(英)斯科特(Scott,J.S.)撰中国建筑工业出版社《土木建筑文献检索与利用》肖友瑟主编大连理工大学出版社《土木工程总论》丁大钧,蒋永生编中国建筑工业出版社《土木建筑工程概论》王继明主编高等教育出版社《土木工程学报》中国土木工程学会土木工程学报编辑部《土木工程》中国土木工程学会科学出版社《土木工程概论》上海交通出版社《土木系统工程》机械工业出版社《INTRODUCTION OF CIVIL ENGINEERING》中国建筑工业出版社。

【设计】土木工程毕业设计英语论文及翻译

【设计】土木工程毕业设计英语论文及翻译

【关键字】设计土木工程毕业设计英语论文及翻译篇一:土木工程毕业设计外文文献翻译外文文献翻译Reinforced ConcreteConcrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope.Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In a plain concrete beam, the moments about the neutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.The construction of a reinforced concrete member involves building a from of mold in the shape of the member being built. The form must be strong enough to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies, wind, and so on. The reinforcement is placed in this form and held in place during the concreting operation. After the concrete has hardened, the forms are removed. As the forms are removed, props of shores are installed to support the weight of the concrete until it has reached sufficient strength to support the loads by itself.The designer must proportion a concrete member for adequate strength to resist the loads and adequate stiffness to prevent excessive deflections. In beam must be proportioned so that it can be constructed. For example, the reinforcement must be detailed so that it can be assembled in the field, and since the concrete is placed in the form after the reinforcement is in place, theconcrete must be able to flow around, between, and past the reinforcement to fill all parts of the form completely.The choice of whether a structure should be built of concrete, steel, masoy, or timber depends on the availability of materials and on a number of value decisions. The choice of structural system is made by the architect of engineer early in the design, based on the following considerations:1. Economy. Frequently, the foremost consideration is the overall const of the structure. This is, of course, a function of the costs of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time since the contractor and owner must borrow or otherwise allocate money to carry out the construction and will not receive a return on this investment until the building is ready for occupancy. In a typical large apartment of commercial project, the cost of construction financing will be a significant fraction of the total cost. As a result, financial savings due to rapid construction may more than offset increased material costs. For this reason, any measures the designer can take to standardize the design and forming will generally pay off in reduced overall costs.In many cases the long-term economy of the structure may be more important than the first cost. As a result, maintenance and durability are important consideration.2. Suitability of material for architectural and structural function.A reinforced concrete system frequently allows the designer to combine the architectural and structural functions. Concrete has the advantage that it is placed in a plastic condition and is given the desired shapeand texture by means of the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and / or ceiling surfaces. Similarly, reinforced concrete walls can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size of shape is governed by the designer and not by the availability of standard manufactured members.3. Fire resistance. The structure in a building must withstand the effects of a fire and remain standing while the building is evacuated and the fire is extinguished. A concrete building inherently has a 1- to 3-hour fire rating without special fireproofing or other details. Structural steel or timber buildings must be fireproofed to attain similar fire ratings.4. Low maintenance. Concrete members inherently require less maintenance than do structural steel or timber members. This is particularly true if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in the design to provide adequate drainage off and away from the structure. Special precautions must be taken for concrete exposed to salts such as deicing chemicals.5. Availability of materials. Sand, gravel, cement, and concrete mixing facilities are verywidely available, and reinforcing steel can be transported to most job sites more easily than can structural steel. As a result, reinforced concrete is frequently used in remote areas.On the other hand, there are a number of factors that may cause one to select a material other than reinforced concrete. These include:1. Low tensile strength. The tensile strength concrete is much lower than its compressive strength ( about 1/10 ), and hence concrete is subject to cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly or may allow penetration of water. When this occurs, water or chemicals such as road deicing salts may cause deterioration or staining of the concrete. Special design details are required in such cases. In the case of water-retaining structures, special details and / of prestressing are required to prevent leakage.2. Forms and shoring. The construction of a cast-in-place structure involves three steps not encountered in the construction of steel or timber structures. These are ( a ) the construction of the forms, ( b ) the removal of these forms, and (c) propping or shoring the new concrete to support its weight until its strength is adequate. Each of these steps involves labor and / or materials, which are not necessary with other forms of construction.3. Relatively low strength per unit of weight for volume. The compressive strength of concrete is roughly 5 to 10% that of steel, while its unit density is roughly 30% that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable steel structure. As a result, long-span structures are often built from steel.4. Time-dependent volume changes. Both concrete and steel undergo-approximately the same amount of thermal expansion and contraction. Because there is less mass of steel to be heated or cooled, and because steel is a better concrete, a steel structure is generally affected by temperature changes to a greater extent than is a concrete structure. On the other hand, concrete undergoes frying shrinkage, which, if restrained, may cause deflections or cracking. Furthermore, deflections will tend to increase with time, possibly doubling, due to creep of the concrete under sustained loads.In almost every branch of civil engineering and architecture extensive use is made of reinforced concrete for structures and foundations. Engineers and architects requires basic knowledge of reinforced concrete design throughout their professional careers. Much of this text is directly concerned with the behavior and proportioning of components that make