应用等价无穷小巧解考研高等数学试题
考研数学(数学一)模拟试卷480(题后含答案及解析)

考研数学(数学一)模拟试卷480(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知当χ→0时,f(χ)=arcsinχ-arctanaχ与g(χ)=bχ[χ-ln(1+χ)]是等价无穷小,则( )A.a=b=1。
B.a=1,b=2。
C.a=2,b=1。
D.a=b≠1。
正确答案:A解析:根据等价无穷小的定义,那么1-a=0,,则有a=1,b=1。
故选A。
2.设函数f(χ)在[0,1]上连续,且=1。
f(χ)=bnsinπχ,χ∈R,其中bn=2∫01f(χ)sinnπχdχ,n=1,2,3…,测=( )A.0B.1C.-1D.正确答案:C解析:因为=1,所以可得f(χ)=1,又因为函数连续,则题目中把f(χ)展开为正弦级数,可知f(χ)为奇函数,可将函数f(χ)奇延拓,得到T=2,3.设f(χ)是连续且单调递增的奇函数,设F(χ)=∫0χ(2u-χ)f(χ-u)du,则F(χ)是( )A.单调递增的奇函数B.单调递减的奇函数C.单调递增的偶函数D.单调递减的偶函数正确答案:B解析:令χ-u=t,则F(χ)=∫0χ(χ-2t)f(t)dt,F(-χ)=∫0-χ(-χ-2t)f(t)dt,令t=-u,F(-χ)=∫0χ(-χ+2u)f(-u)du=∫0χ(χ-2u)f(-u)du。
因为f(χ)是奇函数,f(χ)=-f(-χ),F(-χ)=∫0χ(χ-2u)f(u)du,则有F(χ)=-F(-χ)为奇函数。
F′(χ)=∫0χf(t)dt -χf(χ),由积分中值定理可得∫0χf(t)dt=f(ξ)χ,ξ介于0到χ之间,F′(χ)=f(ξ)χ-χf(χ)=[f(ξ)-f(χ)]χ,因为f(χ)单调递增,当χ>0时,ξ∈[0,χ],f(ξ)-f(χ)<0,所以F′(χ)<0,F(χ)单调递减;当χ<0时,ξ∈[χ,0],f(ξ)-f(χ)>0,所以F′(χ)<0,F(χ)单调递减。
等价无穷小在高等数学中的应用

等价无穷小在高等数学中的应用
侯丽萍;钱小吾
【期刊名称】《高等数学研究》
【年(卷),期】2024(27)3
【摘要】鉴于职业院校学生数学基础,在求解极限和无穷级数等方面的问题存在较大难度,本文讨论等价无穷小在求复杂函数的极限、判别无穷级数的敛散性这两方面的应用,将帮助学生更好地解决极限和级数方面的一些问题.
【总页数】7页(P18-23)
【作者】侯丽萍;钱小吾
【作者单位】镇江市高等专科学校基础部
【正文语种】中文
【中图分类】O172
【相关文献】
1.应用等价无穷小巧解考研高等数学试题
2.高等数学中"等价无穷小"探讨
3.等价无穷小在高等数学解题中的应用
4.无穷小量的等价代换在高等数学中的应用
5.等价无穷小替换在高等数学教学中的思考
因版权原因,仅展示原文概要,查看原文内容请购买。
考研数学二(高等数学)模拟试卷41(题后含答案及解析)

考研数学二(高等数学)模拟试卷41(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.当x→0时,下列四个无穷小中哪一个是比其它几个更高阶的无穷小量A.x2B.1一cosxC.D.x一sinx正确答案:D 涉及知识点:高等数学2.设f(x)可导,且F(x) =f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的( )条件.A.充分且必要.B.充分非必要.C.必要非充分.D.非充分非必要.正确答案:A 涉及知识点:高等数学3.设f(x)在[a,b]上连续,φ(x)=(x一b)∫axf(t)dt,则存在ξ∈(a,b),使φ’(ξ)等于A.1B.0C.D.2正确答案:B 涉及知识点:高等数学4.已知(axy3一y2cosx)dx+(1+bysinx+3x2 y2)dy为某一函数的全微分,则a,b取值分别为A.一2和2B.2和—2C.一3和3D.3和一3正确答案:B 涉及知识点:高等数学5.设平面域由x=0,y=0,x+y=,x+y=1围成,若I1=[ln(x+y) ]3dxdy,I2=(x+y)3dxdy,I3=[sin( x+y)]3dxdy,则A.I1<I2<I3B.I3<I2<I1C.I1<I3 <I2D.I3<I1<I2正确答案:C 涉及知识点:高等数学填空题6.设f’(3)=2,则=________.正确答案:一3 涉及知识点:高等数学7.已知y=f’(x) = arctanx2,则|x=0=________.正确答案:涉及知识点:高等数学8.设f(lnx)=则∫f(x)dx=________.正确答案:x一(1+ex )ln(1+ ex) +C 涉及知识点:高等数学9.sin(x一t)2dt =________.正确答案:sinx2.涉及知识点:高等数学10.设f(x,y,z)=exyz2,其中z= z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx’(0,1,一1)=________.正确答案:1 涉及知识点:高等数学11.交换积分次序∫02dx∫x2xf(x,y)dy=________.正确答案:涉及知识点:高等数学解答题解答应写出文字说明、证明过程或演算步骤。
