电气专业英语翻译
电气工程及自动化专业英语考试翻译课文Electric Power Systems 电力系统3.1

Section 1 Introduction 第一节介绍The modern society depends on the electricity supply more heavily than ever before.现代社会比以往任何时候对电力供应的依赖更多。
It can not be imagined what the world should be if the electricity supply were interrupted all over the world. 如果中断了世界各地的电力供应,无法想像世界会变成什么样子Electric power systems (or electric energy systems), providing electricity to the modern society, have become indispensable components of the industrial world. 电力系统(或电力能源系统),提供电力到现代社会,已成为产业界的不可缺少的组成部分。
The first complete electric power system (comprising a generator, cable, fuse, meter, and loads) was built by Thomas Edison –the historic Pearl Street Station in New York City which began operation in September 1882. 托马斯爱迪生建立了世界上第一个完整的电力系统(包括发电机,电缆,熔断器,计量,并加载)它就是位于纽约市具有历史意义的珍珠街的发电厂始于1882年9月运作。
This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly 1.5 km in radius. The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system. 这是一个直流系统,由一个蒸汽发动机驱动的直流发电机其供电面积约1.5公里至59范围内的客户。
电气工程及其自动化专业英语第一章课文翻译

第一章第一篇sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged. 我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于 1.602100×10-12C,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
We consider the flow of electric charges. A unique feature offlow of negative charges, as Fig.l-1 illustrates. This convention was introduced by Benjamin Franklin (l706~l790), the American scientist and inventor. Although we now know that current in metallic conductors is due to negatively charged electrons, we will follow the universally accepted conventionthat current is the net flow of positive charges. Thus, Electriccurrent is the time rate of charge, measured in amperes (A).Mathematically, the relationship among current i , charge q , andtime t is 当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向time in several ways that may be represented by different kindsof mathematical functions 我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电气专业英语单词翻译

A priori knowledge 先验知识Actuator 执行器Ad hoc 尤其关于Addition 加Ambient 环境的Americana 美国志书Analog-to-digital converter ,模拟数字转换器Antenna 天线Arrangement 方案Automate 使自动化Averaging 求平均值Be subtracted from 减Binary 二进制的Bus network 总线网Carbon-filament lamp 碳丝灯泡Carrier frequency 载频Carrier sense multiple access with collision detection 载波监听,多址访问Cellular telephone 蜂窝式电话系统Circuit components 电路元件Circuit diagram 电路图Circuit parameters 电路参数Close-loop control 闭环控制Common media 公共媒体Common reference 参考点Conductance 电导Conductor 导体Consistently 稳定,协调Constant coefficient system 常系数系统Control installation 控制装置Convention 惯例Conventional 常见的Conversion 转换Correct 校正Corresponding to 相应的Crossbar switch 纵横切换器Differential input 差动输入Differentiation 微分Digital-to-analog converter 数字模拟转换器Dimensional 量纲的Direct-current circuit 直流电路Discrete-time system 离散时间系统Discrimination 分辨力鉴别力Displacement current 位移电流Distinction 区别Disturb 扰动Dummy 假的,假装的Dynamic behavior 动态行为Electric circuit 电路Electric energy 电能Electrical device 电气设备Electrical pressure transducer 压电传感器Electromotive force 电动势Electronic analog 电子模拟Encyclopedia 百科全书Energy converter 电能转换器Energy source 电源Ergonomic 人类工程学的Error 误差Excursion 偏差Existing value 实际值External characteristic 外特性Facsimile 传真Factor 系数,因率数Feedback 反馈Feedback component 反馈元件Frequency counter 频率计数器Frequency-domain 频域Function 功能Generator 发电机Graphic panel 