植酸酶

合集下载

植酸酶

植酸酶

五 植酸酶的生产及工艺调控
1 植酸酶的生产
1.1 植酸酶的生产菌种
植酸酶广泛存在于自然界中,在植物、微生物中均有发现。早在 1907 年 Suzuki 等就在谷糠中发现了具有植酸酶活性的磷酸酶,据
报道,小麦、水稻、豆类、玉米及大麦等多种植物都能产生植酸酶,
但植物中植酸酶含量极低。为提高植酸酶的应用价值,人们将研究重 点转向了酶含量较高的微生物来源的植酸酶。
LOGO
植酸酶
植酸酶的理化性质
三 植酸酶的理化性质
植酸酶是一种单体蛋白, 其分子量因来源不同差异很大,一个大分子和一个小肽片断。研究发现无花果
曲霉植酸酶有594 个氨基酸残基, 其中包括 37% 的非极性氨基酸、 42% 的极性中性氨基酸、11. 5% 的酸性氨基酸和9. 5% 的碱性氨基
工业中的应用通过降解植酸盐, 提高饲料中磷利用率, 无机磷的用量
可以大幅度降低, 甚至可以完全被替代; 植酸酶有促生长作用
LOGO
植酸酶
植酸酶的应用及市场前景
, 可提高饲料中矿物元素,如钙、锌、铜、镁和铁的生物学利用率以
及饲料中蛋白质、氨基酸、淀粉和脂质等营养物质的利用率; 有利于 提高动物的生产性能。表 1列出了几种商品化植酸酶及其用于添加的
LOGO
植酸酶
植酸酶的生产及工艺调控
确定最适基质为椰子油饼,酶活达 30.1U/gds,其次是芝麻油饼,酶 活为 28.9 U/gds。在椰子油饼和芝麻油饼以1: 1的比例混合的基质 中,酶活可达 35 U/gds。在混合基质中补加 1%的葡萄糖可使酶活提 高至52 U/gds,进一步补加 0.5%的硝酸铵可使酶活提高到64 U/gds 。Singh 等研究了耐热霉菌 Sporotrichumthermophile Apinis 以芝 麻油饼为基质固态发酵生产植酸酶的工艺。利用 Plackett-Burman 试验确定影响发酵的主要因子为葡萄糖、硫酸铵和培养时间,然后以 响应面确定了最优发酵条件:葡萄糖 3%、硫酸铵0.5%、培养时间 120 h,优化后的发酵酶活较优化前提高了 2.6 倍,达 348.76 U/g DMR。

植酸酶主要生产方法

植酸酶主要生产方法

2.2 植酸酶主要生产方法植酸酶的生产根据来源不同可以分成两种:一种是直接从植物组织中提取;另一种是通过微生物的发酵进行生产。

由于植物组织中含量太少,且所得植酸酶不适合单胃动物的消化道环境,故第一种方法没有什么商业意义。

目前商品植酸酶制剂一般都是通过微生物发酵所制得的。

微生物植酸酶具有产量高、在动物消化道中酶活性高等优点,成为目前生产商品植酸酶的主要来源。

目前用于工业生产植酸酶的微生物主要是曲霉,如米曲霉、土曲霉、黑曲霉和无花果曲霉等。

随着现代生物技术的发展,利用基因工程技术,对微生物进行改良和改造,培养高产量、高活性的植酸酶菌株,是植酸酶在实际生产当中得到广泛应用的关键。

90年代,国外几家大公司利用基因工程技术,开发成功商品化产品。

如:丹麦NOVO 公司,用米曲霉为植酸酶基因工程菌,生产最适pH为5.5的植酸酶;此外德国BASF公司也开发成功基因工程菌生产植酸酶;荷兰AIKO公司与美国PANLABS公司合作,于91年开发成功一株产植酸酶的基因工程菌,产最适pH为2.5的植酸酶。

