高一数学知识要点与公式总结高一数学公式大全总结高一数学知识点总结公式大全
高一数学公式及知识点总结

高一数学公式及知识点总结对于高一学生来说, 想要学好中学数学就要先驾驭好数学公式。
下面是我给大家带来的高一数学公式, 盼望能协助到大家!高一数学公式1【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))高一数学公式2等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且随意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}假设m,n,p,q∈N_,且m+n=p+q,那么有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且随意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、假设m,n,p,q∈N_,那么有:ap·aq=am·an,等比中项:aq·ap=2arar那么为ap,aq等比中项.记πn=a1·a2…an,那么有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,那么是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①假设m、n、p、q∈N,且m+n=p+q,那么am·an=ap_aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高一数学公式3三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高一数学公式及学问点总结。
高一知识点归纳数学公式总结大全

高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。
- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。
2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。
- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。
3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。
- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。
- 二次函数的图像关于直线 x = -b/(2a) 对称。
4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。
- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。
- 绝对值函数是奇函数,即 f(x) = -f(-x)。
5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。
- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。
- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。
二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。
2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。
3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。
总结高一数学公式与知识点

总结高一数学公式与知识点数学作为一门理科学科,具有广泛的应用场景和丰富的数学公式和知识点。
在高一学年,学生们接触到了许多重要的数学公式和知识点,本文将对这些数学公式和知识点进行总结与归纳。
一、代数与函数1. 一元一次方程:形如ax + b = 0的方程,其中a和b为常数,x为未知数。
解法常采用移项和因式分解。
2. 二次函数:一般形式为y = ax² + bx + c,其中a、b、c为常数,x为自变量,y为因变量。
重要概念包括顶点坐标、开口方向、图像与轴的关系等。
3. 指数函数:形如y = aˣ的函数,其中a为常数,x为自变量,y为因变量。
重点掌握指数函数的性质,如增减性、奇偶性等。
4. 对数函数:形如y = logₐ(x)的函数,其中a为底数,x为自变量,y为因变量。
主要掌握对数函数和指数函数的互反性质和基本运算法则。
5. 等差数列与等比数列:等差数列的通项公式为an = a₁ + (n - 1)d,等比数列的通项公式为an = a₁r^(n - 1)。
重要概念包括公差、首项、末项等。
二、几何与三角学1. 平面几何:研究平面图形的性质和变换。
重点掌握各种三角形的性质,如等腰三角形、直角三角形等,以及圆的性质和周长、面积的计算公式。
2. 空间几何:研究空间图形的性质和变换。
掌握长方体、正方体、棱柱、棱锥等图形的性质和体积、表面积的计算公式。
3. 三角函数:重要的三角函数包括正弦函数、余弦函数、正切函数等。
掌握其定义、性质和图像,以及三角函数的基本关系式和逆函数的性质。
4. 三角恒等式:包括正弦定理、余弦定理等。
熟练掌握这些恒等式的应用,解决与三角形相关的问题。
三、概率与统计1. 随机事件与概率:随机事件的基本概念和性质,概率的定义和基本运算法则。
掌握计算概率的方法,如加法原理、乘法原理等。
2. 统计指标:包括平均数、中位数、众数等。
了解其计算方法和应用场景,能够分析和解释统计数据。
四、计算与解题技巧1. 列方程与方程求解:通过将问题转化为方程,并巧妙地选择解法,求解方程获得问题的解。
高一数学知识点总结及公式大全