2005年数学考研真题分类解析

第一部分 高等数学一、函数、极限与连续1.(数二)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k=43 .【分析】 题设相当于已知1)()(lim=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(limkxxx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k21143cos 1arcsin lim2==-+→kxxx x x ,得.43=k【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算. 2.(数二)设函数,11)(1-=-x xe xf 则( )(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim1x xx ,.1lim 1-∞=--→x x x 从而+∞=-→+11lim x x x e ,.0lim 11=-→-x xx e3.(数二)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→xxx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形. 【详解】 由于⎰⎰⎰=-=-=-00)())(()(xxxut x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→x xxx xxx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 00)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f xduu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f【评注】 本题容易出现的错误是:在利用一次洛必塔法则后,继续用洛必塔法则⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=.21)()()()(lim='++→x f x x f x f x f x错误的原因:f(x)未必可导. 4.(数三、数四)极限12sinlim 2+∞→x x x x = 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12s i nl i m 2+∞→x x x x =.212lim 2=+∞→x x xx【评注】 若在某变化过程下,)(~)(x x αα,则 ).()(lim )()(lim x x f x x f αα=5.(数三、四)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则. 【详解】 )1(1lim)111(lim 20xxx xx ex e x x xex --→-→-+-+=--+=2201limxex x xx -→+-+ =xex xx 221lim-→-+=.2322lim=+-→xx e【评注】 本题属基本题型,在里用罗必塔法则求极限的过程中,应注意利用无穷小量的等价代换进行简化.二、导数与微分1.(数一)设函数nnn xx f 31lim)(+=∞→,则f(x)在),(+∞-∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim)(3=+=∞→nnn xx f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xx x f n nn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).【评注】 本题综合考查了数列极限和导数概念两个知识点. 2.(数二)设xx y )sin 1(+=,则π=x dy= dx π- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]s i n 1c o s )s i n 1[l n ()s i n 1l n (xx x x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y ys i n 1c o s )s i n 1l n (1+++=',于是 ]sin 1cos )sin 1[ln()sin 1(xx x x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.3.