国内在这方面也做了大量的工作,可分为二条技术线路2.2.1 传统诱变选育:是对野生菌株采用传统诱变选育,目前固体发酵酶活达45U/克干曲;例:生产植酸酶的微生物以黑曲霉菌为主要菌种,使用土豆、葡萄糖为培养所需的原料,以稻壳、麸皮、无机氮和无机盐等作培养基而制备。

其工艺流程为:试管斜面菌三角瓶种子试盘种子主原料混料高温灭菌冷却接种通风培养水、无机氮、无机盐等酶粉干燥浓缩提取母液粗酶制品制粒粉碎干燥质量指标:棕黄色外观的细小颗粒,分散性好,有发酵物的天然风味,无霉变味,无异味。

酶活力单位约65U/g,重金属含量符合国家饲料添加剂要求。

注:酶活测定方法为,在植酸酶的作用下,用Taussley-Schoor试剂按Har Land 方法比色测定植酸(或盐)释放的无机磷量。

植酸酶的活力单位定义为:在测定条件下,释放1μmol/min无机磷的酶量。

植酸酶

植酸酶
植酸酶的生产及应用
植酸酶的性质
• 植酸酶是一种能水解植酸为肌醇和磷酸的 一类酶的总称,它具有特殊的空间结构可 将植酸磷(六磷酸肌醇)降解为肌醇和无机磷 酸,属于磷酸单酯水解酶。是胞外酶。 • 其分子量因来源不同存在很大差异,这主 要是由于糖基化的原因造成的。植酸酶基 因在不同的表达系统中, 糖基化程度不一样。
植酸酶高产菌株选育实例
5)、酶活测定 制作定磷标准曲线。取发酵液10mL, 4000 r/min离心15 min去菌体,10倍稀释: 取0.1 mL稀释液+1.9 mL Tris— HCI(p7.5)+4mL植酸钠(2 mmo1/L),55℃ 反应30 min,再加入4 mL反应终止液。显 色10 min。4000r/min离心10 min。波长 415 nm处测定OD值。
植酸酶生产应用中存在的问题
利用转基因植物生产植酸酶 以微生物作为转化受体生产植酸酶存在以下缺点: 第一,微生物发酵需要庞大的设备投资和高成本的 培养基 第二,原核生物不能对表达产物进行准确的翻译后 加工及蛋白质的糖基化 第三,通过微生物发酵生产的植酸酶能让动物感染 病原体
参考文献:
1.马俊孝.饲用植酸酶的研究进展 [J].饲料工业, 2010,31(16). 2.李晓宇,陈耀国,柳志强.植酸酶生产与应用的研究进展 [J]-中国农学通报, 2011,27(03):257-261. 3.张若寒.饲用植酸酶应用技术现状及生产企业面临的挑战与机遇[J]-专家论坛, 2008,44(06). 4.于平,陈益润.土壤中高产植酸酶芽孢杆菌菌株的筛选及鉴定[J]-中国食品学报, 2010,10(06). 5.贺建华.植酸磷和植酸酶研究进展[J]-动物营养学报,2005,17(01). 6.姚斌,范云六.植酸酶的分子生物学和基因工程[J]-生物工程学报,2000,16(01). 7.龙跃,杨博,王永华,等.植酸酶的高密度发酵、制备及其应用研究[J]-饲料工 业,2010,31(20). 8.汪世华,吕茂洲,等.植酸酶的现状及其研究进展[J]-广州食品工业科技, 2010,1(18).