高一数学知识点总结及公式大全数学是一门让很多学生头痛的学科,不过只要我们掌握了一些基础知识和常用的公式,就能在数学学习上更加游刃有余。
以下是高一数学中一些重要的知识点总结及公式大全,希望对大家的学习有所帮助。
一、代数基础知识1. 整式的加减乘除运算- 括号法则:先算括号里的,再算指数,再算乘除,最后算加减。
- 合并同类项:将同类项合并,即将相同字母的幂相同的项合并。
2. 因式分解- 公因式提取法:将多项式中各项的公因式提取出来。
- 完全平方公式:将二次三项式进行因式分解,可用公式(a+b)²=a²+2ab+b²,以及(a-b)²=a²-2ab+b²。
- 公式法:根据特定公式进行因式分解,如二次三项式的平方差公式以及二次三项式的和差公式。
3. 分式的加减乘除运算- 通分:将分数的分母化为相同的最简形式,通分后再进行运算。
- 约分:将分数的分子与分母同时除以一个相同的数。
二、平面几何1. 直线和角度- 直线的倾斜度:一般表示为y=kx+b的形式,k即为直线的倾斜度,b为截距。
- 同位角、同旁内角、同旁外角等角度关系。
- 垂直、平行线的性质。
2. 三角形- 三角形的内角和定理:三角形内角的和为180°。
- 外角和定理:三角形的外角等于不相邻的两个内角的和。
- 直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 同心圆和相似- 同心圆的性质:同心圆的圆心相同,但半径不同。
- 相似三角形:两个三角形对应角相等,对应边成比例。
三、函数与方程1. 一次函数- 函数的概念:函数是一种具有特定输入与输出关系的数学对象。
- 一次函数的一般式:y=ax+b,其中a为斜率,b为截距。
2. 二次函数- 二次函数的一般式:y=ax²+bx+c,其中a、b、c为常数,a≠0。
- 二次函数的顶、凹性:若a>0,则函数开口向上,为正列抛物线;若a<0,则函数开口向下,为负列抛物线。
高一数学公式和知识点

高一数学公式和知识点数学是一门既抽象又具体的学科,数学公式和知识点是学习数学的基础。
高中数学涉及的公式和知识点更为复杂,需要我们掌握扎实的基础知识和灵活运用的能力。
本文将为大家总结高一数学中常用的公式和知识点,希望能对大家的学习有所帮助。
一、函数与方程1. 二次函数的顶点公式:对于二次函数 y=ax²+bx+c,顶点坐标为(-b/2a, f(-b/2a))。
2. 一元二次方程求根公式:对于一元二次方程 ax²+bx+c=0,其根的公式为 x=(-b±√(b²-4ac))/(2a)。
3. 一次函数的斜率公式:对于一次函数 y=ax+b,斜率为 a。
4. 一次函数的截距公式:对于一次函数 y=ax+b,截距为 b。
二、几何与三角1. 直角三角函数:正弦定理、余弦定理和正切定理是求解三角形边长和角度的基本工具。
2. 直角三角函数的关系:正弦函数sinθ=对边/斜边,余弦函数cosθ=邻边/斜边,正切函数tanθ=对边/邻边。
3. 利用勾股定理求解三角形:对于直角三角形abc,斜边c的平方等于直角两边a和b的平方和,即 c²=a²+b²。
4. 高中几何常见的面积公式:直角三角形面积公式 S=1/2 * 底 * 高,等腰三角形面积公式 S=1/2 * 底 * 高,平行四边形面积公式 S=底 * 高,圆面积公式S=πr²。
三、数列与数学归纳法1. 等差数列:公差为 d 的等差数列的通项公式为 an=a1+(n-1)d,其中 a1 为首项,an 为第 n 项。
2. 等差数列求和:对于公差为 d 的等差数列,前 n 项和公式为Sn=n/2(a1+an)。
3. 等比数列:公比为 q 的等比数列的通项公式为 an=a1*q^(n-1),其中 a1 为首项,an 为第 n 项。
4. 等比数列求和:对于公比为 q 的等比数列,无穷项和公式为 S=a1 / (1-q),其中 a1 为首项。
高一数学知识点归纳总结公式

高一数学知识点归纳总结公式数学是一门基础学科,对于高中学生来说,掌握好数学知识点和公式是非常重要的。
以下是高一数学知识点的归纳总结公式:1. 代数部分1.1 一元一次方程:ax + b = 0解的公式:x = -b/a1.2 一元二次方程:ax^2 + bx + c = 0解的公式:x = (-b ± √(b^2 - 4ac))/2a1.3 因式分解公式:- 平方差公式:a^2 - b^2 = (a + b)(a - b)- 二次三项式公式:x^2 + (a + b)x + ab = (x + a)(x + b)1.4 指数与对数公式:- a^m * a^n = a^(m+n)- a^m / a^n = a^(m-n)- (a^m)^n = a^(mn)- loga(m * n) = loga(m) + loga(n)2. 几何部分2.1 直线方程:- 点斜式:y - y1 = k(x - x1)- 两点式:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1) - 截距式:y = kx + b2.2 圆的方程:- 一般式:(x - a)^2 + (y - b)^2 = r^2- 标准式:(x - h)^2 + (y - k)^2 = r^22.3 三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc * cosA- 正切定理:tanA = a/b2.4 三角函数的和差化积公式:- sin(A ± B) = sinA * cosB ± cosA * sinB- cos(A ± B) = cosA * cosB ∓ sinA * sinB- tan(A ± B) = (tanA ± tanB) / (1∓ tanA * tanB) 3. 概率与统计部分3.1 排列与组合公式:- 排列公式:A(n, m) = n! / (n - m)!- 组合公式:C(n, m) = n! / (m! * (n - m)!)3.2 乘法原理与加法原理:- 乘法原理:若一个事件可分成k个独立的步骤,则该事件发生的总数为这k个步骤发生事件次数的乘积。
高一数学全册公式和知识点