up typical reinforced concrete structures-beams, columns, and slabs. Once the behavior of these individual elements is understood, the designer will have the background to analyze and design a wide range of complex structures, such as foundations, buildings, and bridges, composed of these elements.Since reinforced concrete is a no homogeneous material that creeps, shrinks, and cracks, its stresses cannot be accurately predicted by the traditional equations derived in a course instrength of materials forhomogeneous elastic materials. Much of reinforced concrete design in therefore empirical, i.e., design equations and design methods are based on experimental and time-proved results instead of being derived exclusively from theoretical formulations.A thorough understanding of the behavior of reinforced concrete will allow the designer to convert an otherwise brittle material into tough ductile structural elements and thereby take advantage of concrete’s desirable characteristics, its high compressive strength, its fire resistance, and its durability.Concrete, a stone like material, is made by mixing cement, water, fine aggregate ( often sand ), coarse aggregate, and frequently other additives ( that modify properties ) into a workable mixture. In its unhardened or plastic state, concrete can be placed in forms to produce a large variety of structural elements. Although the hardened concrete by itself, i.e., without any reinforcement, is strong in compression, it lacks tensile strength and therefore cracks easily. Because ueinforced concrete is brittle, it cannot undergo large deformations under load and fails suddenly-without warning. The addition fo steel reinforcement to the concrete reduces the negative effects of its two principal inherent weaknesses, its susceptibility to cracking and its brittleness. When the reinforcement is strongly bonded to the concrete, a strong, stiff, and ductile construction material is produced. This material, called reinforced concrete, is used extensively to construct foundations, structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Two other characteristics of concrete that are present even when concrete is reinforced are shrinkage and creep, but the negative effects of these properties can be mitigated by careful design.A code is a set technical specifications and standards that control important details of design and construction. The purpose of codes it produce structures so that the public will be protected from poor of inadequate and construction.Two types f coeds exist. One type, called a structural code, is originated and controlled by specialists who are concerned with the proper use of a specific material or who are involved with the safe design of a particular class of structures.篇二:土木工程毕业设计中英文翻译附录:中英文翻译英文部分:LOADSLoads that act on structures are usually classified as dead loads or live loads.Dead loads are fixed in location and constant in magnitude throughout the life of the ually the self-weight of a structure is the most important part of the structure and the unit weight of the material.Concrete density varies from about 90 to 120 pcf (14 to 19 KN/m2)for lightweight concrete,and is about 145 pcf (23 KN/mKN/m2)for normal concrete.In calculating the dead load of structural concrete,usually a 5pcf (1 )increment is included with the weight of the concrete to account for the presence of the 2 reinforcement.Live loads are loads such as occupancy,snow,wind,or traffic loads,or seismic forces.They may be either fully or partially in place,or not present at all.They may also change in location.Althought it is the responsibility of the engineer to calculate dead loads,live loads are usually specified by local,regional,or national codes and specifications.Typical sources are the publications of the American National Standards Institute,the American Association of State Highway and Transportation Officials and,for wind loads,the recommendations of the ASCE Task Committee on Wind Forces.Specified live the loads usually include some allowance for overload,and may include measures such as posting of maximum loads will not be exceeded.It is oftern important to distinguish between the specified load,and what is termed the characteristic load,that is,the load that actually is in effect under normal conditions of service,which may be significantly less.In estimating the long-term deflection of a structure,for example,it is the characteristic load that is important,not the specified load.The sum of the calculated dead load and the specified live load is called the service load,because this is the maximum load which may reasonably be expected to act during the service resisting is a multiple of the service load.StrengthThe strength of a structure depends on the strength of the materials from which it is made.Minimum material strengths are specified in certain standardized ways.The properties of concrete and its components,the methods of mixing,placing,and curing to obtain the required quality,and the methods for testing,are specified by the American Concrete Insititue(ACI).Included by refrence in the same documentare standards of the American Society for Testing Materials(ASTM)pertaining to reinforcing and prestressing steels and concrete.Strength also depends on the care with which the structure is built.Member sizes may differ from specified dimensions,reinforcement may be out of position,or poor placement of concrete may result in voids.An important part of the job of the ergineer is to provide proper supervision of construction.Slighting of this responsibility has had disastrous consequences in more than one instance.Structural SafetySafety requires that the strength of a structure be adequate for all loads that may conceivably act on it.If strength could be predicted accurately and if loads were known with equal certainty,then safely could be assured by providing strength just barely in excess of the requirements of the loads.But there are many sources of uncertainty in the estimation of loads as well as in analysis,design,and construction.These uncertainties require a safety margin.In recent years engineers have come to realize that the matter of structural safety isprobabilistic in nature,and the safety provisions of many current specifications reflect this view.Separate consideration is given to loads and strength.Load factors,larger than unity,are applied to the calculated dead loads and estimated or specified service live loads,to obtain factorde loads that the member must just be capable of sustaining at incipient failure.Load factors pertaining to different types of loads vary,depending on the degree of uncertainty associated with loads of various types,and with the likelihood of