植酸酶的发酵生产及应用

植酸酶的发酵生产及应用

植酸酶的发酵生产及应用植酸酶是一种能够水解植酸的酶类,在发酵生产和应用领域具有广泛的应用前景。

本文将从植酸酶的发酵生产和应用两个方面进行详细的探讨。

首先,植酸酶的发酵生产。

目前植酸酶的发酵生产主要采用真菌发酵的方法。

常用的真菌有产酸曲霉、黄曲霉、木霉等。

发酵过程主要包括菌种培养、培养基制备、发酵过程控制等几个步骤。

首先,菌种培养是植酸酶发酵生产的首要步骤。

优良的菌株是植酸酶产生的关键,需要通过筛选获得。

一般通过在选择性培养基中进行培养,利用染色剂或基因工程方法筛选得到高产酶菌株。

其次,培养基的制备对植酸酶的产量和质量也有直接影响。

植酸酶的合成需要碳源、氮源、矿质盐和适宜的pH等,因此,优化培养基的配方十分重要。

常用的碳源有蔗糖、葡萄糖等,氮源有蛋白酵解物、酵母粉等。

此外,培养基pH的调节也是关键之一,一般在酸性环境下植酸酶的产量较高。

最后,发酵过程的控制也是影响植酸酶产量的重要因素。

温度、pH、氧气供应等都会影响菌体的生长和酶的合成。

一般发酵温度在25-30摄氏度之间,发酵时间约为48-72小时。

其次,植酸酶的应用领域广泛。

由于植酸酶能够降解植物组织中的植酸,因此在农业、饲料、食品加工等领域都有广泛的应用。

植酸酶在农业领域的应用主要是改善土壤中的磷素利用率。

土壤中的磷素主要以植酸形式存在,但植酸对植物来说是不可利用的。

通过添加植酸酶可以将土壤中的植酸降解为可利用的无机磷,提高植物对磷素的吸收利用率,从而提高农作物的产量和质量。

在饲料领域,植酸酶的应用主要是改善畜禽对植物饲料的饲用价值。

植物饲料中植酸的含量较高,会对畜禽的消化系统造成不利影响。

通过添加植酸酶,可以降解植酸,提高植物饲料的能量价值和营养利用率。

在食品加工领域,植酸酶的应用主要是改善食品品质和可溶性磷含量。

植酸对人体来说是不可消化的,容易形成不可溶性盐类。

在食品制作过程中,通过添加植酸酶,可以将食品中的植酸降解为可溶性磷,提高食品的可溶性磷含量,同时改善食品的品质。

植酸酶在水产饲料中的研究进展

植酸酶在水产饲料中的研究进展
感谢您的观看
结合,形成不易被消化的物质,而植酸酶能够分解植酸,释放出蛋白
质,从而提高蛋白质的利用率。
CHAPTER 02
植酸酶在水产饲料中的应用
植酸酶对水产饲料营养价值的影响
提高饲料中磷的利用率
植酸酶可以水解植酸,释放出磷,提高饲料中磷的利用率,减少 磷的排放,降低环境染。
促进水产动物的生长
植酸酶可以释放出植酸中的营养物质,提高饲料的营养价值,促 进水产动物的生长。
植酸酶在水产饲料中的前景 展望
提高植酸酶的活性与稳定性
探索适合水产饲料的植酸酶品种
01
通过基因工程或筛选具有高活性的植酸酶品种,提高其在水产
饲料中的活性。
优化发酵工艺
02
通过改进发酵工艺,提高植酸酶的产量和纯度,进而提高其在
水产饲料中的稳定性。
添加辅酶或激活剂
03
寻找能够提高植酸酶活性或稳定性的辅酶或激活剂,以改善其
基因克隆与表达
通过基因工程技术,将植酸酶基因克隆到 表达载体中,实现植酸酶的高效表达。
VS
基因改造
对植酸酶基因进行定点突变或插入等改造 ,提高植酸酶的活性、稳定性或抗逆性。
植酸酶的生产工艺研究
微生物发酵
利用微生物发酵法生产植酸酶,研究发酵条件、工艺参数等对植酸酶产量的影响。
化学合成
研究化学合成法生产植酸酶的工艺路线及优化方法。
植酸酶的作用机制
01
破坏植物细胞壁
植酸酶能够分解植物细胞壁中的植酸,从而释放出其中的营养物质,
提高饲料的营养价值。
02
促进矿物质吸收
植酸酶能够分解植酸,释放出磷酸和肌醇等矿物质,这些矿物质能够
被动物吸收利用,促进动物的生长和发育。