高一数学全册公式和知识点一、代数基础知识1.1 二次方程及求根公式对于二次方程ax^2 + bx + c = 0,其中a≠0,其求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.2 因式分解因式分解是将一个多项式表示为几个因子相乘的形式。
常见的因式分解公式有:1.2.1 平方法公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^21.2.2 差平方公式:a^2 - b^2 = (a + b)(a - b)1.2.3 三项平方差公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2),a^3 - b^3 = (a - b)(a^2 + ab + b^2)1.2.4 公因式提取法:将多项式中的公因子提取出来。
1.3 二次函数的图像和性质二次函数的一般形式为y = ax^2 + bx + c,其中a≠0。
其图像为抛物线,开口方向由a的正负决定。
二次函数的顶点坐标为(h, k),其中h = -b / (2a),k = f(h) = f(-b / (2a))。
二次函数的对称轴为x = h。
二、平面几何知识与坐标系2.1 相交线及其性质2.1.1 垂直线性质:相交的两条线段垂直,则它们的斜率互为倒数,即k1 * k2 = -1。
2.1.2 平行线性质:平行线的斜率相等。
2.1.3 直线方程求解:可利用两点坐标、点斜式、斜截式等方法求解直线方程。
2.2 向量的加法与数量积2.2.1 向量的加法:两个向量的加法满足平行四边形法则,即向量A + 向量B = 向量C。
2.2.2 向量的数量积:向量A与向量B的数量积为A·B =|A||B|cosθ,其中θ为两向量夹角。
2.3 坐标系中的几何问题在直角坐标系中,可通过坐标计算点、线、多边形等的性质和关系。
三、函数与导数3.1 函数的概念及性质3.1.1 定义域与值域:函数f的定义域为其自变量的取值范围,值域为其因变量的取值范围。
高一数学必背公式及知识点汇总