(数二)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是( )(A)32ln 81+. (B) 32ln 81+-.(C) 32ln 8+-. (D) 32ln 8+.【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).【评注】注意本题法线的斜率应为-8. 此类问题没有本质困难,但在计算过程中应特别小心,稍不注意答案就可能出错.三、中值定理与导数的应用 1.(数一)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 【评注】 中值定理的证明问题是历年出题频率最高的部分,而将中值定理与介值定理或积分中值定理结合起来命题又是最常见的命题形式. 2.(数一)曲线122+=x xy 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=212lim)(lim22=+=∞→∞→xx xxx f x x ,[]41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
考研数学一(高等数学)模拟试卷22(题后含答案及解析)

考研数学一(高等数学)模拟试卷22(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=,G(x)=,则当x→0时,F(x)是G(x)的( ).A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:D解析:知识模块:高等数学部分2.设F(x)=,则F(x)( ).A.为正常数B.为负常数C.为零D.取值与x有关正确答案:A解析:知识模块:高等数学部分3.设,则当x→0时,两个无穷小的关系是( ).A.高阶无穷小B.低阶无穷小C.同阶非等价无穷小D.等价无穷小正确答案:C解析:因为,所以两无穷小同阶但非等价,选知识模块:高等数学部分4.A.单调减少B.无界C.连续D.有第一类间断点正确答案:C解析:因为f(x)在(0,2)内只有第一类间断点,所以g(x)在(0,2)内连续,选(C)。
知识模块:高等数学部分5.设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是( ).A.B.C.D.正确答案:D解析:知识模块:高等数学部分6.设函数f(x)连续,下列变上限积分函数中,必为偶函数的是( ).A.B.C.D.正确答案:B解析:知识模块:高等数学部分7.A.等于0B.大于0C.小于0D.不能确定正确答案:B解析:知识模块:高等数学部分8.若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是( ).A.B.C.D.正确答案:A解析:知识模块:高等数学部分填空题9.正确答案:解析:知识模块:高等数学部分10.正确答案:解析:知识模块:高等数学部分11.正确答案:4-π解析:知识模块:高等数学部分12.设f(x)满足等式xf’(x)一f(x)=,且f(1)=4,则=____________。
高等数学考研复习题及答案

高等数学考研复习题及答案一、填空题1.设2)(xx a a x f -+=,则函数的图形关于 对称。
2.若⎩⎨⎧<≤+<<-=20102sin 2x x x x y ,则=)2(πy .3. 极限limsinsin x x x x→=021。
4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。
5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。
7.设2e yz u x=,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。
8.设ϕϕ,),()(1f y x y xy f xz ++=具有二阶连续导数,则=∂∂∂yx z2 。
9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。
10.设||)1(sin ),(22xy x y x y x f -+=则_____________)0,1('=y f . 11.=⎰xdx x 2sin 2.12.之间所围图形的面积为上曲线在区间x y x y sin ,cos ],0[==π .13.若21d e 0=⎰∞+-x kx ,则_________=k 。
