开关电源的软启动电路

合集下载

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

开关电源常用的几种保护电路如下:1、防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2、过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

软启动电路及原理

软启动电路及原理

软启动电路及原理一、软起动主电路图晶闸管降压软起动主电路如图所示,其中M是异步电动机,晶闸管KPl~KP6组成移相控制的三相交流调压电路,利用品闸管进行调压,其输出电压大小由晶闸管的导通角决定,而晶闸管的导通角又与其触发角有关;触发角越小,输出越大;因此,只需在电动机起动过程中通过控制晶闸管触发角的大小,不断改变晶闸管的导通角来改变输出电压波形,从而改变输出电压的有效值;随着输出电压的增加,电机转速不断上升;而电机定子电流的大小J下比于定子端电压,起动仞期,电机端电压较小,冲击电流电小,随着电机定子端电压的不断增加,定子电流也不断增加,最终达到额定转速,实现了电机的软起动;在每一瞬间,在三相交流调压电路中,至少要有两个器件导通,它们应处于不同的相,其中至少有一个是流向负载端,同时有另一个流向电源;在电路的正常工作状态下,6个晶闸管按照KPI、K_P2、KP3、KP4、KP5和KP6的顺序循环触发导通,而且相邻的两个晶闸管触发时刻之间相差600电角度;三相调压起动其实质是降压起动,与传统降压起动不同之处是无机械触点,起动电压和起动电流任意可调㈣;图中F为快速熔断器,RZ为压敏电阻,KP为晶闸管,另外还有并联于晶闸管两端的RC保护电路;理论上讲,本起动器可起动各种容量的三相异步电动机,针对不同的容量,软件控制思想均可不变,只要重新设计一下主电路即可,其中各元件的选择取决于被控电动机的容量;主电路图二、软启动触发电路如图,出发电路主要有监测、移相控制、脉冲串产生电路、触发驱动电路等组成;同步信号取于电源输入端R 、S 、T,即u i 、w V i v 、信号,三相交流电源经电阻2423987R R R R R 、与、、25R 、分压后,分别送往电压比较器U7A 、U7B 、U7C 反相输入端;三个电压比较器的同相端经29R 接在作星形连接252423R R 、、R 的公共端上,相当于接至三相交流电的中相点;各相交流电正向过零点时,对应的比较器输出低电平,驱动光电耦合器内发光二极管发光,光耦内的光电三极管导通,将低电平有效的同步信号送往单片机的P1.0、P1.1、P1.2输入端;而当交流电反相过零时,对应的比较器输出高电平送往单片机;同步波形如图 所示;由于比较器为单电源供电,故在其同相端加上了由稳压管2VZ 提供的5.1V 直流电压,建立了正常的工作点;采用比较器获取同步信号的方法具有很高的过零检测灵敏度;移相控制信号由80196看出KC单片机;单片机根据软启动器设置的启动方式,计算出移相控制角α值,在对应的相电源电压过零时,延迟α角由高速输出口HSO0、HSO1、HSO2、HSO3、HSO4、HSO5送出宽度为5ms的方波作为与非门U8A、U8B、U8C、U8D、U9A、U9D的门控信号;。

开关电源芯片软启动电路设计方案

开关电源芯片软启动电路设计方案

开关电源芯片软启动电路设计软启动,相信硬件工程师都不会对这个名词感到陌生。

随意打开一篇开关电源芯片的datasheet,都能看到对soft-start(软启动)的描述。

随着芯片集成度的提高,软启动电路也集成到了电源芯片内部,这样在减轻工程师工作的同时,也导致部分工程师对软启动了解不够、重视不足。

那么软启动电路有什么作用呢?电源电路中通常会存在大容量电容,给电容加上电压瞬间需要很大的浪涌电流,很可能造成输入电源的降低。

软启动电路就是用于电源启动时,减小浪涌电流,使输出电压缓慢上升,减小对输入电源的影响。

让我们一起来看看,在电源设计里面,加入了软启动的电路,是如何保障烧录器稳定烧录的。

P800是周立功致远电子推出的4通道、多功能的在线编程器。

每通道都可以输出相互独立、在1.25V~7V范围内可调的电源。

在烧录器内部,每通道的电源都采用同一路电源VDD,并通过下图所示的开关电路,使各通道电源相互独立。

对上图电路简单分析:当控制信号EN_VDDx为高电平时,Q2饱和导通,Q1栅极拉低,Q1迅速导通,电源VDD输出到相应通道的VDD_OUT并供给待烧录目标板。

这个看似简单的电路,却在进行多通道异步在线烧录测试时出了非常不稳定的现象,到底是怎么回事呢?我们用P800对4个ARM核心板进行异步烧录测试过程中,发现当其中一个通道插入并上电初始化时,其他通道会出现烧录失败的现象。