植酸酶测定

植酸酶测定

植酸酶活性测定植酸(Phyticacid).其化学名称为六磷酸肌醇,由1分子肌醇和6分于鳞酸结合而成,分子式是C6H18O24P6,通式为C6H6[OPO(OH)2]6,分子660.8。

植酸及植酸盐中的磷即为植酸磷,植酸广泛存在于谷物籽实和油料作物种子。

植酸酶(phytases)能将磷酸残基从植酸上水解下来,因此破坏了植酸对矿物元素强烈的亲和力,所以说植酸酶能增加矿物元素的营养效价,而且由于释放出的Ca2÷可参加交联或其他反应中去,从而改变了植物性食品的质地。

植酸酶一般只适于在单胃动物中使用。

反刍动物由于瘤胃微生物能合成植酸酶,因此在饲料中一般不需要使用植酸酶。

植物体中的植酸一般不以游离形式存在,而是与钙、镁、钠、钾等结合形成复合盐,植酸盐在多数植物中以植酸钙镁复盐的形式存在,但大麦中主要是植酸钾镁复盐,小麦中主要是植酸铁。

饲料中的无机磷可直接为肠道所吸收,而有机磷则需要先经酶的作用水解为无机磷,然后方能为肠道吸收。

单胃动物消化道中无分解植酸的植酸酶,故对植酸磷的利用率很低。

植酸的抗营养作用不仅表现在植酸磷的低利用率上,还通过整合或络合作用影响其它矿物元素如铁、锌、铜、钙以及蛋白质的可消化性,并抑制淀粉酶、胰蛋白酶、胄蛋白酶的活性。

测定原理植酸酶可以水解植酸钠释放出无机磷,通过加入锐铝酸核显色/终止液使水解反应停止,同时与水解释放出的无机磷产生颜色反应,形成黄色的帆铝磷络合物(NHQ PO4NH4VO3-16M O O3;,在415nm波长下测定磷的含量,以标准磷溶液为参照,计算酶活。

植酸酶的含量以酶活性单位表示。

1植酸酶单位定义为:在37℃、pH5.5的条件下,1分钟内从0.005ImOIL的植酸钠溶液中释放出1微摩尔(UmoD无机磷所需要的植酸酶量。

操作步骤样品准备样品粉碎过后过60目筛。

称取2.0g左右粉碎样品,放入4个IOomL烧杯中(每种样品4个重复)。

加入50 mL浓度为0.25 mL、PH为5.50、在冰箱中冷却的乙酸缓冲液并用磁力搅拌器搅动60分钟,使酶蛋白充分溶出,制成一个悬浮液。

植酸酶的运用与作用

植酸酶的运用与作用

植酸酶的运用与作用
自然界的植酸酶来源有3种:动物肠道细胞、植物的种子和组织、微生物,其中微生物是植酸酶的主要来源。

目前分离出的植酸酶主要有两种3-植酸酶和6-植酸酶前者最先水解的是肌醇3号碳原子位置的磷酸根,主要存在于动物和微生物中;后者最先水解的是6号碳原子的磷酸根,主要存在于植物组织。