高一数学必背公式及知识点汇总在高一数学学习中,掌握公式和知识点是非常重要的,它们是我们解题的基础。
下面将为大家总结一些高一数学中必须掌握的公式和知识点。
一、函数与方程1. 一次函数:函数表达式:y = kx + b直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)斜率与角度的关系: tanθ = k2. 二次函数:函数表达式:y = ax² + bx + c顶点坐标:(h, k)根与系数的关系:x₁ + x₂ = -b / a, x₁ * x₂ = c / a判别式:Δ = b² - 4ac根的个数与判别式的关系:Δ > 0 时,有两个不相等的实根;Δ = 0 时,有两个相等的实根;Δ < 0 时,无实根3. 指数与对数:指数运算法则:aᵇ * aᶜ = a⁽ᵇ⁺ᶜ⁾对数运算法则:log(mn) = logm + logn二、平面几何1. 勾股定理:a² + b² = c²(其中a、b为直角边,c为斜边)2. 直角三角形中的正弦定理、余弦定理:正弦定理:sinA / a = sinB / b = sinC / c余弦定理:c² = a² + b² - 2ab · cosC3. 三角函数的周期性及基本关系:正弦函数:f(x) = sinx余弦函数:f(x) = cosx正切函数:f(x) = tanx三、概率统计1. 事件发生的概率:P(A) = n(A) / n(S) (其中n(A)表示事件A 发生的次数,n(S)表示样本空间S中的元素个数)2. 排列组合:排列:从n个不同元素中,取出m(m≤n)个元素,按照一定的顺序排列,有多少种不同的排列方式组合:从n个不同元素中,取出m(m≤n)个元素,不考虑顺序,有多少种不同的组合方式3. 正态分布:正态分布的概率密度函数:f(x) = (1 / (σ * √(2π))) · exp((-1/2) * ((x - μ) / σ)²)正态分布的标准差和方差符号:σ和σ²四、解析几何1. 二维平面坐标系:直线的斜率:k = (y₂ - y₁) / (x₂ - x₁)中点坐标公式:(x,y) = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)2. 空间直角坐标系:三维空间两点间距离公式:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)以上是高一数学中的一些必背公式和知识点汇总,希望能对大家的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识要点与公式总结高一数学公式大全总结高一数学知识点总结及公式大
全
高一数学公式大全总结高一数学知识点总结及公式大全
高一数学知识要点与公式总结1)、理解集合中的有关概念 (1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号,表示。
(3)常用数集的符号表示:自然数集 ;正整数集、 ;整数集 ;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
2)、集合中元素的个数的计算: (1)若集合中有 n 个元素,则集合的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是。
3)、若 ; 则是的充分非必要条件 ; 若 ; 则是的必要非充分条件 ; 若 ; 则是的充要条件 ; 若 ; 则是的既非充分又非必要条件 ; 4)、原命题与逆否命题,否命题与逆命题具有相同的 ; 5)、反证法:当证明“若,则”感到困难时,改证它的等价命题“若则”成立,步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。
矛盾的 1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。
正面词语等于大于小于是都是至多有一个否定正面词语至少有一个任意的所有的至多有 n 个任意两个否定 1)、映射与函数: (1)映射的概念: (2)一一映射: (3)函数的概念: 2)、函数的三要素:,,。
(1)函数解析式的求法:①定义法(拼凑):②换元法:
③待定系数法:④赋值法: (2)函数定义域的求法:含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来
确定。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用 y 来表示 x,再由 x 的取值范围,通过解不等式,得出 y
的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
3)、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较 f(x) 与 f(-x)的关系。
f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数 f(x)对定义域内的任意 x 满足: f(x+T)=f(x),则 T 为函数 f(x)的周期。
其他:若函数 f(x) 对定义域内的任意x 满足: f(x+a)=f(x-a),则 2a 为函数 f(x)的周期. 应用:求函数值和某个区间上的函数解析式。
4)、图形变换:函数图像变换:(重点)要求掌握常见基
本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(?)有系数,要先提取系数。
如:把函数 y=f(2x) 经过平移得到函数 y=f(2x+4)的图象。
(?)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于 y 轴对称 y=f(x)→y=-f(x) ,关于 x 轴对称 y=f(x)→y=fx,把 x 轴上方的图象保留, x 轴下方的图象关于 x 轴对称 y=f(x)→y=f(x)把 y 轴右边的图象保留,然后将 y 轴右边部分关于 y 轴对称。
(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ω x+φ )具体参照三角函数的图象变换。
5)、反函数: (1)定义: (2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得 ;③写出反函数
的定义域(即的值域)。
(5)互为反函数的图象间的关系: (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题: (1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前项和,则其通项为若满足则通项公
式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是的函数,所以等差等比数列的某些问题可以化为函数问题求解. ②分类讨论思想:用等比数列求和公式应分为及 ;已知求时,也要进行分类; ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解. (4)在解答有关的数列应用题时,要认真地进行分析,
将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错. 1)、基本概念: 1、数列的定义及表示方法: 2、数列的项与项数: 3、有穷数列与无穷数列: 4、递增(减)、摆动、循环数列: 5、数列{an}的通项公式 an: 6、数列的前 n 项和公式 Sn: 7、等差数列、公差 d、等差数列的结构:三角形面积公式由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
平面上三条直线或球面上三条弧线所围成的图形。
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
面积公式: S=ah/2 (2).已知三角形三边 a,b,c,则S=√ =√
(3).已知三角形两边 a,b,这两边夹角 C,则 S=1/2 * absinC (4).设三角形三边分别为 a、b、c,内切圆半径为 r S=(a+b+c)r/2 (5).设三角形三边分别为 a、b、c,外接圆半径为 R S=abc/4R (6).根据三角函数求面积: S= absinC/2 a/sinA=b/sinB=c/sinC=2R 注:其中 R 为外切圆半径。