14.设D:122≤+y x ,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x )14(2215.设D 由22,2,1,2y x y x y y ====围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为_______________和_______________. 16.设D 为01,01y x x ≤≤-≤≤,则()22Df x y dxdy +⎰⎰的极坐标形式的二次积分为____. 17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 .18.=+-+-⎰10 642)!3!2!11(dx x x x x . 19. 方程01122=-+-ydy xdx 的通解为20.微分方程025204=+'-''y y 的通解为 .21.当n=_________时,方程ny x q y x p y )()('=+ 为一阶线性微分方程。
考研数学一-高等数学(五)

考研数学一-高等数学(五)(总分:99.99,做题时间:90分钟) 一、填空题(总题数:10,分数:40.00)(分数:4.00)解析: [解析] 先作如下变形:解法一:用洛必达法则求这个极限其中解法二:用泰勒公式求这个极限相减得因此(分数:4.00)解析: [解析] 因为故则所以3.极限(分数:4.00)解析: [解析] 将分子变形为又,当x→0时,则(分数:4.00)解析: [解析] 所求极限为“∞-∞”型未定式,应首先通分化为“ ”型未定式后,再进行求解.(分数:4.00)解析: [解析] 解法一:属1 ∞型利用等价无穷小因子替换得即解法二:属1 ∞型,用求指数型极限的一般方法而即(分数:4.00)解析:1 [解析] 因故所求极限是“ ”型未定式,用分项求极限法可得(后一项的分子为有界变量,分母是无穷大量,故其极限为0).7.设,则(分数:4.00)解析: [解析]因为,所以8.设f(x)在x=0处可导且f(0)=1,f"(0)=3,则数列极限(分数:4.00)解析:e 6 [解析] 这是指数型的数列极限,一般先进行变形,并转化为函数极限求解.又故I=e 6.(分数:4.00)解析: [解析]把看作函数在处的函数值,其中正好是将区间[0,1]n等分所得的第k个分点(k=1,2,…,n),这时每个小区间的长度为.于是可看作定积分对应的和式极限其中又因为在[0,1]上连续,于是在[0,1]上可积,故10.设f(x)连续,且当x→0时,x 3等价的无穷小量,则f(0)= 1.(分数:4.00)解析: [解析] 由无穷小量的定义及洛必达法则,可得所以,二、解答题(总题数:15,分数:60.00)11.设f(x)在(x 0 -δ,x 0 +δ)有n阶连续导数,且f k (x 0 )=0,k=2,3,…,n-1;f (n) (x 0)≠0,当0<|h|<δ时,f(x 0 +h)-f(x 0 )=hf"(x 0 +θh)(0<θ<1),求的值.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:将f"(x 0 +θh)在x=x 0处展开成泰勒公式得代入原式得令h→0得所以12.设函数f(x)在(-∞,+∞)三阶可导,且存在正数M,使得|f(x)|≤M,|f"(x)|≤M对-∞,+∞)成立,求证:f"(x),f"(x)在(-∞,+∞)有界.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:将f(x+1)与f"(x-1)分别在点x展开成带拉格朗日余项的二阶泰勒公式得为估计|f"(x)|的大小,将上面两式相减并除以2即得于是即f"(x)在(-∞,+∞)有界.为估计|f"(x)|的大小,由式①+式②得于是即f"(x)在(-∞,+∞)有界.13.设函数f(x)在(-∞,+∞)内连续,f(0)=0,且x,t∈(-∞,+∞)满足试求f(x)在(-∞,+∞)内的导函数f"(x).(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:当x≠0时,令xt=μ,可得于是,当x≠0时,,即由f(x)的连续性知可导,从而xf(x)可导,于是f(x)当x≠0时可导,且f(x)=xf"(x)+f(x)+2xsinx+x 2 cosx.由此可得f"(x)=-2sinx-xcosx,x≠0,求积分知,当x≠0时,利用f(x)在(-∞,+∞)内的连续性及f(0)=0,可得,得C=-1.于是f(x)=cosx-xsinx-1,不仅当x≠0时成立,而且对x=0也成立,即 f(x)=cosx-xsinx-1,x∈(-∞,+∞),故 f"(x)=-2sinx-xcosx,x∈(-∞,+∞).证明:(分数:4.00)(1).若f(x)在[a,b]上连续,则存在ξ∈(a,b) 2.00)__________________________________________________________________________________________ 正确答案:()解析:设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最小值,则有不等式两边同时除以(b-a)得到显然,介于函数f(x)的最大值和最小值之间.