1、植物来源
大多数的植物中都含有植酸酶,但植物种子中的植酸酶在干燥状态下没有活性,只有在种子吸水萌芽的过程中才被激活,水解植酸磷供植物生长。

另外,植物来源植酸酶易被过多的底物和产物抵制。

2、动物来源
动物来源的植酸酶存在于各种脊椎动物的红细胞和血浆中,也存在于哺乳动物小肠中。

反刍动物瘤胃微生物可产生大量的植酸酶,因而它能很好地利用植酸磷,而猪和家禽等单胃动物由于其肠道中植酸酶活性极其微弱,对植酸磷的利用率很低,需额外添加无机磷。

3、微生物来源
微生物来源的植酸酶为肌醇六磷酸3-磷酸水解酶,简称3-植酸酶,主要有霉菌、酵母菌和细菌产生,只所以微生物作为产酶基因库日益受到重视。

不同来源的植酸酶均能促进动物的生长和提高磷的消化利用率。

在玉米-豆粕型饲粮中添加微生物植酸酶可促进钙,磷消化利用,促进了骨骼生长,降低粪磷的排出量。

植酸酶作为单一酶制剂在饲料工业中的应用已经获得了良好的效果。

添加饲料中的植酸酶能有效的分解植酸,提高钙、磷的利用率,降低环境污染并消除植酸的抗营养作用,同时又改善了对蛋白质和矿物质等营养物质的利用率,给养殖业带来较大的经济效益。

植酸酶的作用及其应用

植酸酶的作用及其应用

植酸酶的作用及其应用植酸酶(Phytase)是一种催化植物中非生物无机磷酸四酯(植酸)水解为无机磷酸和可溶性低磷酸盐的酶。

在植物界中,植酸是主要的磷酸盐贮存形式,但对于非反刍动物来说,植酸不能被直接利用,因为它们缺乏植酸酶。

植酸酶的作用就是通过水解植酸,释放出可利用的无机磷酸,提高非反刍动物对于植物性饲料中磷的利用效率。

植酸酶的应用非常广泛,主要应用于以下几个领域:1.饲料行业:由于植酸是植物中主要的磷酸盐贮存形式,几乎所有的植物性饲料中都含有大量的植酸,而非反刍动物缺乏植酸酶,无法直接利用植酸中的磷。

因此,将植酸酶添加到饲料中可以降低饲料中植酸的含量,提高磷的利用效果,从而减少磷的排放,降低环境污染。

2. 增强矿物质吸收:植酸酶不仅可以水解植酸中的磷酸盐,还能水解酰胺多磷酸盐(phytate)和亚磷酸盐(insoluble phosphates)中的铁、锌、钙等微量元素。

因此,植酸酶在植物学和食品科学领域被广泛应用于增强矿物元素的吸收效率,改善植物的营养价值。

3.饲料改良和环境保护:饲料中含有大量的植酸,而动物对植酸的利用率较低,通过添加植酸酶可以实现饲料的高效利用,减少对矿物质的补充。

这不仅可以节省饲料成本,还可以减少磷的排放,降低对环境的污染。

除了以上应用以外,植酸酶还可以在食品加工和农业生产中发挥作用。

在食品加工过程中,植酸酶可以降低食品中植酸的含量,进而改善食品的口感和品质。

在农业生产中,植酸酶可以促进植物的生长和发育,提高农作物的产量和品质。

总之,植酸酶作为一种重要的酶类,在饲料行业和农业生产中有着广泛的应用前景。

通过植酸酶的添加,可以提高植物性饲料中磷和微量元素的利用率,减少对矿物质的依赖,降低环境污染,同时也可以改善饲料的营养品质和动物的生产性能。

随着科学技术的不断进步,相信植酸酶的研究和应用会更加深入和广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植酸酶的作用及应用郑扬云•植酸(肌醇六磷酸)具有强大的络合力,通常与钙、镁、锌、钾等矿物质元素结合,形成不溶性盐类。

