《解析几何》教学大纲(李养成版)

合集下载

空间解析几何,李养成(新版),第一章_第二节

空间解析几何,李养成(新版),第一章_第二节
x1 + x2 y1 + y2 z1 + z2 x ,y ,z . 1+ 1+ 1+
特别地,当λ=1时, 即坐标中点公式.
例1.2.1 已知三角形三顶点 P i xi , yi , zi ) i , 求 PP 1 2P 3 的重心的坐标. 解 如图所示,设 PP 1 2P 3 的三条中线为 PM i i , 其 i , 三条中 M 中顶点 Pi 所对的对边上的中点为 i 线的公共点为 G(x,y,z ) . 可得 PG =GM. 即重心G 将P 1M 1分成定比 2.
约定:当分母为零时,分子亦为零.
证明: 据定理1.1.3,向量 v1 ,v2 共线的充要条件是其中 一个向量可用另一个向量来线性表示,不妨设 v1 =v2 ,
于是
(X1 ,Y1 , Z1 ) ( X 2 ,Y2 , Z2 ) ( X 2 , Y2 , Z2 ),
由此得到 X 1 X 2 ,Y1 Y2 , Z1 Z2 ,
X 1 Y1 Z1 X 2 Y2 Z 2 =0. X 3 Y3 Z 3
证明: 三个向量 v1, v2 , v3 共面的充要条件是 即存在不全为0的实数 , , 使得 v1 v2 v3 0.
由此可得到
X 1 X 2 X 3 0, Y1 Y2 Y3 0, Z Z Z 0. 2 3 1
因为 M 1 为 P2 P3 的中点,
x2 x3 y2 y3 z2 z3 所以 M 1 2 , 2 , 2 .
据定比分点公式,得G的坐标
x2 x3 x1 +2 1 1 1 2 x = (x1 +x2 +x3 ), y (y1 +y2 +y3 ), z (z1 +z2 +z3 ). 1 2 3 3 3 x1 +x2 +x3 y1 +y2 +y3 z1 +z2 +z3 PP P , , . 所以 1 2 3 的重心为 G 3 3 3

第三章_第一节 空间解析几何,李养成(新版),

第三章_第一节 空间解析几何,李养成(新版),

它们的图像都是一条直线,z轴!
x y z a , 例3.1.4 讨论方程组 a 的图像. x y ax
x y z a 解:方程组的图像是球面 a a 与母线平行于z轴的圆柱面 x y 的交线
F x, y, z , G x, y, z
称为空间曲线的一般方程 注: (1)表示同一条曲线的方程不唯一。 (2)曲线上点的坐标都满足方程,
z
S1 S2
o
C
y
满足方程的点都在曲线上, x试考察方程
第3章 常见的曲面
本章在初步介绍空间图形与方程之间的一般关系 后,对柱面、锥面、旋转曲面以及二次曲面(包括椭球 面、单叶双曲面、双叶双曲面、椭圆抛物面和双曲抛 物面)进行讨论.
对于前三种曲面具有明显的几何特征,我们着重从 这些曲面的几何特性来建立它们的方程.
对于五种二次曲面,我们则从曲面的标准方程出 发来讨论它们的几何性质, 描述它们的几何形状.
z
点P 在该圆锥面上
L
cos OP, k cos


OP k OP k
cos

y
x
x y tan z , 整理得二次齐次方程
圆锥面的坐标式方程
习题8(1) 已知圆锥面的顶点为P0 (1, 2,3),轴垂直于 平面 x y z ,半顶角为 ,求这圆锥面的 方程. 解 圆锥面的轴过点 P0 , 方向向量 v 2,2, 1.
特别地,当 C0 是原点时,球面方程为
x2 y2 z 2 R2
表示上(下)球面 .
C0

空间解析几何,李养成(新版),第一章_第六节

空间解析几何,李养成(新版),第一章_第六节

提示:
(e1 , e1 , e2 ) 0
b e1 , e ,e . c
(1.6.1)
b, c . 由此可见,只要知道 e1, e2 , e3 , 就可以由坐标算出 a,
命题1.6.4 设向量 a, b, c 在仿射坐标系 O; e1 , e2 , e3 中的 坐标分别为 a , a , a , b ,b ,b , c ,c ,c ,则a, b, c 共面的 充要条件是 a a a b b b . c c c
由于d 是任取的,所以有 a+ b c = a c + b c.
2.混合积的坐标运算 取仿射坐标系O; e1 , e2 , e3 . 设向量 a, b, c 的坐标分别为 a , a , a , b ,b ,b , c ,c ,c .
利用向量形式表示各向量,得 a b c = ab ab e1 e2 ab ab e e
D
A
B
C
S AB AC 3V 所以从顶点 D 所引的高的长度 h 11
S
例1.6.3 证明:对任意四个向量 a,b,c,d,有
a b c d
a c a d bc bd
+ ab ab e e ce1 c e ce a a a b b c b a a a b c b c a a c b b a c e1 e e b
在直角坐标系下,向量的混合积有更简单的形式.
a,b,c
X
Y
Z Z . Z
X Y X Y
X1
证明: 由于(a, b, c ) X 2

