ANSYS软件APDL命令流建模的体会
ANSYS 房屋 框架结构模型 命令流 APDL

!********************提示********************************************!第一步:建立框架结构模型!第二步:框架结构施加重力荷载!第三步:框架结构施加活荷载!第四步:框架结构施加风荷载!第五步:框架结构荷载组合运算!第六步:框架结构模态分析!第七步:框架结构屈曲特征值分析!第八步:框架结构地震时程弹性分析!第九步:结束!采用地震波时间文件为:TIME.TXT!采用地震波文件分别为:AC_X.TXT/AC_Y.TXTFINISH/CLEAR/FILENAME,FRAME_SHEAR_WALL/TITLE, FRAME_SHEAR_WALL!************************************************************************** !************************第一步******************************************** !********************框架结构建模型***************************************/PREP7!采用单位为N/m/S 国际单位制!定义单元类型ET,1,BEAM4ET,2,SHELL63!定义实常数R,1,0.25,0.0052,0.0052,0.5,0.5R,2,0.2025,0.0034,0.0034,0.45,0.45R,3,0.06,0.0002,0.00045,0.3,0.2R,4,0.25,0.25,0.25,0.25R,5,0.1,0.1,0.1,0.1!定义材料参数MP,EX,1,3.0E10MP,NUXY,1,0.2MP,DENS,1,2500!关键点*DO,II,1,1K, 1+(II-1)*20, 0, 0, (II-1)*6K, 2+(II-1)*20, 6, 0, (II-1)*6K, 3+(II-1)*20, 12, 0, (II-1)*6K, 4+(II-1)*20, 17, 0, (II-1)*6K, 5+(II-1)*20, 0, 5, (II-1)*6K, 6+(II-1)*20, 6, 5, (II-1)*6K, 7+(II-1)*20, 12, 5, (II-1)*6K, 8+(II-1)*20, 17, 5, (II-1)*6K, 9+(II-1)*20, 0, 10, (II-1)*6K, 10+(II-1)*20, 6, 10, (II-1)*6K, 11+(II-1)*20, 12, 10, (II-1)*6K, 12+(II-1)*20, 17, 10, (II-1)*6K, 14+(II-1)*20, 6, 1.875, (II-1)*6K, 16+(II-1)*20, 6, 3.125, (II-1)*6K, 18+(II-1)*20, 6, 1.875, 3.9K, 20+(II-1)*20, 6, 3.125, 3.9*ENDDO*DO,II,1,10K, 1+II*20, 0, 0, (II-1)*3+6K, 2+II*20, 6, 0, (II-1)*3+6K, 3+II*20, 12, 0, (II-1)*3+6K, 4+II*20, 17, 0, (II-1)*3+6K, 5+II*20, 0, 5, (II-1)*3+6K, 6+II*20, 6, 5, (II-1)*3+6K, 7+II*20, 12, 5, (II-1)*3+6K, 8+II*20, 17, 5, (II-1)*3+6K, 9+II*20, 0, 10, (II-1)*3+6K, 10+II*20, 6, 10, (II-1)*3+6K, 11+II*20, 12, 10, (II-1)*3+6K, 12+II*20, 17, 10, (II-1)*3+6K, 13+II*20, 0, 1.875, (II-1)*3+6K, 14+II*20, 6, 1.875, (II-1)*3+6K, 15+II*20, 0, 3.125, (II-1)*3+6K, 16+II*20, 6, 3.125, (II-1)*3+6K, 17+II*20, 0, 1.875, (II-1)*3+6+1.5 K, 18+II*20, 6, 1.875, (II-1)*3+6+2 K, 19+II*20, 0, 3.125, (II-1)*3+6+1.5 K, 20+II*20, 6, 3.125, (II-1)*3+6+2 *ENDDO*DO,II,11,11K, 1+II*20, 0, 0, (II-1)*3+6K, 2+II*20, 6, 0, (II-1)*3+6K, 3+II*20, 12, 0, (II-1)*3+6K, 4+II*20, 17, 0, (II-1)*3+6K, 5+II*20, 0, 5, (II-1)*3+6K, 6+II*20, 6, 5, (II-1)*3+6K, 7+II*20, 12, 5, (II-1)*3+6K, 8+II*20, 17, 5, (II-1)*3+6K, 9+II*20, 0, 10, (II-1)*3+6K, 10+II*20, 6, 10, (II-1)*3+6K, 11+II*20, 12, 10, (II-1)*3+6K, 12+II*20, 17, 10, (II-1)*3+6K, 13+II*20, 0, 1.875, (II-1)*3+6K, 14+II*20, 6, 1.875, (II-1)*3+6K, 15+II*20, 0, 3.125, (II-1)*3+6K, 16+II*20, 6, 3.125, (II-1)*3+6K, 17+II*20, 0, 1.875, (II-1)*3+6+1.8 K, 18+II*20, 6, 1.875, (II-1)*3+6+2.5 K, 19+II*20, 0, 3.125, (II-1)*3+6+1.8 K, 20+II*20, 6, 3.125, (II-1)*3+6+2.5 *ENDDO*DO,II,12,12K, 1+II*20, 0, 0, 39.5K, 2+II*20, 6, 0, 39.5K, 3+II*20, 12, 0, 39.5K, 4+II*20, 17, 0, 39.5K, 5+II*20, 0, 5, 39.5K, 6+II*20, 6, 5, 39.5K, 7+II*20, 12, 5, 39.5K, 8+II*20, 17, 5, 39.5K, 9+II*20, 0, 10, 39.5K, 10+II*20, 6, 10, 39.5K, 11+II*20, 12, 10, 39.5K, 12+II*20, 17, 10, 