由于4个通道的信号线相互独立,只有电源VDD是共用的,因此我们猜测可能是ARM板上电初始化对VDD产生了干扰并影响到了其他通道。

为了验证这一猜想,我们用示波器ZDS2022来观察在VDD_OUTx 上电过程中VDD的变化,并捕获到了下面的波形图。

从波形图可以看到,在VDD_OUTx上升过程中,VDD从3.12V瞬间跌落至2.14V,再缓慢回升至3.12V,最大跌落幅度达980mV。

由于另外3个通道的电源也由VDD提供,因此这3个通道在线烧写失败也就在所难免。

24V开关电源的几种保护电路

24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

开关电源软启动电路设计

开关电源软启动电路设计

因 均会 造 成 开 关 电 源 无 法 正 常投 入 。 为 此 几 乎 所 有 的 开 关 电 源 在 其 输入 电路 设
置 的 防 止 冲 击 电 流 的 软 起 动 电 路 , 以 保
2 3 具 有 断 电检 测 的S R R . C — 电路
该 电 路 如 图4 示 。 它 是 图 3 改 进 型 所 的
逆 变 器 可 能还 处 于工 作 状 态 ,保 持 晶 闸 管 继 续 导通 ,此 时若 马 上 重 新 接 通 输 入
电 源 ,会 同样 起 不 到 防止 冲 击 电流 的 作
用。
成很 大 的 瞬时 冲 击 电流 如 图1 示 ,特 别 所 是 大功 率 开 关 电 源 ,其 输 入 采 用 较 大 容 量 的 滤 波 电 容 器 。 其 冲 击 电 流 可 达 1 0  ̄上 。在 电 源接 通 瞬 问如 此 大 的 冲 0 Av
VT1 止 ,反 相 器I 输 出 低 电 平 , 动 截 C2 ’起 定 时 电路 5 5 作 , 软 起 动 延 迟 时 间 由 时 5工
R2 并 接 于 继 电 器 K1 包 的 电 容 器 C2 对 线 充 电 , 当 C2 的 充 电 电 压 达 到 继 电 器 的 动 上
性 。 重新 恢 复 高 阻 需要 时 间 ,故 对 于 电
源 断 电后 又 需要 很 快接 通 的情 况 。有 时
起 不到 限流 作 用。
作 电压 时 ,K1 作 ,旁路 限流 电 阻R1 动 , 达到 瞬 时 防 冲 击 电 流的 作 用 。 通 常 在 电
源 接 通 之 后 , 继 电 器 K1 作 延 时 03 动 .~
05 , 否 则 限 流 电 阻R 1 通 流 时 间 长 会 .秒 因

开关电源的软起动电路

开关电源的软起动电路

开关电源的软起动电路
在老的BJT工艺的如UCX84X系列是不带软起动的,需要外围配置。

但是因其成本低在工业领域还在大批量应用。

原因:启动时,最大占空比运行,容易引起超调,甚至过冲;
目的:控制PWM的占空比从小到大增长;
原理:利用Vcom脚被钳位,启动时环路不起作用来实现软起。

其在启动时,是以最大占空比进行运行,对应的输出电压的上升速度较快,容易引起超调,甚至过冲。

现在应用共集电极电路来控制UCX843的COMP的上升速率,以此来控制PWM的占空比,使占空比从小到大增长,直到COMP管脚电压不在被钳位。

调节COMP管脚的电路被称为软启动电路。

图中的虚线框内是软启动电路,三极管Q1与外围电路组成共集电极电路,共集电极电路的特点是:电压增益接近于1,所以,在三极管导通工作时,三极管的发射极的电压近似为基极的电压。

当开关电源输入给定电压后,软启动电路工作,输入电压通过分压电阻向电容Css充电,三极管的基极电压从0开始上升,上升的速率由充电电容Cs以及电阻Rss决定,相对应的三极管的发射极的电压同步增长。