图式仪表盘Heating appliance 电热器High definition television 高清电视Hybrid system 混合系统Ideal amplifier 理想放大器Immunity 不敏感性Income 输入Indicator 指示Inertia 惯性Inertia reference frame 惯性参考坐标系Infinite voltage gain 无穷大电压增益Initial voltage 初始电压Input quantity 输入量Integrated service digital network综合业务数据网Integration 积分Internal combustion engine 内燃机Interruption 阻断Intervention 介入Inverting amplifier 反相放大器Inverting terminal 反相端Linear vector space 线性向量空间Linearization 线性化Load characteristic 负载特性Load resistance 负载特性Logic level 逻辑电平Logistic 后勤的Lower limit on the integration 积分下限Low-order system 低阶系统Low-pass filter 低通滤波器Machine tool 机床Magnetic and electric field 电磁场Manual 手工Manufacturer’s data sheet 铭牌Mathematical operation 数字运算Measuring technique 测试技术Megohm 兆欧Metal-filament lamp 金属丝灯泡Metropolitan area network 城域网Microvolt 微伏Modern control theory 现代控制理论Multiplexer 多路切换器Multiplication 乘Negative-feedback signal 负反馈信号Noise 噪声Noninverting terminal 非反相端Nonlinear 非线性的Off-set 失常点Offset=bias 偏置On-line system 联机系统Ono-linear characteristics 非线性特性Open loop gain 开环增益Open-loop control 开环控制Operational amplifier 运算放大器Optimal control 最优控制Opto-isolator 观点耦合器Order 数量级Outset 开始Parallel digital signal 并行数字信号Pervasive 普遍性的Phase reversal 反相Phase-plane method 像平面方法Potentiometer 电位计Preset 预先装置Primary cell 原生电池Private networks 专业网络Public network 公用网络Radix-weighted 基数加权Rated 额定的Research and design 研发Resolution 分辨力Ring network 环形网Scaling 量程调整Schematic 纲要的Schmitt-trigger 施密特触发器Secondary cell 再生电池Self-(or mutual-) induction 自(互)感Self-acting 自动做Self-moving 自运动Servooperated null-balance potentiometer 伺服驱动零平衡电位差计Shaft encoder 转轴编码的Shunt connection 并联连接Signal conditioning 信号调理Signal conditioning 信号处理Simultaneous equations 联立方程Single-ended output 单端输出Sink 灌入Source 从出来Span 量程Specification 参数Square root extraction 开平方State variable method 状态变量方法Storage battery 蓄电池Strain gage 应变仪Strip chart 长条记录纸Substrate 底层基片Subtraction 减Synchros 感应同步器System buses 系统总线Telecommunication 远程通信Terminal voltage 端电压The dielectric 电介质Time-domain technique 时间域技术Time-invariant 定常的Time-varying parameter 时变参数Timing circuit 计时电路Token 令牌Topology 拓扑Transducer 传感器Transfer function 传递函数Transformer 变压器Triangular symbol 三角符号Uncertainty 不确定性Unidirectional current 单方向性电流Upgrade 升级Virtual 虚的Virtual ground 虚地Voltage drop 电压降Volt-ampere characteristics 伏安特性Wire 导线Zero adjustment 零位调整。
电气专业英语课文翻译

An electric circuit (or network) is an interconnection of physical electrical device. The purpose of electric circuits is to distribute and convert energy into some other forms. Accordingly , the basic circuit components are an energy source (or sources), an energy converter (or converters) and conductors connecting them. 电路(或者网络)是物理电气设备的一种互相连接。
电路的目的是为了将能量分配和转换到另外一种形式中。
因此,基本的电路元件包括电源、电能转换器以及连接它们的导体。
式中。
因此,基本的电路元件包括电源、电能转换器以及连接它们的导体。
An energy source (a primary or secondary cell, a generator and the like) converts chemical, mechanical, thermal or some some other other other forms forms forms of of of energy energy energy into into into electric electric electric energy. energy. An energy energy converter, converter, converter, also also also called called called load load load (such (such (such as as as a a a lamp, lamp, lamp, heating heating appliance or electric motor), converts electric energy into light, heat, mechanical work and so on. 电源(原生电池或者再生电池、发电机等类似装备)将化学能量、机械能量,热能或者其他形式的能量转换成电能。