39.5*ENDDO*DO,II,2,13L, (II-1)*20+1, (II-1)*20+2L, (II-1)*20+2, (II-1)*20+3L, (II-1)*20+3, (II-1)*20+4L, (II-1)*20+5, (II-1)*20+6L, (II-1)*20+6, (II-1)*20+7L, (II-1)*20+7, (II-1)*20+8L, (II-1)*20+9, (II-1)*20+10L, (II-1)*20+10, (II-1)*20+11L, (II-1)*20+11, (II-1)*20+12L, (II-1)*20+5, (II-1)*20+9L, (II-1)*20+6, (II-1)*20+10L, (II-1)*20+3, (II-1)*20+7L, (II-1)*20+7, (II-1)*20+11L, (II-1)*20+4, (II-1)*20+8L, (II-1)*20+8, (II-1)*20+12*ENDDO*DO,II,1,12L, (II-1)*20+1, II*20+1L, (II-1)*20+2, II*20+2L, (II-1)*20+3, II*20+3L, (II-1)*20+4, II*20+4L, (II-1)*20+5, II*20+5L, (II-1)*20+6, II*20+6L, (II-1)*20+7, II*20+7L, (II-1)*20+8, II*20+8L, (II-1)*20+9, II*20+9L, (II-1)*20+10, II*20+10L, (II-1)*20+11, II*20+11L, (II-1)*20+12, II*20+12*ENDDO*DO,II,1,1L, (II-1)*20+14, (II-1)*20+18L, (II-1)*20+16, (II-1)*20+20*ENDDO*DO,II,2,12L, (II-1)*20+13, (II-1)*20+17L, (II-1)*20+15, (II-1)*20+19L, (II-1)*20+14, (II-1)*20+18L, (II-1)*20+16, (II-1)*20+20*ENDDOA, 1, 21, 25, 5*DO,II,2,12A, (II-1)*20+1, II*20+1, II*20+5, (II-1)*20+5, (II-1)*20+15, (II-1)*20+19, (II-1)*20+17, (II-1)*20+13 *ENDDO*DO,II,1,12A, (II-1)*20+2, II*20+2, II*20+6, (II-1)*20+6, (II-1)*20+16, (II-1)*20+20, (II-1)*20+18, (II-1)*20+14 *ENDDO*DO,II,1,12A, II*20+1, II*20+2, II*20+6, II*20+5A, II*20+2, II*20+3, II*20+7, II*20+6A, II*20+3, II*20+4, II*20+8, II*20+7A, II*20+5, II*20+6, II*20+10,II*20+9A, II*20+6, II*20+7, II*20+11,II*20+10A, II*20+7, II*20+8, II*20+12,II*20+11*ENDDO!立柱网格划分LSEL,S,,,181,192 !底层立柱LATT,1,1,1LESIZE,ALL,,,10LMESH,ALLLSEL,S,,,192,324 !2~12层立柱LATT,1,2,1LESIZE,ALL,,,5LMESH,ALL!梁网格划分LSEL,S,,,1,180LATT,1,3,1,LESIZE,ALL,,,8LMESH,ALL!剪力墙网格划分LSEL,S,,,372 !外剪力墙两端、内剪力墙顶端LSEL,A,,,413LSEL,A,,,461LESIZE,ALL,,,8LSEL,s,,,418 !内剪力墙底端LSEL,A,,,420LESIZE,ALL,,,3LSEL,s,,,325 !内剪力墙底端内侧LSEL,A,,,326LESIZE,ALL,,,6LSEL,S,,,375 !剪力墙空洞顶部LSEL,A,,,379LSEL,A,,,383LSEL,A,,,387LSEL,A,,,391LSEL,A,,,395LSEL,A,,,399LSEL,A,,,403LSEL,A,,,407LSEL,A,,,411LSEL,A,,,415LSEL,A,,,419LSEL,A,,,423LSEL,A,,,427LSEL,A,,,431LSEL,A,,,435LSEL,A,,,439LSEL,A,,,443LSEL,A,,,447LSEL,A,,,451LSEL,A,,,455LSEL,A,,,459LSEL,A,,,463LESIZE,ALL,,,2!剪力墙网格划分ASEL,S,,,1,24AATT,1,4,2AMESH,ALL!楼板网格划分ASEL,S,,,25,96AATT,1,5,2AMESH,ALLNSEL,S,LOC,Z,0 !选取模型底端节点D,ALL,ALL !施加位移约束ALLSEL,ALL !重新选取所有节点/eshape,1.0/VIEW,1,1,1,1/ANG,1,270,XM,0/REPlotFINISH!************************************************************************** !************************第二步******************************************** !********************框架结构施加重力荷载********************************* !框架结构施加重力荷载ANTYPE,STATICNSEL,S,LOC,Z,0 !选取模型底端节点D,ALL,ALL !施加位移约束ALLSEL,ALL !重新选取所有节点ACEL,0,0,9.8SOLVEFINISH/POST1SET,FIRSTPLNSOL,U,Z,0,1FINISH!************************************************************************** !************************第三步******************************************** !*************框架结构施加楼面活荷载D=3KN/M^2***************************** !框架结构施加楼面活荷载D=3KN/M^2FINISH/SOLUANTYPE,STATICNSEL,S,LOC,Z,0 !选取模型底端节点D,ALL,ALL !施加位移约束ALLSEL,ALL !重新选取所有节点ACEL,0,0,9.8SOLVEFINISH/POST1SET,FIRSTPLNSOL,U,Z,0,1FINISH!************************************************************************** !************************第四步******************************************** !***********框架结构施加风荷载(基本风压=0.25KN/M^2,体形系数为1.0********** !框架结构施加风荷载(先Y方向,后X方向)分两次分别施加ANTYPE,STATIC*DIM,LOAD_1,ARRAY,12LOAD_1(1)=3.78,2.16,2.39,2.57,2.72,2.84,2.95,3.17,3.20,3.29,3.39,3.51*DIM,LOAD_2,ARRAY,12LOAD_2(1)=7.56,4.32,4.78,5.14,5.44,5.68,5.90,6.34,6.40,6.58,6.76,7.02*DIM,LOAD_3,ARRAY,12LOAD_3(1)=6.93,3.96,4.38,4.71,4.99,5.21,5.41,5.81,5.87,6.03,6.20,6.44*DIM,LOAD_4,ARRAY,12LOAD_4(1)=3.15,1.80,1.99,2.14,2.27,2.37,2.46,2.64,2.67,2.74,2.82,2.93*DIM,LOAD_A,ARRAY,12LOAD_A(1)=3.15,1.80,1.99,2.14,2.27,2.37,2.46,2.64,2.67,2.74,2.82,2.93*DIM,LOAD_B,ARRAY,12LOAD_B(1)=6.30,3.60,3.98,4.28,4.54,4.74,4.92,5.28,5.34,5.48,5.64,5.86*DIM,LOAD_C,ARRAY,12LOAD_C(1)=3.15,1.80,1.99,2.14,2.27,2.37,2.46,2.64,2.67,2.74,2.82,2.93*DO,II,1,12FK,1+20*II,FY,LOAD_1(II)*ENDDO*DO,II,1,12FK,2+20*II,FY,LOAD_2(II)*ENDDO*DO,II,1,12FK,3+20*II,FY,LOAD_3(II)*ENDDO*DO,II,1,12FK,4+20*II,FY,LOAD_4(II)*ENDDOSOLVEFKDELE,ALL,ALL !第二次施加风荷载,删除第一次的。