根据闭区间上连续函数的介值定理可知.在区间[a,b]上至少存在一点ξ,使得函数f(x)在该点处的函数值与相等,即等式两边同时乘以(b-a)可得结论得证.(2).若φ(x)有二阶导数,且满足φ(2)>φ(1)ξ∈(1,3),使得φ"(ξ)<0.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由第一小题知,至少存在一点η∈(2,3),使得,又,所以有φ(2)>φ(1),φ(2)>φ(η).因为φ(x)有二阶导数,所以由拉格朗日微分中值定理可知,至少存在一点ξ1∈(1,2),使得且至少存在一点ξ2∈(2,η),使得再由拉格朗日微分中值定理可知,至少存在一点ξ∈(ξ1,ξ2 ),使得14.设函数f(x)可导,且有f"(x)+xf"(x-1)=4,又求(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:对变限积分,需经过两次求导,方可得到f(x)的导数形式,而中含有x,需先换元再求导.可设u=xt,则所以即两边同时对x求导得再次对x求导得f"(x)+xf"(x-1)+2f(x-1)=24x 2 +6x,将f"(x)+xf"(x-1)=4代入得f(x-1)=12x 2 +3x-2,故15.设f(x)在[0,+∞)内可导,f(0)=1,且满足求(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:∫[f"(x)-f"(x)]e -x dx=∫f"(x)e -x dx-∫f"(x)e -x dx.由于∫f"(x)e -x dx=f"(x)e -x+∫f"(x)e -x dx,所以∫[f"(x)-f"(x)]e -x dx=f"(x)e -x +C.对于方程令x=0得f"(0)=f"(0)=1.对两边求导,有(1+x)f"(x)+f"(x)-(1+x)f"(x)-f(x)+f(x)=0,即 (1+x)f"(x)-xf"(x)=0.令p=f"(x),有即 lnp=x-ln(1+x)+lnC,所以,即又f"(0)=1,于是C=1,即,所以16.设质点P所受的作用力为F,其大小反比于点P到坐标原点O的距离,比例系数为k;其方向垂直于P、O的连线,指向如下图所示,试求质点P由点经曲线到点时,力F所做的功.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:设点P坐标为P(x,y),∠POB=θ,则故其中L为从点沿到点的一段.设,因故曲线积分①在第一象限与路径无关,可选择从A到B的直线段积分.所在的直线方程为,故17.求直线在平面π:x-y+2x-1=0上的投影直线L 0的方程,并求L 0绕y轴旋转一周所成曲面的方程.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:经过L作平面π1与π垂直,则π1与π的交线就是L在π上的投影,L的方向向量s={1,1,-1},π的法向量n={1,-1,2}是平面π1上的两个不共线向量,点p 0 (1,0,1)是L上一定点,设p 1(x,y,z)是平面π1上任一点,则共面,即即x-3y-2z+1=0.故L在π上的投影是为求L 0绕Y轴的旋转面,先把L 0表示为以Y为参数的形式,则旋转面的参数方程为消去θ得即旋转曲面的方程为4x 2 -17y 2 +4z 2 +2y-1=0.18.已知f(x,y)的2阶偏导存在且连续,且f(x,0)=1,f" yy(x,y)=x 2+2x+4,f" y(1,0)=-cos1,求f(x,y)的表达式.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:f" yy (x,y)=x 2 +2x+4两边对y积分得f" y (x,y)=(x 2 +2x+4)y+φ(x),①式①两边对x求偏导得则对φ"(x)取积分得所以(C为任意常数).代入点(1,0)得则,故对式②两边求积分:代入点(x,0),f(x,0)=C 1 =1,所以f(x,y)在点(0,0)处的连续性以及可微性.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:(1)因为sin(x 2 +y 2)≤x 2 +y 2,所以0≤|f(x,y)|≤|x+y|,且所以所以f(x,y)在点(0,0)处连续.(2)同理f" y (0,0)=1,因为所以式①为0,即f(x,y)在点(0,0)处可微.综上f(x,y)在点(0,0)处连续可微.4.00)(1). 