电气信息类专业英语翻译

Lesson 1 electronic network1、短语及词汇:Electronic circuit or network ——电路或电网络Passive network ——无源网络 active network ——有源网络V oltage source ——电压源 current source ——电流源in the case of …——就…来说 Rather than ——是…而不是… of interest ——有价值的;使人感兴趣的;有意义的;2、重点句型(1)in the case of a resistor, the voltage-current relationgship is given by ohm ’s law, which states that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance.就电阻来说,电压电流的关系由欧姆定律决定。
欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值(2)it may be that the inductor voltage rather than the current is the variable of interest in the circuit.或许在电路中,人们感兴趣的是电感电压而不是电感电流3、文章内容翻译(见参考译文并在课堂上讲解)对应译文:电网络电路或电网络是由电阻、电感和电容等器件以某种方式联接在一起所组成的。
如果电网络中不包含任何能源,比如电池和发电机,就叫做无源网络。
相反,如果存在一个或多个能源,则组合的系统(电网络)则称为有源网络。
当研究电网络的特性时,我们感兴趣的是电路中的电压和电流。
既然网络是由无源元件组成的,我们就必须首先来定义它们的电特性。
专业英语13章 电气工程 英语翻译

12.3 Grounding of Electrical SystemsIn general, most electrical systems must be grounded. The purposeFig. 12.4 Secondaryhigh-voltage radial distribution systemof grounding is to limit the magnitude of voltage caused by lighting, momentary surges, andaccidental contact with higher voltages. System grounds must be seaweed to provide a path of minimum impedance in order to ensure the operation of over-current devices when a ground fault occurs. Current should not flow through the grounding conductor during normal operation. Direct-current systems generally have the grounding conductor connected to the system at the supply station, and not at the individual service. Alternating-current systems, on the ether hand, must be grounded on die supply side of the main disconnect al each individual service. For specific information an the location and methyl of funding, refer to NEC Article 250.(a) Secondary high-voltage distribution system; high-voltage radical. low-voltage loop(b) Consumer distribution system withhigh-voltage and low-voltage loops Fig.12.5 12.4 Grounding of Electrical EquipmentMetal conduit and cases which enclose electrical conductors must be grounded. If the ungrounded (hot) conductor comes in contact with a metal enclosure which is not grounded, a voltage will be present between the enclosure and the ground. This presents a potential hazard. Persona comic in contact with the enclosure and ground will complete a circuit.All non-current-carrying metal parts of electrical installations should be tightly bonded together and connected to a grounding electrode. Good electrical continuity should be ensured through all metal enclosures. The current caused by accidental grounds will be conducted through the enclosures, the grounding conductor, and the grounding electrode to the earth. If the current is false enough, it mill cause the over-current device to open.12.5 Ground Fault ProtectionA ground-fault protector (GFP) is a device which senses ground faults and opens the circuit when the currant to ground reaches a predetermined value. A ground-fault circuit interrupter (GFCI) is a device which opens the circuit when very small currents flow to ground.There is no way to determine in advance the impedance of an accidental ground. Most circuits are protected by 15 A(ampere) or largerover-current devices. If the impedance of a ground fault is low enough, such devices willopen the circuit. What about currents of less than 15 A? It has been proven that currents as