ANSYS APDL命令流学习参数化建模

第一天目标:熟悉ANSYS基本关键字的含义k --> Keypoints 关键点l --> Lines 线a --> Area 面v --> V olumes 体e --> Elements 单元n --> Nodes 节点cm --> component 组元et --> element type 单元类型mp --> material property 材料属性r --> real constant 实常数d --> DOF constraint 约束f --> Force Load 集中力sf --> Surface Force on nodes 表面载荷bf --> Body Force on Nodes 体载荷ic --> Initial Conditions 初始条件第二天目标:了解命令流的整体结构,掌握每个模块的标识!文件说明段/BATCH/TITILE,test analysis !定义工作标题/FILENAME,test !定义工作文件名/PREP7 !进入前处理模块标识!定义单元,材料属性,实常数段ET,1,SHELL63 !指定单元类型ET,2,SOLID45 !指定体单元MP,EX,1,2E8 !指定弹性模量MP,PRXY,1,0.3 !输入泊松比MP,DENS,1,7.8E3 !输入材料密度R,1,0.001 !指定壳单元实常数-厚度......!建立模型K,1,0,0,, !定义关键点K,2,50,0,,K,3,50,10,,K,4,10,10,,K,5,10,50,,K,6,0,50,,A,1,2,3,4,5,6, !由关键点生成面......!划分网格ESIZE,1,0,AMESH,1......FINISH !前处理结束标识/SOLU !进入求解模块标识!施加约束和载荷DL,5,,ALLSFL,3,PRES,1000SFL,2,PRES,1000......SOLVE !求解标识FINISH !求解模块结束标识/POST1 !进入通用后处理器标识....../POST26 !进入时间历程后处理器……/EXIT,SA VE !退出并存盘以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助/ANGLE !指定绕轴旋转视图/DIST !说明对视图进行缩放/DEVICE !设置图例的显示,如:风格,字体等/REPLOT !重新显示当前图例/RESET !恢复缺省的图形设置/VIEW !设置观察方向/ZOOM !对图形显示窗口的某一区域进行缩放第三天生成关键点和线部分1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:K,1,0,0,02.在激活坐标系生成直线LSTR,关键点P1,关键点P2例:LSTR,1,23.在两个关键点之间连线L,关键点P1,关键点P2例:L,1,2注:此命令会随当前的激活坐标系不同而生成直线或弧线4.由三个关键点生成弧线LARC,关键点P1,关键点P2,关键点PC,半径RAD例:LARC,1,3,2,0.05注:关键点PC是用来控制弧线的凹向??????5.通过圆心半径生成圆弧CIRCLE,关键点圆心,半径RAD,,,,圆弧段数NSEG例:CIRCLE,1,0.05,,,,46.通过关键点生成样条线BSPLIN,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6 例:BSPLIN,1,2,3,4,5,67.生成倒角线LFILLT,线NL1,线NL2,倒角半径RAD例:LFILLT,1,2,0.005(如果不是圆角呢?)8.通过关键点生成面A,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6,P7,P8... 例:A,1,2,3,4 (关键点有没有顺序?)9.通过线生成面AL,线L1,线L2,线L3,线L4,线L5,线L6,线L7,线L8,线L9,线L10例:AL,5,6,7,810.通过线的滑移生成面ASKIN,线NL1,线NL2,线NL3,线NL4,线NL5,线NL6,线NL7,线NL8,线NL9 例:ASKIN,1,4,5,6,7,8注:线1为滑移的导向线第四天目标:掌握常用的实体-面的生成生成矩形面1.通过矩形角上定位点生成面BLC4,定位点X方向坐标XCORNER,定位点Y方向坐标YCORNER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH例:BLC4,0,0,5,3,02.通过矩形中心定位点生成面BLC5,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH注:与上条命令的不同就在于矩形的定位点不一样例:BLC5,2.5,1.5,5,3,03.通过在工作平面定义矩形X.Y坐标生成面RECTNG,矩形左边界X坐标X1,矩形右边界X坐标X2,矩形下边界Y坐标Y1,矩形上边界Y坐标Y2例:RECTNG,0,5,0,3生成圆面4.通过中心定位点生成实心圆面CYL4,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,圆面的内半径RAD1,内圆面旋转角度THETA1,圆面的外半径RAD2,外圆面旋转角度THETA2,圆面的深度DEPTH注:如要实心的圆面则不用RAD2,THETA2,DEPTH例:CYL4,0,0,5,3605.生成扇形圆面命令介绍如上例1实心扇形:CYL4,0,0,5,60例2扇形圆环:CYL4,0,0,5,60,10,60例3整的圆环:CYL4,0,0,5,360,10,360注:同时可通过定义圆面的深度以生成柱体6.通过在工作平面定义起始点生成圆面CYL5,开始点X坐标XEDGE1,开始点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2,圆面深度DEPTH例:CYL5,0,0,2,2,7.通过在工作平面定义内外半径和起始角度来生成圆面PCIRC,内半径RAD1,外半径RAD2,起始角度THETA1,结束角度THETA2 例:PCIRC,2,5,30,1808.生成面与面的倒角AFILLT,面1的编号NA1,面2的编号NA2,倒角半径RAD例:AFILLT,2,5,2下一讲:多边形面的生成第五天目标:掌握多边形面和体的生成1.生成多边形面命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA例:RPR4,4,0,0,0.15,30注:这条命令可通过定义不同的NSIDES生成三边形,四边形,...,八边形2.生成多边形体命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA,多边形的深度DEPTH例:RPR4,4,0,0,0.15,30,0.1注:多边形体和面命令唯一的不同就在于深度DEPTH的定义到此,关键点,线,面的生成讲解已结束,下一讲:体的生成第六天目标:掌握体的生成命令1.