simultaneous occurrence of different loads.Early in the development of prestressed concrete,the goal of prestressing was the complete elimination of concrete ternsile stress at service loads.The concept was that of an entirely new,homogeneous material that woukd remain uncracked and respond elastically up to the maximum anticipated loading.This kind of design,where the limiting tensile stressing,while an alternative approach,in which a certain amount of tensile amount of tensile stress is permitted in the concrete at full service load,is called partial prestressing.There are cases in which it is necessary to avoid all risk of cracking and in which full prestressing is required.Such cases include tanks or reservious where leaks must be avoided,submerged structures or those subject to a highly corrosive envionment where maximum protection of reinforcement must be insured,and structures subject to high frequency repetition of load where faatigue of the reinforcement may be a consideration.However,there are many cses where substantially improved performance,reduced cost,or both may be obtained through the use of a lesser amount of prestress.Full predtressed beams may exhibit an undesirable amount of upward camber because of the eccentric prestressing force,a displacement that is only partially counteracted by the gravity loads producing downward deflection.This tendency is aggrabated by creep in the concrete,which magnigies the upward displacement due to the prestress force,but has little influence on the should heavily prestressed members be overloaded and fail,they may do so in a brittle way,rather than gradually as do beams with a smaller amount of prestress.This is important from the point of view of safety,because suddenfailure without warning is dangeroud,and gives no opportunity for corrective measures to be taken.Furthermore,experience indicates that in many cases improved economy results from the use of a combination of unstressed bar steel and high strength prestressed steel tendons.While tensile stress and possible cracking may be allowed at full service load,it is also recognized that such full service load may be infrequently applied.The typical,or characteristic,load acting is likely to be the dead load plus a small fraction of the specified live load.Thus a partially predtressed beam may not be subject to tensile stress under the usual conditions of loading.Cracks may from occasionally,when the maximum load is applied,but these will close completely when that load is removed.They may be no more objectionable in prestressed structures than in ordinary reinforced.They may be no more objectionable in prestressed structures than in ordinary reinforced concrete,in which flexural cracks alwaysform.They may be considered a small price for the improvements in performance and economy that are obtained.It has been observed that reinforced concrete is but a special case of prestressed concrete in which the prestressing force is zero.The behavior of reinforced and prestressed concrete beams,as the failure load is approached,is essentially the same.The Joint European Committee on Concrete establishes threee classes of prestressed beams.Class 1:Fully prestressed,in which no tensile stress is allowed in the concrete at service load.Class 2:Partially prestressed, in which occasional temporary cracking is permitted under infrequent high loads.Class 3:Partially prestressed,in which there may be permanent cracks provided that their width is suitably limited.The choise of a suitable amount of prestress is governed by a variety of factors.These include thenature of the loading (for exmaple,highway or railroad bridged,storage,ect.),the ratio of live to dead load,the frequency of occurrence of loading may be reversed,such as in transmission poles,a high uniform prestress would result ultimate strength and in brittle failure.In such a case,partial prestressing provides the only satifactory solution.The advantages of partial prestressing are important.A smaller prestress force will be required,permitting reduction in the number of tendons and anchorages.The necessary flexural strength may be provided in such cases either by a combination of prestressed tendons and non-prestressed reinforcing bars,or by an adequate number of high-tensile tendons prestredded to level lower than the prestressing force is less,the size of the bottom flange,which is requied mainly to resist the compression when a beam is in the unloaded stage,can be reduced or eliminated altogether.This leads in turn to significant simplification and cost reduction in the construction of forms,as well as resulting in structures that are mor pleasing esthetically.Furthermore,by relaxing the requirement for low service load tension in the concrete,a significant improvement can be made in the deflection characteristics of a beam.Troublesome upward camber of the member in the unloaded stage fan be avoeded,and the prestress force selected primarily to produce the desired deflection for a particular loading condition.The behavior of partially prestressed beamsm,should they be overloaded to failure,is apt to be superior to that of fully prestressed beams,because the improved ductility provides ample warning of distress.英译汉:荷载作用在结构上的荷载通常分为恒载或活载。

对土木工程行业的看法英语作文

对土木工程行业的看法英语作文

对土木工程行业的看法英语作文The civil engineering industry plays a crucial role in shaping the infrastructure and built environment around us. From roads and bridges to buildings and water treatment plants, civil engineers are responsible for designing, constructing, and maintaining the physical infrastructure that supports our daily lives.One of the key aspects of the civil engineering industry is its focus on sustainability and resilience. Civil engineers strive to develop infrastructure that is not only durable and functional but also environmentally friendly and able to withstand natural disasters and climate change. The industry is constantly evolving with advancements in technology, materials, and construction techniques to address these challenges.Moreover, civil engineering projects have a significant impact on economic development and job creation. Infrastructure projects create employment opportunities, stimulate economic growth, and improve the quality of life for communities. Investments in infrastructure also contribute to long-term sustainability and competitiveness.In conclusion, the civil engineering industry plays a vital role in shaping our communities and improving our quality of life. With a focus on sustainability, resilience, and innovation, civil engineers continue to drive progress and make a positive impact on society.中文翻译:土木工程行业在塑造我们周围的基础设施和建筑环境中发挥着至关重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档