small as 50 mA through the heart, lungs, or brain can be fatal.Electrical equipment exposed to moisture or vibration may develop high-impedance grounds. Arcing between a conductor and the frame of equipment may cause a fire, yet the current may be less than 1 ampere.Leakage current caused by dirt and /or moisture may take place between the conductor and the frame. Portable tools are frequently not properly grounded. and the only path to ground is through the body of the operator.The ground-fault circuit interrupter was developed to provide protection against ground-fault currents of less than 15 A. the GFCI is designed to operate on two-wire circuits in which one of the two wires is grounded. The standard circuit voltages are 120 V and 277 V. The time it takes operate depends upon the value of the ground-fault current. Small currents of 20 mA or less may flow for up to 5 s before the circuit is opened. A current of 20 mA will causethe GECI to operate in less than 0.04 s. This time/current element provides a sufficient margin of safety without nuisance tripping.The GFCI operates on the principle that an equal amount of current is flowing though the two wires. When a ground fault occurs, same of the currant flowing through the ungrounded (hot) wire does not flow through the grounded wire; it completes the circuit though the accidental ground. The GFCI senses the difference in the value of current between the two wires and opens the circuit. GFCIs may be incorporated into circuit breakers installed in the line, or incorporated into a receptacle outlet or equipment.Ground-fault protectors are generally designed for use with commercial and/or industrial installations. They provide protection against ground-fault currents from 2 A (special types go as low as 50 mA) up to 2 000 A. GFPs are generally installed on the main, submain, and/or feeder conductors. GFCls are installed in the branch circuits. GFPs are generally used for three-wire, single-phase and for three-phase installations, while GECls are used for two-wire,single-phase circuits.A ground-fault protector installed on supply conductors must enclose all the circuit conductors, including the neutral, if present. When operating under normal conditions, all the current to end from the load flows through the circuit conductors. The algebraic sum of the flux produced by these currents is zero. When a phase-to-ground fault occurs, the fault currents returns through the grounding conductor. Under this condition an alternating flux is produced within the sensing device. When the flux current reaches a predetermined value, the magnetic flux causes a relay to actuate a circuit breaker.Sometimes the GFP is installed on the grounding conductor of the system. Under this condition, the unit senses the amount ofphase-to-ground current flowing in the grounding conductor. When the current exceedsthe setting of the GFP, it will cause the circuit breaker to open.The ground-fault protector is actually a specially designed current transformer connected to asolid-state relay.12. Three-Phase SystemsThe various three-phase systems in normal use will lie described. Under ideal conditions, these systems operate in perfect balance, and if a neutral conductor is present it carries zero current. In actual practice, perfectly balanced systems are seldom