通过关键点生成体命令:V,关键点P1,关键点P2, P3, P4, P5, P6, P7, P8例:V,4,5,6,7,15,24,252.通过面生成体命令:V A,面A1,面A2, A3, A4, A5, A6, A7, A8, A9, A10例:V A,3,4,5,8,103.通过长方形角上定位点生成体命令:BLC4该命令前面在讲生成面的时候已作介绍,唯一的不同在于深度DEPTH的定义.4.通过长方形中心定位点生成面命令:BLC55.通过定义长方体起始位置生成体命令:BLOCK,开始点X坐标X1,结束点X坐标X2, Y1, Y2, Z1, Z2例:BLOCK,2,5,0,2,1,36.生成圆柱体基本命令通生成圆形面,不同在于DEPTH的定义基本命令:CYL4基本命令:CYL5基本命令:CYLIND7.生成棱柱基本命令通生成多边形,不同在于DEPTH的定义基本命令:RPR48.通过球心半径生成球体命令:SPH4,球心X坐标XCENTER,球心Y坐标YCENTER,半径RAD1,半径RAD2例:SPH4,1,1,2,5 9.通过直径上起始点坐标生成球体命令:SPH5,起点X坐标XEDGE1,起点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2例:SPH5,2,5,7,610.在工作平面起点通过半径和转动角度生成球体命令:SPHERE,半径RAD1,半径RAD2,转动角度THETA1,转动角度THETA2 例:SPHERE,2,5,0,6011.生成圆锥体命令:CONE,底面半径RBOT,顶面半径RTOP,底面高Z1,顶面高Z2,转动角度THETA1,转动角度THETA2例:CONE,10,20,0,50,0,180下一讲:布尔操作第七天目标:掌握常用的布尔操作命令1.沿法向延伸面生成体命令:VOFFST,面的编号NAREA,面拉伸的长度DIST,关键点增量KINC 例:VOFFST,1,2,,2.通过坐标的增量延伸面生成体命令:VEXT,面1的编号NA1,面2的编号NA2,增量NINC,X方向的增量DX,Y方向的增量DY,Z方向的增量DZ, RX, RY, RZ例:VEXT,1,5,1,1,2,2,3.面绕轴旋转生成体命令:VROTA T,面1的编号NA1,面2的编号NA2,NA3, NA4, NA5, NA6,定位轴关键点1编号PAX1,定位轴关键点2编号PAX2,旋转角度ARC,生成体的段数NSEG例:VROTAT,1,2,,,,,4,5,360,44.沿线延伸面生成体命令:VDRAG,面1的编号NA1,面2的编号NA2, NA3, NA4, NA5, NA6,导引线1的编号NLP1,导引线2的编号NLP2, NLP3, NLP4, NLP5, NLP6例:VDRAG,2,3,,,,,8,5.线绕轴旋转生成面命令:AROTA T,线1的编号NL1, NL2, NL3, NL4, NL5, NL6,定位轴关键点1的编号PAX1,定位轴关键点2的编号PAX2,旋转角度ARC,生成面的段数NSEG例:AROTAT,3,4,,,,,6,8,360,46.沿线延伸线生成面命令:ADRAG,线1的编号NL1,NL2, NL3, NL4, NL5, NL6,导引线1的编号NLP1, NLP2, NLP3, NLP4, NLP5, NLP6例:ADRAG,3,,,,,,87.同理可以延伸关键点,相应的命令如下: LROTAT, NK1, NK2, NK3, NK4, NK5, NK6, PAX1, PAX2, ARC, NSEG LDRAG, NK1, NK2, NK3, NK4, NK5, NK6, NL1, NL2, NL3, NL4, NL5, NL6 各选项的含义雷同于上.8.延伸一条线命令:LEXTND,线的编号NL1,定位关键点编号NK1,延伸的距离DIST,原有线是否保留控制项KEEP例:LEXTND,5,2,1.5,09.布尔操作:加命令:LCOMB,线编号NL1,线编号NL2,是否修改控制项KEEP例:LCOMB,2,5注:对面和体的相应为:V ADD,AADD.选项的含义都类似10.布尔操作:粘接和搭接搭接的核心关键字为:OVLAP,随实体的不同略有不同,如:对体为VOVLAP对面为AOVLAP对线为LOVLAP粘接的核心关键字为:GLUE,随实体的不同略有不同,如:对体为VGLUE对面为AGLUE对线为LGLUE但其他的选项的含义是类似的,这里就不再累述.下一讲:移动,复制,映射,删除...第八天目标:掌握体素的移动,复制,删除,映射一.移动关键点命令:KMODIF,关键点编号NPT,移动后的坐标X,移动后的坐标Y,移动后的坐标Z例:KMODIF,5,0,0,2二.移动复制关键点命令:KGEN,复制次数选项ITIME,起始关键点编号NP1,结束关键点编号NP2,增量NINC,偏移DX,偏移DY,偏移DZ,关键点编号增量KINC,生成节点单元控制项NOELEM,原关键点是否被修改选项IMOVE例:KGEN,2,1,10,1,2,2,2,,,,注:IMOVE选项说明,设置为0时,不修改原关键点,即为复制,设置为1时,修改原关键点,即为移动,从而通过控制IMOVE选项实现移动或复制.三.移动复制线命:LGEN,ITIME,NL1,NL2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上四.移动复制面命:AGEN,ITIME,NA1,NA2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上五.移动复制体命令:VGEN,ITIME,NV1,NV2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上六.修改面的法向方向命令:ANORM,面的编号ANUM,单元的法向方向是否修改选项NOEFLIP 例:ANORM,2七.体素的删除基本的命令为:*DELE组合不同的关键字形成不同的命令如:KDELE,LDELE,ADELE,VDELE基本的命令格式为:*DELE,起始体素编号N*1,结束体素编号N*2,增量NINC,是否删除体素下层的元素选项KSWP如:LDELE,2,5,1,1八.体素的映射基本的命令为:*SYMM组合不同的关键字形成不同的命令如:KSYMM,LSYMM,ARSYM,VSYMM基本的命令格式为:*SYMM,映射轴选项NCOMP,起始体素编号N*1,结束体素编号N*2,增量NINC,关键点编号增量KINC,NOELEM, IMOVE如:VSYMM,X,1,10,1,,,,下一讲:网格划分常用命令。
ANSYS中的APDL命令

结合自身经验,谈ANSYS中的APDL命令(二)发表时间:2009-5-10 作者: 倪欣来源: e-works关键字: ANSYS APDL 命令流在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。
1.1 /prep7(进入前处理)定义几何图形:关键点、线、面、体(1).csys,kcnkcn , 0 迪卡尔坐标系1 柱坐标2 球4 工作平面5 柱坐标系(以Y轴为轴心)n 已定义的局部坐标系(2).numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstr(3).K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号(4).Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0” 如果附有节点及单元,则一起拷贝。