UCX843的COMP管脚电压被钳位,使PWM波的占空比慢慢变大,此时环路PI调节器不起调节作用。

当COMP管脚的电压达到最大电压时,不在被钳位,三极管的基极电压增长到VBE+VCOMP 值时,三极管关闭,软启动电路工作完成。

但是,输入电压仍然给电容充电,直至电容电压趋于稳定值,此时环路的PI调节器开始工作,COMP管脚电压开始有PI调节器控制,电路进入正常运行状态。

-End-。

软启动器电路图

软启动器电路图

1 软启动器工作原理与主电路图软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。

这种电路如三相全控桥式整流电路,主电路图见图1。

使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。

待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。

软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。

软启动与软停车的电压曲线见图2,3。

2 软启动器的选用(1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。

根据负载性质选择不同型号的软启动器。

旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。

也可以用一台软启动器去启动多台电动机。

无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。

节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。

(2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。

3 Alt48软启动器的特点Alt48软启动器启动时采用专利技术的转矩控制。

转矩斜坡上升更快速,损耗更低。

具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束旁路后仍能起作用,这是其它软启动器都不具备的。

Alt48在保持加速力矩的同时,实时计算定子和转子的功率。

开关电源软启动电路计算

开关电源软启动电路计算

开关电源软启动电路计算开关电源的软启动电路在电源系统中起着至关重要的作用,它可以有效地减小启动过程中的电压和电流的突变,保护电路中的关键元件不受过大的冲击。

软启动电路的设计需要根据具体的电源系统参数来进行计算和选择。

软启动电路通常由电容器、电阻器和电压比较器组成。

在启动过程中,电压比较器会检测输出电压的上升速度,当达到设定阈值时,比较器会控制电容器和电阻器的充电速度,从而实现电压的平稳上升。

下面我们就来具体介绍一下开关电源软启动电路的计算方法:首先,需要确定软启动时间的要求。

软启动时间一般设置为几十毫秒到几秒不等,根据具体的应用场景和要求来确定。

其次,计算电容器的数值。

电容器的数值决定了软启动的速度,一般可以通过以下公式计算得出:[C = ] 其中,(C) 为电容器的容值,(I_{startup}) 为启动时电流的最大值,(t_{ramp}) 为软启动时间,(V_{in_min}) 为输入电压的最小值。

然后,选择合适的电阻器数值。

电阻器的数值决定了电容器充放电的速度,通常可以通过以下公式计算得出:[R = ] 其中,(R) 为电阻器的阻值,(V_{in_max}) 为输入电压的最大值。

最后,需要根据电压比较器的工作电压范围和输出电压的变化范围来选择合适的比较器。

比较器的阈值电压需要能够满足软启动的要求,并且工作稳定可靠。

在进行软启动电路设计时,需要考虑系统的整体稳定性和可靠性,避免因软启动不当造成电路失效或元件损坏。

同时,还需要根据具体的应用场景对软启动电路的参数进行调整和优化,以达到最佳的启动效果。

综上所述,开关电源的软启动电路设计涉及到电容器、电阻器和电压比较器的选择与计算,需要根据具体的系统参数和需求进行合理设计。

通过以上方法计算并选择合适的元器件,可以实现电源系统平稳启动,确保系统的稳定性和可靠性。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的软起动电路
1引言
开关电源的输入电路大都采用整流加电容滤波电路。

在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。

在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。

为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。

2常用软起动电路
(1)采用功率热敏电阻电路
热敏电阻防冲击电流电路如图2所示。

它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。

采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。

(2)采用SCR R
 电路
 和限流电阻R对电容器C充电。

该电路如图3所示。

在电源瞬时接通时,输入电压经整流桥VD1VD4
当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。

这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。

 电路
(3)具有断电检测的SCR R
该电路如图4所示。

它是图3的改进型电路,
图1合闸瞬间滤波电容电流波形
图2采用热敏电阻电路
 电路
图3采用SCR R
 电路图4具有断电检测的SCR R
图5由继电器与电阻构成的电路
图6定时电路
图7过零触发的光耦可控硅与双向可控硅构成的电路
VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。

(4)继电器K1与电阻R构成的电路
该电路原理图如图5所示。

电源接通时,输入电压经限流电阻R1对滤波电容器C1充电,同时辅助电源V CC经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的充电电压达到继电器的动作电压时,K1动作,旁路限流电阻R1,达到瞬时防冲击电流的作用。

通常在电源接通之后,继电器K1动作延时0.3~0.5秒,否则限流电阻R1因通流时间过长会烧坏。

然而这种简单的RC延迟电路在考虑到继电器吸合电压时还必须顾及流过线包的电流,一般电阻的阻值较小而电容的容量较大,延迟时间很难准确控制,这主要是电容容量的误差和漏电流造成,需要仔细地挑选
和测试。

同时继电器的动作阈值取决于电容器C2上的充电电压,继电器的动作电压会抖动及振荡,造成工作不可靠。

(5)采用定时触发器的继电器与限流电阻的电路
该电路如图6所示(仅画出定时电路,主电路同图5),它是图5的改进型电路。

电源接通时,输入电压经整流桥和限流电阻R1对C1充电,同时定时时基电路555的定时电容C2由辅助电源经定时电阻R2开始充电,经0.3秒后,集成电路555的2端电压低于二分之一电源电压,其输出端3输出高电平,VT2导通,继电器K1动作,限流电阻R1被旁路,直流供电电压对C1继续充电而达到额定值,逆变器处于正常工作状态。

由于该电路在RC延迟定时电路与继电器之间插入了单稳态触发器和电流放大器,确保继电器动作干脆、可靠,有效地起到防止冲击电流的效果,而不会像图5电路那样由于继电器动作的不可靠性而烧坏限流电阻及继电器的自身触点。

(6)过零触发的光耦可控硅与双向可控硅构成的电路
该电路如图7所示。

集成稳压器输出稳定的5V电压,为软起动电路提供电源电压。

晶体管VT1、反相器I C2构成过零触发电路,IC1555构成单稳态触发器,R1、C1为定时周期,但因5端至1端接有延迟电路R 2、C2,所以555是逐步达到满周期的。

当电网电压过零时,晶体管VT1截止,反相器IC2输出低电平,起动定时电路555工作,软起动延迟时间由时间常数R1C1及R2C2共同决定。

相关文档
最新文档