encountered. The electrical worker, therefore, must be to calculate values of current and voltage in unbalanced systems. Single-phase loads are frequently supplied from three-phase system. The single-phase load requirements vary considerably, making it virtually impossible to maintain a perfect balance.In a balanced three-phase system, the currents in the three lines are equal. The currents in the three phases are also equal. In other words,ILX=ILY=ILZ and Ip = Ip = Ip. if, however, ILX ≠ILF≠ILZ, then IPX≠IPY≠IPZ and the system is unbalanced (see Fig. 12. 6) .To calculate the line currents in an unbalanced three-phase system, the method in the following example may be used.Example 1Three pure resistance, single-phase loads are connected in a delta configuration across a three-phase supply, as illustrated in Fig. 12.6. Load X requires 30 A, load Y requires 50 A, and load Z requires 80 A. Calculate the current through each line wire.Example 1 applies to loads of 100 percent power factor connected in delta. With loads of different power factors, the phase angle will vary from 120°. For a wye connection, the line current is equal to the phase current.Some connections may be a combination of singe-phase and three-phase loads. Under these conditions, the phase angle between three-phase load and the single-phase load must be considered.12.7 Harmonic Effect of Fluorescent Lighting FixturesMost distribution systems in tile United States and Canada operate on a frequency of 60 Hz. certain types of electrical equipment produce secondary frequencies are multiples of the supply frequency. These secondary frequencies are called harmonics. For example, the second harmonic of 60 Hz is 120 Hz, the third harmonic is 180 Hz, and so onThe alienating flux developed by transformers,used in the ballasts of fluorescent lighting fixtures, produces a voltage which has a frequency of 180 hertz. This results in an additional current flowing in the supply conductors. The value of the current in the phase conductors is usual about 25 percent of the supply current. This third harmonic current adds to the supply current, causing a greater heating effect in the conductors. This increased heating effect is rather small, possibly in the vicinity of 3 - 5 percent.The effect on the neutral conductor is quite different. The harmonic currents from the phase conductors add together, causing a large increase in the neutral current. The heating effect is 75% - 80% greater than if the third harmonic current did not exist.CAUTION: When installing supply, feeder, and branch circuit conductors for heavy fluorescent loads, the size of the neutral conductor should be at least equal to that of the phase conductors.。
电气工程及其自动化专业英语课文翻译

unit1 taxe A 电力变压器的结构和原理在许多能量转换系统中,变压器是一个不了缺少的原件。
它使得在经济的发电机所产生电能并以最经历的传输电压传输电能,同时对于特定的使用者合适的电压使用电能成为可能。
变压器同样广泛的应用于低功率低电流的电子电路和控制电路中,来执行像匹配电源组抗和负载以求得最大的传输效率。
隔离一个电路与另一个电路在两个电路之间隔离直流电而保证交流电继续通道的功能。
在本质上,变压器是一个由两个或多个绕组通过相互的磁通耦合而组成的,如果这其中的一个绕组,原边连接到交流电压源将产生交流磁通它的幅值决定于原边的电压所提供的电压频率及匝数。
感应磁通将与其他绕组交链,在副边中将感应出一个电压其幅值将取决于副边的匝数及感应磁通量和频率。
通过使原副边匝数比例适应,任何所期望的电压比例或转换比例都可以得到。
变压器工作的本质仅要求存在与两个绕组相交链的时变的感应磁通。
这样的作用也可以发生在通过空气耦合的两组绕组中,但用铁心或其他铁磁材料可以使绕组之间的耦合作用增强,因为一大部分磁通被限制在与两个绕组交链的高磁导率的路径中。
这种变压器通常被称作为心式变压器。
大部分变压器都是这种类型。
以下的讨论几乎全部围绕心事变压器。
为减少铁心中的涡流所产生的损耗,磁路通常由一叠薄的叠片所组成。
如图1.1所示两种常见的结构形式用示意图表示出来。