2.00)__________________________________________________________________________________________ 正确答案:()解析:(x,y)≠(0,0)时,(2).f(x,y)在点(0,0)处是否可微?为什么? 2.00)__________________________________________________________________________________________ 正确答案:()解析:因为又因此在点(0,0)处连续,故f(x,y)在点(0,0)处可微,且微分为零.设u=u(x,t)有二阶连续偏导数,并满足其中a>0为常数.(分数:3.99)(1).作自变量代换ξ=x-at u对x,t的一、二阶偏导数与u对ξ,η的一、二阶偏导数的关系式.(分数:1.33)__________________________________________________________________________________________ 正确答案:()解析:由复合函数求导法求导得(2).导出u作为ξ,η的函数的二阶偏导数所满足的方程.(分数:1.33)__________________________________________________________________________________________ 正确答案:()解析:由第一小题中的式①、②及题设条件得即(3).求u(x,t).(分数:1.33)__________________________________________________________________________________________ 正确答案:()解析:把式③写成,即与η无关,h(ξ)是连续可微的任意函数,再对ξ积分一次,并注意到积分常数可依赖η,于是将u=f(ξ)+g(η)用变量x,t表示得u(x,t)=f(x-at)+g(x+at),其中,f(ξ),g(η)是任意二阶连续可微的函数.20.已知一个三角形的周长为16,求使它绕自己的一边旋转时所构成旋转体体积最大时的三角形。
谈谈应用等价无穷小巧解考研高等数学试题

谈谈应用等价无穷小巧解考研高等数学试题在数学分析,特别是求解考研高等数学试题的过程当中,等价无穷小是比较常用的概念与方法之一。
实践研究结果证实:借助于对等价无穷小相关方法的合理应用,能够在很大程度上实现对计算流程的简化。
特别是在高等数学考研试题当中,近年来,涉及到应用等价无穷小方法进行计算的题目越来越多,且所占分值也越来越多。
如何在遇到这部分题型的过程当中,合理应用等价无穷小方法进行作答,在确保计算精确性的同时,实现对解题时间的合理控制,这一问题备受考生、以及教师的特别关注与重视。
本文试针对以上相关问题做详细分析与说明。
1 等价无穷小基本概念分析[1]数学分析研究的最核心对象为函数,而在有关函数研究的过程当中,最主要的方法是极限。
通过对极限方法的应用,能够达到研究函数连续性、可微性、可积性的目的。
从而极限在分析数学试题中有着至关重要的地位。
在相关数学题,特别是极限问题的求解过程当中,借助于对等价无穷小方法的应用,能够通过代换方式使问题变得更加的简单化,从而使极限值更加容易求出。
常规意义上来说,在x→0的状态下,常见的等价无穷小定理包括以下几项内容:(1)sin x~x;(2)arc sin x~x(3)tan x~x(4)In(1+x)~x(5)(1+x)1/n-1~x/n(6)ex-1~x2 等价无穷小方法在考研高等数学试题中的应用分析(1)以2010年度,全国硕士研究生入学考试中“數学三”中的某选择题题目为例:若定义[1/x-(1/x-a)ex]=1。
则可以计算得出a取值为()。
该选择题当中给出了如下四个基本选项:A选项为0;B选项为1;C选项为2;D选项为3。
考生在求解该题目的过程当中,就可以应用等价无穷小方法完成对该题目的解答。
具体的求解方式为:对于该等式:[1/x-(1/x-a)ex]=1而言,可以通过拆分“a”数值的方式,将整个等级进行拓展。
拓展后的等式为:[1/x(1-ex)+aex]=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用等价无穷小巧解考研高等数学试题
作者:黄英芬龙红兰
来源:《中国科教创新导刊》2013年第16期
摘要:在考研高等数学试题当中,“极限”知识点所占考核比重逐年提升,对考生考试成绩有着决定性的影响。
掌握“极限”知识点的相关计算方法,备受考生的关注与重视。
在现阶段,等价无穷小被证实能够达到合理提高“极限”知识点相关题目解题精确性与速度的目的。
本文在简要分析等价无穷小解题方法的基础之上,结合考研高等数学试题,就如何应用等价无穷小解考研高等数学试题这一问题展开了较为详细的分析与阐述,希望能够引起各方人员的参考与关注,从而为考生解答相关试题题目提供一定的参考与借鉴。
关键词:等价无穷小考研高等数学解题方法分析