“1”不拷贝节点和单元imove:“0” 生成拷贝“1”移动原关键点至新位置,并保持号码,此时(itime,kinc,noelem)被忽略注意:MAT,REAL,TYPE 将一起拷贝,不是当前的MAT,REAL,TYPE(5).A, P1, P2, ……… P18 由关键点生成面(6).AL, L1,L2, ……,L10 由线生成面面的法向由L1按右手法则决定,如果L1为负号,则反向。
(线需在某一平面内坐标值固定的面内)(7).vsba, nv, na, sep0,keep1,keep2 用面分体(8).vdele, nv1, nv2, ninc, kswp 删除体kswp: 0 只删除体1 删除体及面、关键点(非公用)(9).vgen, itime, nv1, nv2, ninc, dx, dy, dz, kinc, noelem, imove 移动或拷贝体itime: 份数nv1, nv2, ninc:拷贝对象编号dx, dy, dz :位移增量kinc: 对应关键点号增量noelem,:0:同时拷贝节点及单元1:不拷贝节点及单元imove:0:拷贝体1:移动体(10).cm, cname, entity 定义组元,将几何元素分组形成组元cname: 由字母数字组成的组元名entity: 组元的类型(volu, area, line, kp, elem, node)(11).cmgrp, aname, cname1, ……,cname8 将组元分组形成组元集合aname: 组元集名称cname1……cname8: 已定义的组元或组元集名称1.2 定义几个所关心的节点,以备后处理时调用节点号。
ANSYS计算结果无难事,APDL经典命令让你的模型舞起来

ANSYS计算结果无难事,APDL经典命令让你的模型舞起来1、让你的ANSYS模型'舞'起来ANSYS计算结果的动画可采用ANTIME、ANMODE、ANCNTR、ANHARM等自动生成动画(AVI格式),使结果展示更加生动直观,相信使用ANSYS的都会制作。
然而,几何模型或有限元模型则无动画显示功能,有时为展示模型本身,会从多个角度截取图片。
那么,模型能否也可制作动画呢?答案是肯定的。
利用ANSYS的图形存储命令/SEG可以实现此功能,让你的模型动起来。
具体过程详见命令流中及其注释,动画上传总是失败,自己生成不要观看吧。
Finish$/clear$/prep7!简单的创建几何模型以减少篇幅blc4,0,0,4,2,5cyl4,2,4,1,,2,,4!关闭图例信息/plopts,info,off!以下开始制作模型动画!删除当前储存的图形/seg,dele/seg,multi,jhdh,1 !独立存储且不覆盖,文件名为jhdh/auto,1 !自动计算与图形区合适显示方式!正视/view,1,0,0,1$vplot!侧视/view,1,1$vplot!俯视/view,1,,1$vplot!D视图/view,1,1,1,1$vplot!循环36次,每次改变10度视角*do,i,1,36$/ang,1,10,ys,1$/replot$*enddo!关闭图形存储操作,保存为jhdh.avi文件/seg,off$/anfile,save,jhdh,avi其实比较简单,一旦进入模型动画制作过程,所有的xPLOT(x=KLAVNE)绘制的图形都将进入动画序列,按显示过程形成一部连续的动画。
2、用一个命令解决ANSYS数据列表分页早年初学ANSYS时,经常用到xLIST(如NLIST、ELIST、KLIST、LLIST、ALIST、VLIST等命令)和PRxSOL(如PRNSOL、PRESOL、PRRSOL、PRETAB、PRPATH)等列表命令,并希望将这些内容保存到TXT文件中,然后再导入EXCEL中处理。
APDL语言在ANSYS参数化建模中的应用

APDL语言在ANSYS参数化建模中的应用杨胜;刘淑芬;白恒【摘要】There are many modeling method based on ANSYS software ,the paper mainly introduces the application of the APDL language in modeling. Perforated inclined plate is taken as an example to discuss an approach to parametric modeling with APDL Language. Single and multiple parameters input interface customization and the macros are used to realize parametric modeling.%ANSYS的建模方法有多种,文中主要介绍APDL语言在建模中的应用。
以一带孔斜板零件为例,论述了APDL语言的参数化建模方法。
通过单参数输入界面和多参数输入界面的订制,宏命令的使用等方法分别实现了斜板零件的参数化建模。
【期刊名称】《机械工程师》【年(卷),期】2015(000)002【总页数】2页(P91-92)【关键词】APDL;ANSYS;参数化建模【作者】杨胜;刘淑芬;白恒【作者单位】辽宁工业大学,辽宁锦州 121001;辽宁工业大学,辽宁锦州121001;辽宁工业大学,辽宁锦州 121001【正文语种】中文【中图分类】TP3910 引言对于设计人员而言,在产品的设计阶段就要能对其性能指标进行很好的预测与分析。
传统的做法是根据理论公式和经验完成预测和分析。
随着科学技术和计算辅助技术的发展,设计人员可以借助先进的有限元分析技术完成这一工作。
有限元分析软件有多种,ANSYS就是其中最典型的代表之一。
ANSYS应用广泛,能有效地解决如结构、电磁、热、流体等不同方面的问题[1]。
ANSYS学习经验总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点《材料力学》《弹性力学》《塑性力学》《计算方法》《计算固体力学》先学GUI 再学命令流相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
ANSYS应用中的几点心得

ANSYS应用中的几点心得茹丽妙李瑞英中国兵器工业系统总体部 100089摘要:ANSYS软件是大型通用有限元分析软件,可以进行结构、热、流体、电磁等多种分析。
本文针对ANSYS结构刚强度分析的过程谈几点应用心得,为不同结构的有限元分析过程提供参考。
关键词:刚性区耦合加载Abstract: ANSYS is a kind of great general FEA software, it can solve problems in structural, thermal, fluid and electromagnetic fields etc. . In this paper several gains are specialized about structural stiffness and intensity analysis, which can offer shortcut for kinds of FEAKeywords: rigid region, couple, loadANSYS作为大型通用有限元分析软件,被广泛应用于各个领域。
而APDL即ANSYS参数化设计语言(ANSYS Parametric Design Language)作为ANSYS中不可或缺的一部分,它可以完成诸如重复某条命令、宏、if-then-else分支、do循环、标量、向量及矩阵操作等通用性强的任务。
本文针对应用ANSYS 进行分析过程中遇到的问题,谈几点处理的方法及技巧,同时给出其APDL命令流文件。