芯式变压器的绕组绕在两个矩形铁心柱上,壳式变压器的绕组绕在三个铁心柱中间的那个铁心柱上,。
0.14毫米厚的硅钢片通常被用于在低频率低于几百Hz下运行的变压器中,硅钢片具有价格低铁心损耗小,在高磁通密度下,磁导率高的理想性能,能用做高频率低能耗的标准的通讯电路中的小型变压器的铁心是由被称为铁氧体的粉末压缩制成的铁磁合金所构成的。
在这些结构中,大部分的磁通被限制在固定的铁心中与两个绕组相交链。
绕组也产生多余的磁通,像漏磁通,只经过一个绕组和另外的绕组不相交链。
虽然漏磁通只是所有磁通的一小部分,但它在决定变压器的运行情况中起着重要的作用。
电气英语翻译专业词汇

电气工程词汇voltage电压diode二极管current电流potentiometer电位器resistance电阻step-uptransformer升压变压器reactance电抗powersystem电力系统,电网impedance阻抗transmissionline输电线conductance电导breaker断路器inductance电感relay继电器inductor电感器demodulator解调器capacitance电容radiator散热器capacitive电容性的,电容的ventilation通风,换气,通风装置shuntcapacitor并联电容器alternatingrelay交流继电器shunt并联integratedcircuitamplifier集成电路放大器series串联transistoramplifier晶体管放大器seriescircuit串联电路terminal端子parallelcircuit并联电路amplifier/magnifier放大器conductor导线cablen电缆v架设电缆voltmeter电压表fuse保险丝熔断器ammeter电流表interface接口arc电弧amplitude振幅幅度波幅chargen电荷v充电,带电,起电digitalsignal数字信号dischargev放电coupling耦合bridge电桥intermittent周期的valve电子管dislocation错位deenergize断路malfunction故障dielectric不导电的/绝缘的medium介质generator发电机screen屏蔽motor电动机dampen阻尼audion三极管socket插孔groundplane接地层alternatingcurrent交流电流three-phasen三相inverting反相potentialdifference电位差outofphase异相activeelement有源元件self-inductor自感idealindependentsource理想独立电源mutual-inductor互感watthourmeter感应线圈ampere安培frequencychanger变频器coulomb库仑controlswitch控制开关joule焦耳selectorswitch选择开关resistor电阻器currenttransformer电流互感器charger充电器powertransformer电力变压器semiconductor半导体phasevoltage相电压absolutevalue绝对值constantvoltagesource恒定电压源operatingsupplyvoltage电源工作电压专业词汇Isolator刀闸(隔离开关)定串联电容补偿Susceptance电纳voltagestability电压稳定regulator稳压器anglestability功角稳定admittance导纳installedcapacity装机容量rectifier整流器transformersubstation变电站busbar母线degreeofcompensation补偿度analogsignal模拟信号linedropcompensation(LDC)线路补偿asynchronism异步器synchronization同步circuittheorems电路定理armature电枢superpositiontheorem叠加定理attenuate衰减substitutiontheorem替代定理steam-turbine-drivengenerator气轮发thevenin-NortonTheorem戴维宁定理电机electromagnetism电磁;电磁学turbinegenerator涡轮发电机low-frequencyamplifier低频放大器magneticflux磁通量low-frequencybypass低频旁路oscilloscope示波器voltagedistortion交流电压校准器oscillator震荡器SingleChipMicroprocessor(SCM)单片机multimeter万用表alternatingcurrent(AC)交流/交流电overlay叠加效果adjustablepressureconveyor调压输送ratedpower额定功率机poweramplifier功率放大器allowableloadimpedance允许的负载阻activevoltage有效电压抗voltagetocurrentconverter电压电流closedloopcontrol闭环控制变换器closedloopvoltagegain闭环电压增益transformersubstation变电站closed-loopgain死循环增益regulation调节clutch离合器/联轴器degreeofcompensation补偿度commutator/rectifier整流器highvoltageshuntreactor高抗cutoffvoltage临界电压reactivepowercompensation无功补偿cut-involtage闭合电压three-columntransformer三绕组变压器dielectricadj.不导电的/绝缘的double-columntransformer双绕组变压器dielectricpuncture击穿power-factor功率因数electricaldurability电寿命(万次)voltagegrade电压等级electromagneticresonance电磁感应no-loadcurrent空载电流electromotiveforce电动力/电动势impedance阻抗positivecharge正电荷positivesequenceimpedance正序阻抗negativecharge负电荷negativesequenceimpedance负序阻抗AutomaticGenerationControl(AGC)自动zerosequenceimpedance零序阻抗发电控制susceptance电纳PowerSystemStabilizator(PSS)电力系stator定子统稳定器highvoltage高压polyphase多相(的) fixedseriescapacitorcompensation固iron-loss铁损armaturecircuit电枢电路interface接口dynamicresponse动态响应demodulator解调器timeinvariantadj.