中图分类号:G64 文献标识码:A 文章编号:1673-9795(2013)06(a)-0047-01
在数学分析,特别是求解考研高等数学试题的过程当中,等价无穷小是比较常用的概念与方法之一。
实践研究结果证实:借助于对等价无穷小相关方法的合理应用,能够在很大程度上实现对计算流程的简化。
特别是在高等数学考研试题当中,近年来,涉及到应用等价无穷小方法进行计算的题目越来越多,且所占分值也越来越多。
如何在遇到这部分题型的过程当中,合理应用等价无穷小方法进行作答,在确保计算精确性的同时,实现对解题时间的合理控制,这一问题备受考生、以及教师的特别关注与重视。
本文试针对以上相关问题做详细分析与说明。
1 等价无穷小基本概念分析[1]
数学分析研究的最核心对象为函数,而在有关函数研究的过程当中,最主要的方法是极限。
通过对极限方法的应用,能够达到研究函数连续性、可微性、可积性的目的。
从而极限在分析数学试题中有着至关重要的地位。
在相关数学题,特别是极限问题的求解过程当中,借助于对等价无穷小方法的应用,能够通过代换方式使问题变得更加的简单化,从而使极限值更加容易求出。
常规意义上来说,在x→0的状态下,常见的等价无穷小定理包括以下几项内容:
(1)sin x~ x;
(2)arc sin x~ x
(3)tan x~ x
(4)In(1+x)~ x
(5)(1+x)1/n-1~ x/n
(6)ex-1~ x
2 等价无穷小方法在考研高等数学试题中的应用分析
(1)以2010年度,全国硕士研究生入学考试中“数学三”中的某选择题题目为例:若定义[1/x-(1/x-a)ex]=1。
则可以计算得出a取值为()。
该选择题当中给出了如下四个基本选项:A选项为0;B选项为1;C选项为2;D选项为3。
考生在求解该题目的过程当中,就可以应用等价无穷小方法完成对该题目的解答。
具体的求解方式为:
对于该等式:[1/x-(1/x-a)ex]=1而言,可以通过拆分“a”数值的方式,将整个等级进行拓展。
拓展后的等式为:[1/x(1-ex)+aex]=1。
进一步拆分该等式,可按照如下步骤,得出有关a取值的等式。
[1/x(1-ex)+aex]=1
(拆分中括号中未知数,构建两个联立lim式)
1/x(1-ex)+aex
(前半部分为lim式保持不变,对后半部分式进行拓展处理)
1/x·(-x)+a
(进一步推定可直接简化为有关a取值的等式)
-1+a=1
由此可以推定a取值应当为2。
故在此过程当中,选择C答案为正确答案。
在上述解题过程当中不难发现:之所以能够仅通过五次操作步骤,得出正确的答案,就在于解题过程当中充分应用了等价无穷小的基本定理:即在x→0的状态下,ex-1~x。
由此达到了简化解题步骤的目的。
(2)以2005年度,全国硕士研究生入学考试中“数学三”中的某选择题题目为例:求解极限x sin2x/x2+1的具体数值。
考生在求解该题目的过程当中,就可以通过应用等价无穷小基本定义的方式,完成对该式最终答案的计算。
具体的解题思路,以及计算方式如下所示。
对于该式x sin2x/x2+1而言,为更加简便的实现对其取值数值的计算,则需要按照拆分式中未知数的方式完成解题。
首先,可以通过对sin的简化,将原式转化成为:x 2x/x2+1。
进一步解题方式为:
x 2x/x2+1
(变化该表达式当中x的求解位置,可构建如下式)
2 x/x2+1
通过上述分析不难发现:对于待求解式:x sin2 x/x2+1而言,在借助于等价无穷小方法对该式进行转化的基础之上,原式等价为:2 x/x2+1,即最终计算结果应当为2。
显然:在解题过程当中,通过对等价无穷小基本定理“在x→0的状态下,sin2 x/x2+1~2 x/x2+1”的应用,能够更简便的计算出结果。
3 结语
在考研高等数学解题作答的过程当中,应用等价无穷小方法进行相关题目的解题,直接关系着考生考试成绩的高低。
等价无穷小解题方法中的替换有着极为突出的优势,充分认识,并掌握此种解题方法的基本性质,能够使大量复杂的题目变得更加的简单化,在保障解题精确性的同时,确保解题时间的最短化。
总而言之,本文针对有关应用等价无穷小解答考研高等数学试题过程中所涉及到的相关问题做出了简要分析与说明,希望能够引起各方特别关注与重视。
参考文献
[1] 黄爱辉,陈湘涛.决策树ID3算法的改进[J].计算机工程与科学,2009,31(6):109-111.
[2] 刘萍.微积分形式不变性公式在教学中的应用[J].西南师范大学学报:自然科学版,2012,37(6):233-236.
[3] 祝微,杨春艳.等价无穷小代换定理的拓展[J].长春师范学院学报:自然科学版,2010,29(1):12-14.
[4] 龚萍.等价无穷小的性质及其运用推广[J].河北理工大学学报:自然科学版,2009,31(3):102-105.
[5] 郭竹梅,张海燕.等价无穷小的性质及其在极限运算中的应用[J].河北北方学院学报:自然科学版,2010,26(6):15-19.。