植酸(盐)广泛存在于农作物及农副产品中,很多谷物、油料作物中的植酸含量高达1%一3%,其中钙、镁、锌、钾等元素以植酸盐的形式存在。

因此植酸是一种抗营养因子.大大降低了微量矿物质的营养有效性。

植酸的这种性质会导致人和动物钙、镁、锌、钾等元素的不平衡性。

因此必须在动物的饲料中掭加钙钾等以补充矿物质,这大大提高了饲料成本。

同时饲料中天然磷的含量约为40%一70%,且以植酸磷的形式存在,而猪、禽的饲料中大量的植酸磷因不能被利用而从粪便中排出,造成环境枵染(磷富集化污染)。

•植酸酶是催化植酸及其盐类水解为肌醇和磷酸的一类酶的总称。

将植酸酶添加到动物性饲料中释放植酸中的磷分。

不但能提高食物及饲料对磷的吸收利用率,还可降解植酸蛋白质络合物,减少植酸盐对傲量元素的螯合,提高动物对植物蛋白的利用率及其植物饲料的营养价值。

同时也减少动物排泄物中有机磷的含量,减少对大自然的污染。

一、植酸酶的作用机理•植酸酶能将肌醇六磷酸(植酸)分解成为肌醇和磷酸。

植酸酶将植酸分子上的磷酸基团逐个切下,形成中间产物IP5,IP4,IP3,IP,.终产物为肌醇和磷酸。

不同来源植酸酶作用机理有所不同。

微生物产生的3一植酸酶作用于植酸时,首先从植酸的第3碳位点开始水解酯键而释放出无机磷,然后再依次释放出其他碳位点的磷,最终酯解整个植酸分子,此酶需要2价镁离子(Mg2+)参与催化过程。

来源于植物的6-植酸酶,它首先在植酸的第6碳位点开始催化而释放出无机磷。

1g植酸完全分解理论上可释放出无机磷281.6mg。

植酸酶只能将植酸分解为肌醇磷酸酯,不能彻底分解成肌醇和磷酸,要彻底分解肌醇磷酸酯,需酸性磷酸酶的帮助,酸性磷酸酶可以将单磷酸酯、二磷酸酯彻底分解成肌醇和磷酸。

大多数微生物来源的植酸酶的作用机理如下。

•植酸→1,2,4,5-,6-五磷酸肌醇+D-1,2,3,4,5-五磷酸肌醇→1,,2,5,6-四磷酸肌醇→1,2,5-三磷酸肌醇或1,2,6-三磷酸肌醇→1,2-二磷酸肌醇→2-磷酸肌醇。

二、植酸酶的分类•按结构的不同,可以将酸性植酸酶划分为有代表性的组氨酸酸性磷酸酶(HAP)β-螺旋植酸酶(BPP)和紫色酸性磷酸酶(PAP)。

•(1)组氨酸酸性磷酸酶(HAP)•大多数知名的植酸酶都是HAP,这个类的所有•成员都有一个共同的活性位点保守序列RHGXRXP和一个水解磷酸单脂的两步作用机制。

Wyss 和他的同事比较了几种真菌来源的植酸酶的水解特性,提出了2个类别的HAP 植酸酶:一类有比较宽的底物特异活性,但是对植酸的特异活性比较低;第二类底物特异活性比较窄,但是对植酸的特异活性比较高。

