吸收塔的物料衡算与操作线方程1

合集下载

化工原理吸收塔的计算

化工原理吸收塔的计算
填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:N OG
N OG
Y1
dY Y Y
*
Y2
气相总传质单元数
气相组成变化 平均传质推动力

Y1
dY Y Y
*

Y1 Y2 (Y Y ) m
*
Y2
• 传质单元数的意义: 反映了取得一定吸收效果的难易程度。
第四节
吸收塔的计算
吸收塔的计算内容:
• 设计型:流向、流程、吸收剂用量、吸收剂
浓度、塔高、塔径。
• 操作型:核算、操作条件与吸收结果的关系。
• 计算依据:物料恒算、相平衡、吸收速率方程。
一、物料衡算与操作线方程
虚框范围内,对溶质作物料衡算:
LX GY2 LX 2 GY L G Y Y Y2 X X2 L G X (Y2 L G
* mG Y1 Y2 mG ln 1 * mG L Y2 Y2 L 1 L
S
mG L
—解吸因数(脱吸因数)
影响NOG的因素:
L、G、m、X2、Y1、Y2
(1) L、G、m
L , G , m m不变, L G 推动力Ym N OG m 平衡线斜率 远离操作线 推动力Ym N OG L mG N OG
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义: H OG
G K ya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,

化工原理第7章气体吸收

化工原理第7章气体吸收

再看积分号内

y1
y2
dy : 分子、分母具有相同的单位。 y ye
∴ 积分值为一个无因次量,把它认为相当于气相总传质
单元高度HOG的一个倍数,称它为 “气相总传质单元 数”
用“NOG”表示 即: NOG=

y1
y2
dy y ye
则,总传质总元高度H=单元高度×倍数(单元数)
H=HOGNOG

Kya dy dh y ye G
Kxa dx dh xe x L
稳定操作时:L、G、a、A为常数 稀溶液: K x 、K y
y1
也视为常数
∴可对上式进行在全塔范围内积分:
Kya H dy dh y2 y ye G 0 x1 Kxa H dx x2 xe x L 0 dh
取最小吸收剂用量Lmin的1.1~2倍。 L L 即 ≈(1.1~2)( )min G G 即 L =(1.1~2)Lmin
Lmin的求取: (1)平衡线如上图所示,则只要从T点连接y=y1 与平衡线的交点B*点即TB*,则TB*线所对应的斜率
L/G即为最小吸收剂用量下的斜率( L )min G y y 而( L )min= tgα= y1 y2 Lmin G 1 2 x1e x2 x1e x2 G
K x a ——液相总体积吸收系数,kmol/(m3.s)
二、传质单元高度与传质单元数
G y1 dy 分析式: Z K y a y2 y ye
其中:
G ∴ K ya
G K ya
单位为m,即高度的单位。
称为单元高度,全称“气相总传质单元
高度”。以“HOG”表示 G 即: HOG= K ya
吸收液(即出塔吸收液)中浓度加大(x1加大),则吸

吸收过程的气液相平衡关系

吸收过程的气液相平衡关系

VB (Y1 Y2 ) N A Za K Y Ym Za VB Y1 Y2 Z K Y a Ym N oG Y1 Y2 Ym
(3)图解积分法
适用范围:普遍适用于各种平衡关系
步骤:
N OG
dY Y2 Y Y *
Y1
i 在X--Y作标系中绘出平衡线,与操作线
Y* X m * 1 Y 1 X
Y*=mX
mX Y 1 (1 m) X
*
亨利定律是稀溶液定律,则x很小,1+(1-m)X=1则
二、相平衡与吸收的关系 1、判断过程进行方向
x=0.05 y=0.1 y*=0.94x y*=0.94×0.05=0.047 > y x*=0.1/0.94=0.106 > x x=0.1 y=0.05 y*=0.1×0.94=0.094 > y x*=0.05/0.94=0.053 < x
ii 选点,列表
iii 作Y—1/(Y-Y*)图 iv 求面积
五、吸收塔计算分析
1、等分子反向扩散
D p A1 p A2 NA RTZ
2、一组分通过另一停滞组分的扩散
DP pA1 pA2 NA RTZPBm
(三)液相中的稳定分子扩散
液相中的扩散速度远远小于气相中的扩散速度, 而且发生等分子反向扩散的机会很少,一组分通过 另一停滞组分的较多见。
' D C ' cA1 cA2 NA zcsm
二、传质机理
(一)分子扩散和菲克定律 分子扩散:在一相内部有浓度差的条件下,由于 分子的无规则热运动而造成的物质传递现象。 菲克定律
J A D AB
dC A dz