1 刚性区的处理刚性区是通过建立约束方程固结两个不同单元类型的区域。
通常它是对刚度很大的结构的一种近似。
这种处理方法对于大刚度结构(如:发动机与其支架之间的连接)的近似加载尤其适用,加载的方法是将大刚度结构视为一质量点,此质量点划分质量单元,将支撑该结构的基础结构用面单元或体单元划分,再将该质量点与基础结构上节点之间建立刚性区,在质量点上施加载荷。
ansys APDL建模与结果后处理个人经验总结

结合自身经验,谈ANSYS中的APDL命令(一)关键字:ansys APDL命令流在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。
在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。
以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。
(1).Lsel,type,item,comp,vmin,vmax,vinc,kswp选择线type:s从全部线中选一组线r从当前选中线中选一组线a再选一部线附加给当前选中组aunoneu(unselect)inve:反向选择item:line线号loc坐标length线长comp:x,y,zkswp:0只选线1选择线及相关关键点、节点和单元(2).Nsel,type,item,comp,vmin,vmax,vinc,kabs选择一组节点type:S:选择一组新节点(缺省)R:在当前组中再选择A:再选一组附加于当前组U:在当前组中不选一部分All:恢复为选中所有None:全不选Inve:反向选择Stat:显示当前选择状态Item:loc:坐标node:节点号Comp:分量Vmin,vmax,vinc:ITEM范围Kabs:“0”使用正负号“1”仅用绝对值(3).Esel,type,item,comp,vmin,vmax,vinc,kabs选择一组单元type:S:选择一组单元(缺省)R:在当前组中再选一部分作为一组A:为当前组附加单元U:在当前组中不选一部分单元All:选所有单元None:全不选Inve:反向选择当前组Stat:显示当前选择状态Item:Elem:单元号Type:单元类型号Mat:材料号Real:实常数号Esys:单元坐标系号(4).mp,lab,mat,co,c1,…….c4定义材料号及特性lab:待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex:弹性模量nuxy:小泊松比alpx:热膨胀系数reft:参考温度reft:参考温度prxy:主泊松比gxy:剪切模量mu:摩擦系数dens:质量密度mat:材料编号(缺省为当前材料号)c:材料特性值,或材料之特性,温度曲线中的常数项c1-c4:材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数(5).定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg(6).根据需要耦合某些节点自由度cp,nset,lab,,node1,node2,……node17nset:耦合组编号lab:ux,uy,uz,rotx,roty,rotz,allnode1-node17:待耦合的节点号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS软件APDL命令流建模的体会ANSYS软件APDL命令流建模的体会首先申明,本人学习ANSYS基本上是靠自己一点一点琢磨出来的,由于本人喜欢用APDL命令流,故总结出来的几点经验也就比较适合用APDL命令的朋友。
1、多看help,ANSYS的help为我们提供了很强大的功能,我最喜欢的是其中对各个命令有关参数的说明和解释部分,不管是建模、加载、后处理等,都可以通过apdl命令来实现。
只要你知道命令,如“aatt ”,在help搜索栏输入“aatt”,回车,弹出aatt的有关页码,一般其中有一个只有“aatt”的一项,确认,即可看到你要查询的aatt命令的有关参数意义,本人常用的命令有: et---定义单元类型mp---定义材料属性k----建关键点,l----建线条a---由关键点建立面al---由线建立面v----由关键点建立体vl---由线建立体va--由面建立体lsel---在很多很多线中选择你需要的目标线,数量可以无限多……asel---在很多很多面中选择你需要的目标面,数量也可以无限多……vsel---在很多很多体中选择你需要的目标体,数量也可以无限多……latt----给选中的线按材料编号赋属性(前提是首先已定义好材料)aatt---给选中的面按材料编号赋属性vatt-----给选中的体按材料编号赋属性acel---按坐标轴赋体积力,lmesh,amesh,vmesh---对线、面、体进行剖分d---在节点上加约束边界dl---在线上加载约束边界da----在面上加载约束边界2、以上只是列出了常见的几个命令,但是ansys提供的命令是很多的,我们不可能都记得,计算记得,也不知道其有关参数是如何定义的,那不要紧,我们可以与界面操作结合起来学习。
我们先利用界面操作实现,然后在保存路径里面找到文件“file.log”,在该文件里有该操作等价的apdl命令,那以后我们就可以使用了。
3、复合命令,很多命令是复合命令,通过几个命令的组合以实现一定的目标,如FITEM、FLST等。
这里不予以详述,大家可在学习中慢慢体会。
4、ansys提供的apdl语言可像fortain、c语言一样,可以编程,有条件语句、逻辑语句、文件读写等,但是这些语句语法有个特点,就是在相应的语句前要加“*”,以示其与以上apdl命令的区别。
以上只是一点小小的总结,希望对大家有帮助。
K, NPT, X, Y, ZDefines a keypoint.Npt: Reference number for keypoint. If zero, the lowest available number is assigned X,y,z: Keypoint location in the active coordinate system (may be R, θ, Z or R, θ, Φ). If X = P, gra phical picking is enabled and all other fields (including NPT) are ignored (valid only in the GUI).A, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18Defines an area by connecting keypoints.P1, P2, P3, . . . , P18 List of keypoints defining the area (18 maximum if using keyboard entry). Atleast 3 keypoints must be entered. If P1 = P, graphical picking is enabled and all remaining argumentsare ignored (valid only in the GUI).L, P1, P2, NDIV, SPACE, XV1, YV1, ZV1, XV2, YV2, ZV2Defines a line between two keypoints.NDIV :Number of element divisions within this line. Normally this