空间解析几何课程教学大纲

空间解析几何课程教学大纲

《空间解析几何》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
三、教学内容及进度安排
四、课程考核
五、教材及参考资料
[1]吕林根、许子道编.解析几何(第四版).北京:高等教育出版社,2014,ISBN:
9787040193640.
[2]李养成.空间解析几何.北京:科学出版社,2013,ISBN:9787030193520.
[3]丘维声.解析几何(第二版).北京:北京大学出版社,2008,ISBN:9787301003497.
[4]纪永强.空间解析几何.北京:高等教育出版社,2014,ISBN:9787040365375.
六、教学条件
需要配置有投影屏幕的教室。

授课电脑需要安装WindowS7、OffiCe2010、Mat1ab2015>MathType6.9>几何画板、FIaSh的正版软件。

附录:各类考核评分标准表。

《解析几何》教学大纲

《解析几何》教学大纲

《解析几何》教学大纲课程编码:1512100803课程名称:解析几何学时/学分:48/3先修课程:适用专业:信息与计算科学开课教研室:代数与几何教研室一、课程性质与任务1.课程性质:本课程是信息与计算科学专业的一门重要的专业基础课。

2.课程任务:通过学习,使学生初步掌握解析几何的基本思想、基本理论和研究方法,积累必要的数学知识,培养学生抽象思维能力、建立数学模型的能力、推理和演算能力,提高学生利用解析几何知识分析问题和解决问题的能力。

二、课程教学基本要求要求学生熟练掌握本课程的基本概念、基本理论及其推导过程。

通过课程教学及习题训练等教学环节,使学生做到概念清晰、推理严密。

本课程的教学,一方面要注意培养学生从几何直观方面分析和洞察问题的能力,另一方面要使学生注意掌握必要的代数方法和计算技巧,能准确地进行计算。

成绩考核形式:期终成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。

成绩评定采用百分制,60分为及格。

三、课程教学内容第一章 向量与坐标1.教学基本要求使学生掌握向量及其运算的概念,空间坐标系的建立。

2.要求学生掌握的基本概念、理论、技能通过本章学习,使学生理解建立空间坐标系的基本思想,会利用向量法解决一些几何问题。

掌握向量的各种运算及其运算规律。

3.教学重点和难点本章教学重点是向量的线性关系与向量的分解、两向量的数量积、两向量的向量积、三向量的混合积;教学难点是坐标系的建立,利用向量解决几何问题的基本方法。

4.教学内容第一节 向量的概念1.向量的定义2.自由向量的定义3.共线向量的定义4.共面向量的定义第二节 向量的加法1.向量加法的定义2.向量加法的运算规律3.向量减法的定义4.向量加法和减法的互换第三节 数量乘向量1.数乘的定义2.数乘的运算规律第四节 向量的线性关系与向量的分解 1.向量的线性分解定理2.向量线性相关、相性无关的定义3.向量线性相关的判定定理4.向量线性相关与两向量共线、三向量共面的关系第五节 标架与坐标1.标架的定义2.坐标的定义3.用坐标进行向量的运算4.用坐标判定两向量共线、三向量共面5.线段的定比分点坐标第六节 向量在轴上的射影1.向量在轴上的射影的定义2.向量在轴上的射影的计算公式第七节 两向量的数量积1.两向量的数量积的定义2.两向量的数量积的运算规律3.用数量积为零来判断两向量垂直4.直角坐标系下用向量的坐标来表示数量积5.两点间的距离6.向量的方向余弦7.两向量的交角第八节 两向量的向量积1.两向量的向量积的定义2.两向量的向量积的运算规律3.用向量积来判断两向量共线4.用向量积的模来计算平行四边形的面积5.直角坐标系下用向量的坐标来表示向量积第九节 三向量的混合积1.三向量的混合积的定义2.利用三向量的混合积计算平行六面体的体积3.三向量的混合积的运算规律4.利用混合积为零来判断三向量共面5.直角坐标系下用向量的坐标来表示三向量的混合积★第十节 三向量的双重向量积1.三向量的双重向量积的定义2.三向量的双重向量积的运算公式第二章 轨迹与方程1.教学基本要求使学生掌握空间曲面方程与曲线方程的基本概念,能通过曲面或曲线上点的性质,建立曲面或曲线的方程。