吸收塔物料衡算与操作线关系

吸收塔物料衡算与操作线关系

物料衡算
二、操作线方程
Y
L V
X
Y1
L V
X
1YBiblioteka L VXY2
L V
X2
当 L/V 一定,操作线方程在 Y-X 图上均呈直线, 称为吸收操作线。
Y1
斜率: L 过两点:( X1,Y1), ( X 2 ,Y2 )
V
T
L Y1 Y2 ---液气比 V X1 X2
Y2 X2
B X1
物料衡算
下标“1”代表塔内填料层下底截面, 下标“2”代表填料层上顶截面。 V —— 惰性气体B的摩尔流量kmol/s; L —— 吸收剂S的摩尔流量kmol/s; Y —— 溶质A在气相中的摩尔比浓度; X —— 溶质A在液相中的摩尔比浓度。
L, X1
物料衡算
一、 全塔物料衡算(逆流流动)
L, X2
若 GA 为吸收塔的传质负荷,即气体通过填料塔时,单位时间内 溶质被吸收剂吸收的量 kmol/s,则
V, Y
L, X V, Y1
L, X1
逆流操作线方程
若取填料层任一截面与塔的塔底端面之间的填料层为物料衡 算的范围,则所得溶质 A 的物料衡算式为
VY LX1 VY1 LX
Y
L V
X
Y1
L V
X
1
同理,若在任一截面与塔顶端面间作溶质A的物料衡算,有
Y
L V
X
Y2
L V
X2
上两式均称为吸收操作线方程,代表逆流操作时塔内任一截面上 的气、液两相组成 Y 和 X 之间的关系。
吸收技术 ---物料衡算
物料衡算
一、 全塔物料衡算(逆流流动)
目的:计算给定吸收任务下所需的吸收剂用量 L 或吸收剂出口浓度 X1。

吸收塔的计算

吸收塔的计算

m,一般取Hb=1.2~1.5m;
Hb
n——填料层分层数
2020/10/22
【填料塔高度的近似计算】
【说明】由于液体再分布器、喷淋装置、支承装置、捕沫器等的结构不同时其高 度不同,当一时无法准确确定时,也可采用下式近似计算塔高:
H=1.2Z+Hd+Hb
Hd——塔顶空间高(不包括封头部分),m; Hb——塔底空间高(不包括封头部分),m。

G 1000 273 (1-0.09)=37.85(mol / s)
22.4 293
故吸收用水量为: L=35.5G=35.5×37.85=1343(mol/s)=1.343(kmol/s)
2020/10/22
三、吸收塔填料层高度的计算
1、填料塔的高度
【说明】填料塔的高度 主要决定于填料层高度。
(2) HOG愈小,吸收设备的传质阻力愈小,传质效能愈高,完成一定分离任务所 需填料层高度愈小。
2020/10/22
【体积传质系数( KY a )——参数归并法】
(1)有效比表面积(a)与填料的类型、形状、尺寸、填充情况有关,还随流体 物性、流动状况而变化,其数值不易直接测定; (2)通常将a与传质系数(KY)的乘积合并为一个物理量KY a ( 单位kmol/m3·s), 称为体积传质系数,通过实验测定其数值; (3)在低浓度吸收的情况下,体积传质系数在全塔范围内为常数,或可取平均值。
2020/10/22
【解】已知 y1=0.09 η=95%=0.95

Y1
y1 1 y1
0.09 1 0.09
0.099
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495 据 Y*=31.13X 知: m=31.13

低浓度气体吸收.

低浓度气体吸收.

其大小表示了分离任务的难易。
② 传质单元高度(以HOG 为例)
完成一个传质单元分离任务所需的填料层高度。
y j 1 x j 1
HOG
yj yej yj-1 yej-1 x2 xe2 x1
(y-yj)m
yj
xj
说明:

影响传质单元高度的因素:填料性能,流动情况;

其值大小反映了填料层传质动力学性能的优劣。
规定,其用量取决于适宜的液气比。
ye=mx
y1
y2 x2 x1 xe1
qnL/qnG对操作线的影响
最小液气比:
q nL q nG
y1 y 2 y1 y 2 min x e1 x 2 y1 / m x 2
最小溶剂用量 :
q nL min
y1 y 2 q nG y /m x 2 1
7.4 低浓度气体吸收
通常是指混合气中溶质组成y1 < 10%的吸收过程。
简化假定: ① 气、液两相摩尔流率恒定 ( qnG=qnL=const ); ② 等温吸收。
qnG , y2
qnL , x2
7.4.1 吸收塔的物料衡算及操作线方程
(1) 物料衡算 全塔物料衡算:
qnG , y
qnL , x
q nG ( y1 y 2 ) q nL ( x1 x 2 )
(2) 传质单元数与传质单元高度
G h K ya


y1
y2
dy ( y ye )
——气相总传质单元高度,m —— 气相总传质单元数,无量纲数。
H OG
G K ya
dy ( y ye )
N OG

化工原理吸收塔的计算

化工原理吸收塔的计算

G, Y2 L, X2
面惰性气体的量,kmol/s; L——单位时间通过任一塔截 m
G, Y
n
面的纯吸收剂的量,kmol/s;
L, X
Y——任一截面上混合气体中
溶质的摩尔比,
X——任一截面上吸收剂中溶
G,Y1 L, X1
质的摩尔比。
物料衡算示意图
逆流吸收操作线推导示意图
2020/1/24
【假设】溶剂不挥发,惰性气体不溶于溶剂(即操作
GY1 LX GY LX1