(2)β-螺旋植酸酶(BPP)与HAP不同,BPP是最近发现的一类有着特殊水解机制的酶。

BPP基因已经从Bacillius subtili和Bacillus amyloliquefaciens中获得。

该分子的三维模型近似于有6个叶片的螺旋的基本形式。

对蛋白数据库的搜索,显示没有其他的已知磷酸酶有这种类型的结构。

依赖于Ca2+的束缚,具有热稳定性和水解活性。

BPP有2个磷酸盐束缚位点,对它的底物的水解出现在“剪切位点”和邻近的“亲和位点”,后者增加了对底物的亲和力。

Ca2+通过创造一个有利的静电环境使束缚变得容易。

但是,目前BPP没有已知的对应的磷酸酶,是否已在其他的细菌或者真菌中发现还有待于确认。

(3)紫色酸性植酸酶(PAP)另一个植酸酶Gmphy 已经从发芽的黄豆种子中分离出来了。

Gmphy 有着紫色酸性磷酸酶的活性位点保守序列。

它的三维结构和水解机制已经很明确了。

对基因数据库的搜索结果示,在植物,哺乳动物,真菌和细菌中显示了类似于PAP的序列。

纯化的Gmphy 的大小估计在70~72kda,和其他植物来源的PAP 的分子大小相近。

但是Gmphy 是仅知已报道的有较高植酸酶活性的PAP。

三、植酸酶的分布•许多作物籽实及其加工剐产品中均含有天然植酸酶,如小麦、玉米、大麦、黑麦、小黑麦、燕麦、水稻、豆类等籽实中植酸酶已被分离并鉴定。

不同作物种类及品种的植酸酶含量差异很大,如玉米、高梁、油菜籽的植酸酶活性很低,而小麦、小黑麦和黑麦的一些蒸馆副产品物均含有很高的植酸酶活性。

小麦、小黑麦和黑麦所含的植酸酶大部分在糠麸中。

Peers测定出小麦籽实不同部位的植酸酶活性占小麦籽实总活性的89%,其余部分很少。

种子休眠期的植酸盐与植酸酶是分开的,但在其萌发或加工及动物消化时植酸酶和植酸盐底物相互接触而使植酸盐分解。

四、植酸酶的作用效果•植酸是植物性饲料中普遍存在的一种抗营养因子.植酸中的磷大部分位于植酸盐中难以被猪和禽所利用而随粪便排出体外,污染环境,但添加植酸酶催化植酸盐的水解可提高植酸磷利用率20%~50%,减轻集约化养殖场排泄物中磷对环境的污染:植酸盐中的磷可以与饲料中的矿物质结合形成络和物降低动物对Zn,Mn,Ca,Cu,Fe,Mg等矿物元素的作用:植酸盐还可与蛋白质结合,从而降低这些营养成分的消化利用率。

为了提高磷的利用率减少磷的排泄量,畜牧生产上用植酸酶来解决该问题。

•(1)提高植酸磷的利用率。

所有植物性饲料都含有1%~5%的植酸盐,这些盐的含磷量占饲料总含磷量的60%~80%。

由于单胃动物消化道内不含植酸酶,导致其无法或不能很好利用植物性饲料中的磷。

•(2)消除植酸对矿物元素和蛋白质的抗营养作用。

植酸具有很强的结合能力,能够与许多矿物质晃素和蛋白质结合形成稳定的复合物,降低这些营养物质的利用率。

植酸被酶水解后,结合的营养物被释放来,提高了猪、禽对矿物质的利用率和蛋白质的消化率。

•(3)恢复消化酶的活性。

植酸可抑制体内多种酶的活性。

YMn(1983)报道,饲料中植酸的存在会使动物对淀粉的消化率降低。

有研究表明,大鼠日粮中添加植酸纳时脂肪的消化率有所降低。

饲料中添加植酸酶后可使淀粉酶、脂酶、蛋白酶恢复其活性,使整个日粮养分的消化率所提高。

五、植酸酶在畜牧业中的应用—在养禽业中的应用•(1)提高氮、磷利用率, 减少氮磷排泄, 降低污染•饲料中添加微生物植酸酶可使谷类和油饼类等植物饲料中酸磷所含的大部分磷释放出来, 从而满足动物对磷的需要, 提高磷的利用率, 同时减少了磷的排泄量. Belybain( 1994) 在蛋鸡中添加植酸酶, 结果粪尿中磷的排出量减少了40%, 由于粪尿中磷排出量的减少使磷对环境的污染程度也有了较大程度的降低. Nelson 等( 1968) 首先报导了日粮中添加植酸酶提高了雏鸡对植酸磷的利用率. Si-mons 等( 1990) 对4~6 周龄的玉米-豆粕型肉鸡日粮添加750~ 2 000 IU / kg 的植酸酶, 使肉鸡的磷排泄量减少25%左右.(2)提高钙的利用率, 增加骨骼强度, 减少钙沉淀钙是家禽不可缺少的一种矿物质如日粮中钙不足会降低磷的吸收率, 所以只有保持适当的钙、磷比才能保证蛋鸡对钙和磷的需要. 研究表明雏鸡最初14 d 内饲料中添加750 IU / kg的植酸酶可增加钙的吸收, 蛋鸡日粮中添加300 IU/ kg 植酸酶, 应将日粮钙减低0. 3%~ 0. 4%。