时不变的balanceindicator交流平衡指示器self-inductor自感currentcalibrator交流电流校准器mutual-inductor互感resistancebox交流电阻箱polarity极性voltagedistortion交流电压校准器ventilation通风,换气,通风装置standardresistor交流标准电阻器low-frequencybypass低频旁路directcurrent(DC)直流电powerpool联合电力系统;联合电网eddycurrent涡流electromagnetism电磁;电磁学corridor通路core/shellforme铁心式/壳式inducedcurrent感生电流potentialdifference电位差laminatedcore叠片铁芯dualin-linepackages双列直插式组件left-handrule左手定则automaticcontrolsystem自动控制系统volt-amperecharacteristics伏安特性torquemotor力矩电动机simulationanalysis仿真分析amplifierusingdiscrete分离元件放大onemachine-infinitybussystem单机器无穷大系统potentiometer电位器ElectricalMachinery电机学voltage-currentcharacteristic伏安特AutomaticControlTheory自动控制理论性ElectrotechnicsPrincipleofCircuits topology拓扑电工学termocouple热电偶ElectricalDriveandControl电力传动与exitation激发;激励;干扰控制air-gap气隙brownout节约用电polyphasen.多相adj.多相的cathode阴板、负极breakdowntorque失步转矩cationexchanger阳离子交换器locked-rotortorque止转转矩circuitbreaker电路断路器nominalfrequency额定频率circuitdiagram电路图subtransmission二次输电coaxialcable同轴电缆hydro-generation水力发电coolingtower冷却塔feeder馈线;馈电电路intermediaterelay中间继电器thermalunit热力机组jumper跳线、跨接activepowerbalance有功功率平衡lightningarrestor避雷器load-frequencycontrol(LFC)负荷频率installedcapacity装机容量控制instrumentpanel仪表盘sychronouscondenser同步调相机tap-changingtransformer可调分接头变压器tapcoil跳闸线圈magneticaircircuitbreaker磁吹断路器automaticgenerationcontrol(AGC)自动发电控制circuitboard电路板i nstantaneouspower瞬时功率lossofexcitation励磁损失manualreject手动切换overheadline架空线plantloadfactor电厂负荷因数potentialtransformer电压互感器overspeedtrip超速跳闸pyod热电偶safepotential安全电压shield屏蔽层WORD格式singlebladeswitch单刀开关starconnectedsystem星形连接制"Y"staticstorage静态存储器stationcapacity发电厂容量step-downtransformer降压变压器substation变电站、子站subtransmission二次输电thermalpowerplant热力发电厂thumbrule安培右手定则trip跳闸、断开starconnectedsystem星形连接制"Y"A/Cadaptor电源适配器analogtodigital模拟/数字转换acinducedpolarizationinstrument交流激电仪adjustablepressureconveyor调压输送机allowableloadimpedance允许的负载阻抗chargeneutrality电中性区ChargeTerminationVoltage允电端电压/允电端接电压circuitdiagram电路板circuitswitching电路交换closed-loopvoltagegain死循环电压增益connectors插接器constantvoltagemodulation稳压调节currentattenuation电流减衰装置CurrentbyPhase(AMP)每相电流currentlimitativerange电流限制范围cutoffvoltage临界电压cut-involtage闭合电压DischargeTerminationVoltage放电端电压dropoutvoltage跌落电压eddycurrent涡电流electormagneticbrakingsytem电磁制动系统electricdipole电偶极子electricshielding电屏蔽FrequencyHopping跳频input-outputcontrolsystem(IOCS)输入输出控制系统offsetvoltage失调电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章第一节燃煤发电厂在化石燃料电厂中 煤 石油和天然气在炉内燃烧 燃烧产生的热能将水加热并把它转化为蒸汽 蒸汽用来驱动与发电机机械耦合的涡轮机。
典型燃煤发电厂的示意图如图8-1所示。
将发电厂的运行过程简单描述如下。
煤从储煤场取出后送入磨煤机 从磨煤机出来的煤粉与预热过的空气混合后吹入炉内燃烧。
包含一套复杂管道和汽包的炉子叫做锅炉 水泵将水送入锅炉 在锅炉内 水的温度上升直到蒸发成蒸汽。
蒸汽流向涡轮机 燃烧烟气在送入机械和静电除尘器除去99%的固体颗粒 灰 后派往烟囱。
上面描述的以煤粉 空气和水作为输入以蒸汽作为输出的单元可以叫做蒸汽发生单元 锅炉或蒸发器。
当考虑燃烧过程时 常用术语“锅炉” 而考虑水—汽循环时 常用“蒸发器”一词。
典型压力为3500psi 温度为1050度F的蒸汽通过关断阀门和控制阀门送给汽轮机 蒸汽的热能由汽轮机转化为机械能。
从汽轮机出来的乏汽在一个叫做“冷凝器”的热交换器内冷却 然后作为给水再次送回锅炉。
控制阀门允许汽轮发电机组通过调节蒸汽流量而改变输出功率。
关断阀门起一个保护作用 正常时它是全开的 如果电气输出功率突然降低 由于断路器动作 他可以突然关断以防止汽轮发电机超速 但此时控制阀门不关闭。
图8-1所示为“单级”汽轮机 但实际中采用更为复杂的“多级”布置以获得相对高的热效率。
图8-2所示为代表性的“多级“布置汽轮机示意图。
在这个多级布置中 四个蒸汽压力不同的涡轮机在机械以级联的排列形式连接在一起。
在惯常的的流程中 从锅炉 过热器 出来的高压蒸汽进入高压 HP 缸。
蒸汽从高压缸出来被送回锅炉的再热器 然后送入中压 IP 缸。
蒸汽离开中压缸后 压力很低体积膨胀很大 被送入低压 LP 缸。
从低压缸出来的乏汽在冷凝器中被冷却 然后作为锅炉给水用从汽轮机中抽出的蒸汽预热后 通过给水泵送回锅炉。
燃煤发电厂的净效率通常低于40% 也就是煤的化学能转化成电能的比例低于40% 。
尽管这个数字与大约30%的工业平均值相比具有一定的优越性 但是超过60%的化石燃料能量被转化为废热。
为了提高效率和节约一次能源 热电联产系统被长期采用 这种系统可以同时生产电能 用于工业用途或室内加热的蒸汽。
在这种系统中 总能量效率已高达60%~65%。
与燃煤电厂相关的一些问题是煤的开采与运输带来的安全危害和其他社会成本。
燃煤电厂与其他类型化石燃料电厂共同产生的环境问题包括酸雨和温室效应。