Y

L G
X
(Y1

L G
X1)
G, Y2 L, X2
G, Y
m
n
L, X
【说明】以上两式均称为吸收 操作线方程。
G,Y1 L, X1 逆流吸收操作线推导示意图
2020/1/24
【逆流吸收操作线方程的有关讨论】
L
L
Y G X (Y1 G X1 )
变换气 CO+H2O=CO2+H2 ( Y1 含CO216~40%)
1-油水分离器;2-吸收塔;3-分离器;4-溶剂泵;5-溶剂冷却器; 6-闪蒸槽;7-常解再生塔;8-气提鼓风机;9-中间贮槽;10-洗涤塔;
11-洗涤液泵;12-罗茨鼓风机
碳酸丙烯酯脱碳常压吸收-空气气提再生工艺流程图
2020/1/24
过程中L、G为常数)。以单位时间为基准,在全塔
范围内,对溶质A作物料衡算得: G, Y2
L, X2
GY1 LX2 GY2 LX1
(进入量=引出量)
或 G(Y1 Y2 ) L(X1 X2 )
——全塔的物料衡算式
2020/1/24

化工原理吸收解析

化工原理吸收解析

X2 0
Lmin
G(Y1 Y2 )
Y1 m
X
2
3.125 0.096 0
869kmol / h
26.7
2020/10/31
L 1.65Lmin 1.65869 1434kmol / h
2)出塔吸收液浓度:
G(Y1 Y2 ) L(X1 X2 )
X1
X2
G(Y1 Y2 L
)
0
3.125 1434
X2 0
m 0.757
Lmin
G(Y1 Y2 )
Y1 m
X
2
34.5(0.0133 0.000133) 0.0133 0 0.757
25.8kmol/ h
L 2Lmin 2 25.8 51.6kmol/ h
2020/10/31
三、填料层高度的计算
1、填料层高度的基本计算式
对组分A作物料衡算 单位时间内由气相转入液相的 A的物质量为:
dY Y
*
Z
dZ
0
G Y1 dY Y2 KY a Y Y *
LdX KX (X * X )adZ
dZ L dX KX a X * X
Z
dZ
X1
L
dX
0
X2 K X a X * X
2020/10/31
低浓度气体吸收时填料层的基本关系式为
Z G
KY a
Y1 dY Y2 Y Y *
GdY LdX
NAdA NA(adZ )
2020/10/31
微元填料层内的吸收速率方程式为:
N A KY (Y Y * )及N A K X ( X * X )
dG KY (Y Y *)adZ dG KX (X * X )adZ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体摩尔流量的比,即处理含单位千摩尔惰性气的原 料气所用的纯吸收剂耗用量大小。液气比对吸收设备 尺寸和操作费用有直接的影响。
吸收塔的最小液气比
当吸收剂用量增大,即操作线的斜率L V 增大,则 操作线向远离平衡线方向偏移,如图8-6中AC线所示, 此时操作线与平衡线间的距离增大,即各截面上吸收 推动力(Y Y )增大。若在单位时间内吸收同样数量 的溶质时,设备尺寸可以减小,设备费用降低;但是 ,吸收剂消耗量增加,出塔液体中溶质含量降低,吸 收剂再生所需的设备费和操作费均增大。
最小液气比可用图解或计算法求出:
(1)图解法 一般情况下,平衡线如图所示的曲线
,则由图读出与 Y1 相平衡的的数值后,用下式计算最
小液气比:
L V
m in