空间解析几何,李养成(新版),第二章_第二节

空间解析几何,李养成(新版),第二章_第二节

x 3y z 0, 例2.2.3 求与直线 l0 : 平行且与下列两 x y z 4 0
l1 : x x1 y y1 z z1 , X1 Y1 Z1 x x2 y y2 z z2 l2 : . X2 Y2 Z2
l1 与 l2 的相关 从图上易见, 两直线 位置 取决于三个向量 M1M 2 , v1, v2 的 相互关系.
(1) l1 与 l2 异面 M1M 2 , v1, v2 不共面;
A1 x B1 y C1 z D 1 0, 若给定直线的一般方程 A2 x B2 y C2 z D2 0. 则它的方向向量可取为
重点知识
B1 v B2
C1 C1 , C2 C 2
A1 A1 , A2 A2
B1 B2
.
例2.2.1 化直线 l 的一般方程
1 : A1 x B1 y C1 z D 1 0, 2 : A2 x B2 y C2 z D2 0.
那么 (1) 1 与 2 相交的充要条件是 A1 : B1 : C1 A2 : B2 : C2 ;
A1 B1 C1 D1 (2) 1 与 2 平行的充要条件是 A B C D ; 2 2 2 2 A1 B1 C1 D1 (3) 1 与 2 重合的充要条件是 A B C D . 2 2 2 2
口答: 研究以下各组里两平面的位置关系:
(1) x 2 y z 1 0, y 3z 1 0
(2) 2 x y z 1 0,
(3) 2 x y z 1 0,
4x 2 y 2z 1 0
4x 2 y 2z 2 0

《解析几何》教学大纲

《解析几何》教学大纲

《空间解析几何》教学大纲一、课程名称《空间解析几何》(Analytic Geometry)二、课程性质数学与应用数学专业、信息与信息管理专业必修课。

三、课程教学目的通过坐标法,运用代数工具研究几何问题的一门学科。

它把数学的两个基本对象──“形”与“数”有机地联系起来,使得几何、代数和分析构成一个有机的整体,从而为数学的其它分支与几何学的互相渗透、互相促进奠定了基础。

通过本课程的学习,使学生系统、完整、深刻地理解与掌握矢量代数方法和解析方法的基本思想,使学生受到几何直观及逻辑推理等方面的训练,扩大知识领域,培养空间想象能力以及运用矢量法与坐标法解决几何问题和证明几何命题的能力,并且能用解析方法研究几何问题和对解析表达式给予几何解释,全面掌握平面与空间直线各种位置关系的解析条件及几种典型二次曲面的几何性质,掌握二次曲线方程的化简与二次曲线的分类,为进一步学习其它课程打下基础;另一方面,进一步加深对中学几何理论与方法的理解,从而获得在比较高的观点下处理中学几何问题的能力,借助解析几何所具有的较强直观效果提高学生认识事物的能力。

四、课程教学原则与教学方法课程教学以讲述自学讨论和做习题有机地结合为原则,以课堂讲授为主要形式,采用讨论式、研究式、示范式的教学方法,运用现代教育技术手段进行辅助教学,充分调动学生学习的主动性和积极性,抓好学生的基本训练。

教学内容要重点突出基本知识与基本技能,既传授知识,又教书育人,注重培养学生的各种能力与素质。

五、课程总学时85学时,习题课占1/5(蒙语授课适当增加学时)。

六、课程教学内容要点及建议学时分配课程教学内容要点及建议学时分配第一章矢量与坐标一、本章教学目标:通过本章学习,使学生掌握矢量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、它们的几何性质、运算规律和分量表示,会利用矢量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础。

《解析几何》课程教学大纲======1.doc

《解析几何》课程教学大纲======1.doc

《解析几何》课程教学大纲课程代号:21090010总学时:讲授/理论52学时,实验/技术/技能20学时,上机/课外实践0 学时适用专业:数学与应用数学、信息与计算科学先修课程:本课程是建立在中学《平面解析几何》与《立体几何》的基础上, 引进向量代数这个工具,在立体空间建立起空间坐标系,从而建立代数与空间几何的内在联系,达到用代数方法解决几何问题的目的。

一、本课程地位、性质和任务本课程为高等院校数学系各专业的一门必修的专业基础课程。

它为学习数学系的其它课程(诸如《数学分析》、《高等代数》及《微分几何》等打好基础,同时,它在自然科学与工程技术中,也有广泛的应用。

通过本课程的教学,应使学生系统地掌握空间解析几何的基础知识和基本理论;正确地理解和使用向量;在掌握几何图形性质的同时,提高运用代数方法,解决几何问题的能力;进一步培养学生的空间想象能力;能在较高的理论水平基础上,处理教学或工程技术中的有关问题。

二、课程教学的基本要求能够以向量代数为工具,用标架法建立空间直线、平面方程;掌握直线、平面的位置关系及几何量计算;掌握特殊曲面方程的推导并能利用平面截割法刻划曲面的几何性质;二次曲线(曲面)的一般理论。

三、课程学时分配、教学要求及主要内容(一)课程学时分配一览表早主要内容总学学时分配讲授讨论习题实验其他1向量与坐标181442轨迹与方程443平面与空间直线161244特殊曲面与二次曲16106面181265二次曲线的一般理论(二)课程教学要求及主要内容第一章向量与坐标教学目的和要求:向量代数及坐标法在自然科学和工程技术中有着广泛的应用。

本章是工具性的知识,是学习后面各章的基础。

本章通过向量代数与空间坐标系基本知识的教学,使学生能以向量为工具,研究并简单地解决某些几何问题。

教学重点和难点:1、透彻理解向量的有关基本概念。

2、牢固掌握向量的各种运算及其对应的几何意义与算律。

3、理解坐标系建立的依据以及向量与点坐标的意义,熟练地利用向量的坐标进行运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档