field is not used; specifying divisionswith LESIZE, etc. is recommended.SPACE :Spacing ratio. Normally this field is not used, as specifying spacing ratios with the LESIZE commandis recommended. If positive, SPACE is the nominal ratio of the last division size (at P2) to the firstdivision size (at P1). If the ratio is greater than 1, the division sizes increase from P1 to P2, andif less than 1, they decrease. If SPACE is negative, then |SPACE| is the nominal ratio of the center division size to those at the ends.XV1, YV1, ZV1 :Location (in the active coordinate system) of the head of the "slope vector" corresponding to the slope at the P1 end of the line. The tail of the vector is at the origin of the coordinatesystem. XV2, YV2, ZV2 :Location of the head of the "slope vector" corresponding to the slope at the P2 end ofthe line.AL, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10Generates an area bounded by previously defined lines.N, NODE, X, Y, Z, THXY, THYZ, THZXDefines a node.NODE :Node number to be assigned. A previously defined node of the same number will be redefined. Defaultsto the maximum node number used +1.FILL, NODE1, NODE2, NFILL, NSTRT, NINC, ITIME, INC, SPACEGenerates a line of nodes between two existing nodes.ITIME, INC :Do fill-in operation a total of ITIMEs, incrementing NODE1, NODE2 and NSTRT by INC eachtime after the first. ITIME and INC both default to 1.NGEN, IT IME, INC, NODE1, NODE2, NINC, DX, DY, DZ, SPACE (类似:Agen) Generates additional nodes from a pattern of nodes.ITIME, INC :Do this generation operation a total of ITIME times(包含现有的自身), incrementing all nodesin the given pattern by INC each time after the first. ITIME must be > 1 for generation to occur. NODE1, NODE2, NINC :Generate nodes from the pattern of nodes beginning with NODE1 to NODE2 (defaults to NODE1) in steps of NINC (defaults to 1). If NODE1 = ALL, NODE2and NINC are ignored and the patternis all selected nodes [NSEL]. If NODE1 = P, graphical picking is enabled and all remaining command fieldsare ignored (valid only in the GUI). A component name may also be substituted for NODE1 (NODE2 and NINCare ignored).DX, DY, DZ :Node location increments in the active coordinate system (DR, Dθ, DZ for cylindrical, DR,Dθ, DΦ for spherical or toroidal).E, I, J, K, L, M, N, O, PDefines an element by node connectivity.I :Number of node assigned to first nodal position (node I). If I = P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). J, K, L, M, N, O, P :Number assigned to second (node J) through eighth (node P) nodal position, if any.EGEN, ITIME, NINC, IEL1, IEL2, IEINC, MINC, TINC, RINC, CINC, SINC, DX, DY, DZGenerates elements from an existing pattern.ITIME, NINC :Do this generation operation a total of ITIMEs, incrementing all nodes in the given pattern by NINC each time after the first. ITIME must be >1 if generation is to occur. NINC may be positive, zero,or negative. If DX, DY, and/or DZ is specified, NINC should be setso any existing nodes (as on NGEN)are not overwritten.IEL1, IEL2, IEINC :Generate elements from selected pattern beginning with IEL1 to IEL2 (defaults to IEL1)in steps of IEINC (defaults to 1). If IEL1 is negative, IEL2 and IEINC are ignored and the last |IEL1|elements (in sequence backward from the maximum element number) are used as the pattern to be