Y1 Y2 X1 X 2
如果平衡线为图8-6(b)所示的曲线,则应过点作
平衡曲线的切线,由图读出点的横坐标
X
1
的数值,代
Y

L V
X
(Y2

L V
X2)
——逆流吸收塔操作线方程 表明 :塔内任一截面的气相浓度Y与液相浓度X之间成直线
关系,直线的斜率为L/V。
二、吸收剂用量的确定
1.吸收剂的单位耗用量
由逆流吸收塔的物料衡算可知
L Y1 Y2 V X1 X2
(8-23)
在 V 、Y1 、Y2 、X 2 已知的情况下,吸收塔操作线的一个端点
若减少吸收剂用量, L V 减小,操作线向平衡线 靠近,传质推动力( Y Y )必然减小,所需吸收设备 尺寸增大,设备费用增大。当吸收剂用量减小到使操 作线的一个端点与平衡线相交,如图8-6中AD线所示, 在交点处相遇的气液两相组成已相互平衡,此时传质 过程的推动力为零,因而达到此平衡所需的传质面积 为无限大(塔为无限高)。这种极限情况下的吸收剂 用量称为最小吸收剂用量,用Lmin 表示,相应的液气比 称为最小液气比,用 (L V )min 表示。显然,对于一定的 吸收任务,吸收剂的用量存在着一个最低极限,若实 际液气比小于最小液气比时,便不能达到设计规定的 分离要求。
由以上分析可见,吸收剂用量的大小,从设备费 与操作费用两方面影响到生产过程的经济效益,应选 择一个适宜的液气比,使两项费用之和最小。根据实 践经验,一般情况下取操作液气比为最小液气比的1.1 ~2.0倍较为适宜。即;
L (1.1 ~ 2.0) L
V
V min
2.最小液气比的求法
A( X 2 Y2)已经固定,另一个端点B则在的水平线 Y Y1 上移
动,点B的横坐标取决于操作线的斜率L V ,如图8-6所示。
操作线的斜率称为液气比,是吸收剂与惰性气体摩尔流 量的比,即处理含单位千摩尔惰性气的原料气所用的纯吸 收剂耗用量大小。液气比对吸收设备尺寸和操作费用有直 接的影响。
操作线的斜率称为液气比 ,是吸收剂与惰性 LV
D.y2增大,吸收率不确定
2.对于操作中的吸收塔,下列说法正确的是( )
求每小时送入塔内的水量。
溶液浓度(gNH3/100gH2O)
分压Pa 分析:
2 1600
2.5 3 2000 2427
求水量
吸收剂用量L 已知L/Lmin 求Lmin
平衡常数
解:
1)平衡关系
Y*

y* 1 y*

1
p* p*

1.6 103 101.33103 1.6 103
0.01604
适用条件: 平衡线符合亨利定律,可用 Y * mX 表示
(L V
) m in

Y1 Y2
Y1 m

X2
Lmin
V
Y1 Y2
Y1 m

X
2
例:空气与氨的混合气体,总压为101.33kPa,其中氨的分 压为1333Pa,用20℃的水吸收混合气中的氨,要求氨的回 收率为99%,每小时的处理量为1000kg空气。物系的平衡关 系列于本例附表中,若吸收剂用量取最小用量的2倍,试
一、吸收塔的物料衡算与操作线方程
1、物料衡算
目的 : 确定各物流之间的量的关系 以及设备中任意位置两物料 组成之间的关系。
对单位时间内进出吸收塔的A的物 质量作衡算
VY1 LX 2 VY2 LX1
V (Y1 Y2 ) L( X1 X 2 )
Y1
L V
X1

Y2

L V
X2
吸收率 A 混合气中溶质A 被吸收的百分率
Y2 Y1(1 A )
2、吸收塔的操作线方程式与操作线
在 m—n截面与塔底截面之间作组分A的衡算
VY LX1 VY1 LX
Y

L V
X

(Y1

L V
X1) ——逆流吸收塔操作线方程
在m—n截面与塔顶截面之间作组分A的衡算
VY LX 2 VY2 LX
L 2Lmin 2 25.8 51.6kmol / h 928.8kg / h
随堂习题
1.在逆流吸收塔中,用纯溶剂吸收混合气体中条件不变,则出塔气体组成y2和吸收率的变化为( )
A.y2增大,吸收率减小
B.y2减小,吸收率增加
C.y2增大,吸收率不变

0.0133
Y2 (1 0.99)Y1 0.01 0.0133 0.000133 X 2 0 m 0.757
Lmin

V (Y1 Y2 )
Y1 m

X
2
34.5(0.0133 0.000133) 0.0133 0 0.757
25.8kmol / h
3)每小时用水量
入式(8-25)计算最小液气比。
(2)计算法 若平衡线为直线并可表示为 Y mX 时, 则上式可表示为
L V
m in

Y1 Y2
Y1 m

X
2
最小液气比的求法
图解法 •正常的平衡线
L
( V
)
m
in

Y1 Y2
X
* 1

X2
Lmin
V
Y1 Y2
X
* 1

X2
计算法
X 2 /17 0.0212 100 /18
m Y * 0.01604 0.757 X 0.0212
平衡关系为 : Y 0.757 X
2)最小吸收剂用量:
Lmin

V
Y1 Y1 m
Y2 X2
其中:
V 1000 29
34.5kmol空气 / h
Y1

1.333 101.33 1.333
相关文档
最新文档