Simons 等( 1991) 发现, 日粮中总磷水平保持在0. 4%, 而植酸酶添加率从300 IU/ kg 单位提高到1 500 IU / kg 时, 胫骨断裂机率显著减少, 且断裂强度得到显著提高.结果表明钙和磷的沉积量随植酸酶的增加而呈线性增加, 但钙磷比大于1.4:1 后线性值出现负效应。

3)提高家禽生产性能, 降低生产成本荷兰的试验结果表明, 把微生物植酸酶加入低磷含量的基础饲料中可显著改善生长率和饲料利用率.接受250 IU / kg 植酸酶的鸡, 其生长率大大低于那些接受750, 1 000 或1500 IU / kg 植酸酶的鸡; 所食饲料中添加1 500 IU/ kg 植酸酶的鸡在0~ 24 d 内的生长率高于其它各组鸡, 说明植酸酶能明显改善饲料利用率. 在雏鸡饲料中添加0. 1% 的植酸酶可使雏鸡平均日增重和饲料报酬分别提高1%和4. 3%. 在以玉米和大豆粕为基础的鸡饲料中添加1. 0%的植酸酶可使鸡日增重提高到18. 5% ~ 39. 0%( P< 0. 01) .单安山( 1998)对鸡日粮应用植酸酶进行了可行性分析, 结果表明, 扣除节省磷酸氢钙的成本, 每吨饲料因添加植酸酶可节约12. 5 元.六、食品加工过程中的植酸脱磷•用食品级的植酸酶处理粮食,以分解粮食中的植酸(盐),减少植酸对微量元素的螯合,提高粮食的营养价值。

在大豆加工中可对大豆蛋白进行酶催化改性,从而提高其营养和商品价值。

面包生产过程中添加植酸酶可以清除揉面中的植酸,面包制作中用的植酸酶应该是安全无毒,高活性,Ca2+依赖型的,最适pH应在4.5—5.0,并在30℃左右具有高反应速度。

浸渍是玉米浆的生产程序之一,浸渍是为了软化玉米粒,破碎细胞壁,从而获得玉米浆。

微生物植酸酶能加速这一过程,改良株胚的分离,获得高产量的淀粉和面筋,并能改善玉米浆的品质。

在谷物(玉米、小麦等)淀粉加工中处理废弃物,降低对环境的污染。

七、使用植酸酶时的注意事项•植酸酶作用效果与动物日粮中植酸磷的含量关系密切。

植酸磷含量在0.2%以上时,使用植酸酶有效,植酸(盐)含量越高,植酸酶效果越明显。

•植酸酶是蛋白质,对光、热较敏感。

而在饲料生产过程中,由于粉碎、预混、制粒以及其它添加剂的影响都可能使酶的活性受损甚至变性。

使用酶制剂,应尽可能减少生产工艺对酶的活性的影响,制粒温度最好不要超过80度,以保证植酸酶有较好的作用效果。

•大量研究证明,日粮中钙元素含量过高会造成植酸酶活性下降,影响植酸酶使用效果,因此,切忌超量使用石粉作为填充物造成钙超标。

•防潮:植酸酶一旦受潮易发生霉变且活力下降。

•防止高温:严禁烈日爆晒、烘烤等,否则均可导致酶活力降低或失活。

•避免接触强酸、强碱、重金属。

•尽可能缩短贮存期,使用有效期内的产品。

产品应置于通风、干燥、阴凉、避光处。

总结•植酸酶不仅可以解除植酸的抗营养作用,提高食物和饲料中多种矿物元素和蛋白质、氨基酸的可利用性,而且能够降低粪便排泄磷造成的环境污染,是一种新型的绿色饲料添加剂。

通过基因工程技术将高活性植酸基因转移到高产工业菌株的基因组中,构建高产、高活性的超级产植酸酶菌株,降低植酸酶的生产成本,植酸酶的应用必将越来越广泛。

相关文档
最新文档