第6章(6)-3)Section 3 Operation and Control of Power Systems 第3节操作和控制的电力系统The purpose of a power system is to deliver the power the customers require in real time, on demand, within acceptable voltage and frequency limits, and in a reliable and economic manner. 该系统的目的,权力是为客户提供电力的时间为客户需要实际需求,对,在可接受的电压和频率的限制,在一个可靠和经济的方式。
In normal operation of a power system, the total power generation is balanced by the total load and transmission losses. 在电力系统正常运行的,总发电是平衡的总负荷和传输的损失。
The system frequency and voltages on all the buses are within the required limits, while no overloads on lines or equipment are resulted. 该系统的频率和电压的所有公共汽车都在规定的限额,而没有超载或设备上线造成的。
However, loads are constantly changed in small or large extents, so some control actions must be applied to maintain the power system in the normal and economic operation state. 但是,负载不断变化幅度小或大,所以一些控制行动必须适用于维持在正常和经济运行状态的电力系统。
Optimal economic operation 优化经济运行It is an important problem how to operate a power system to supply all the (complex) loads at minimum cost. 这是一个重要的问题如何操作电源系统,以提供所有的负载以最低的成本(复杂)。
The basic task is to consider the cost of generating the power and to assign the allocation of generation ( P Gi) to each generator to minimize the total "production cost" while satisfying the loads and the losses on the transmission lines. 其基本任务是考虑发电成本的生成和分配产生的分配性(P基)每个发电机,以尽量减少总的“生产成本”,同时满足负载和传输线路上的损失。
The total cost of operation includes fuel, labor, and maintenance costs, but for simplicity the only variable costs usually considered are fuel costs. The fuel-cost curves for each generating unit are specified, the cost of the fuel used per hour is defined as a function of the generator power output. When hydro-generation is not considered, it is reasonable to choose the PGi on an 总的经营成本,包括燃料,劳动和维修费用,但只有简单的可变成本通常被认为是燃料成本。
曲线每个机组的燃料成本是指定的,时间成本占燃料使用的是输出功率定义为一个函数的发电机。
当水文一代是不考虑它是合理的选择上一的PGI instantaneous basis (ie always to minimize the present production cost rate). 瞬间的基础上(即始终以减低目前的生产成本率)。
With hydro-generation, however, in dry periods, the replenishment of the water supply may be a problem. 随着水电发电,但是,在干燥的时期,供应补给的水可能是个问题。
The water used today may not be available in the future when its use might be more advantageous. Even without the element of the prediction involved, the problem of minimizing production cost over time becomes much more complicated. 今天使用的可能不会在将来提供其使用时,可能会更有利的水。
即使没有参与预测的元素,最大限度地减少生产成本的问题变得更加复杂。
It should be mentioned that economy of operation is not the only possible consideration. 应当提及的是经济运行的不是唯一可能的考虑。
If the "optimal" economic dispatch requires all the power to be imported from a neighboring utility through a single transmission link, considerations of system security might preclude that solution .如果在“最佳”的经济调度要求所有的权力,是从邻国进口的效用,通过一个单一的传输链路,系统安全的考虑可能会排除这种解决办法。
When water used for hydro-generation is also used for irrigation, nonoptimal releases of water may be required. Under adverse atmospheric conditions it may be necessary to limit generation at certain fossil-fuel plants to reduce emissions. 当水发电用于水力发电也用于灌溉,水nonoptimal释放可能是必要条件。
不良大气下它可能需要限制某些植物代化石燃料,以减少排放。
In general, costs, security and emissions are all areas of concern in power plant operation, and in practice the system is operated to effect a compromise between the frequently conflicting requirements. 一般而言,成本,安全和排放装置运行一切权力领域关注,并在实践中系统的运作产生影响,要求折衷之间经常发生冲突。
Power system control 电力系统控制Power system control is very important issue to maintain the normal operation of a system. 电力系统的控制是很重要的问题,以维持系统的正常运行。