repeated.If IEL1 = ALL, IEL2 and IEINC are ignored and use all selected elements [ESEL] as pattern to be repeated.If P1 = P, graphical picking is enabled and all remaining command fields are ignored (valid only in theGUI). A component name may also be substituted for IEL1 (IEL2 and INC are ignored).MINC :Increment material number of all elements in the given pattern by MINC each time after the first.TINC :Increment type number by TINC.RINC :Increment real constant table number by RINC.CINC :Increment element coordinate system number by CINC.SINC :Increment section ID number by SINC.DX, DY, DZ :Define nodes that do not already exist but are needed by generated elements (as though the NGEN,ITIME,INC,NODE1,,,DX,DY,DZ were issued before EGEN). Zero is a valid value. If blank, DX, DY, and DZ are ignored.Note: A pattern may consist of any number of previously defined elements. The MAT, TYPE, REAL, ESYS, andSECNUM numbers of the new elements are based upon the elements inthe pattern and not upon the currentspecification settings.EDELE, IEL1, IEL2, INCDeletes selected elements from the model.IEL1, IEL2, INC :Delete elements from IEL1 to IEL2 (defaults to IEL1) in steps of INC (defaults to 1).If IEL1 = ALL, IEL2 and INC are ignored and all selected elements [ESEL] are deleted. If IEL1 = P, graphicalpicking is enabled and all remaining command fields are ignored(valid only in the GUI). A componentname may also be substituted for IEL1 (IEL2 and INC are ignored)./ESHAPE, SCALE, KEY ( 显示由实常数或截面定义所确定的线或面 (壳体) 单元)Displays elements with shapes determined from the real constants or section definition. SCALE Scaling factor:0 — Use simple display of line and area elements. This value is the default.1 — Use real constants or sec tion definition to form a solid shape display of the applicableelements.FAC — Multiply certain real constants, such as thickness, by FAC (where FAC > 0.01) and use themto form a solid shape display of elements.Current shell thickness key: KEY0 — Use current thickness in the displaced solid shape display of shell elements (valid forSHELL181, SHELL208, SHELL209, and SHELL281). This value is the default.1 — Use initial thickness in the displaced solid shape display of shell elements.ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPRDefines a local element type from the element library.ITYPE :Arbitrary local element type number. Defaults to 1 + current maximum. Ename:Element name (or number) as given in the element library in Chapter 4 of the Element Reference.The name consists of a category prefix and a unique number, such as BEAM3. The category prefix of the name (BEAM for the example) may be omitted but is displayed upon output for clarity. If Ename = 0, the element is defined as a null element.KOP1,. . . , KOP6 :KEYOPT values (1 through 6) for this element, as described in the Element Reference.INOPR :If 1, suppress all element solution printout for this element type.R, NSET, R1, R2, R3, R4, R5, R6Defines the element real constants.NSET :Set identification number (arbitrary). If same as a previous set number, set is redefined. Set numberrelates to that defined with the element [REAL]. Note that the GUI automatically sets this value. R1, R2, R3, . . . , R6: Real constant values (interpreted as area, moment of inertia, thickness, etc., as required for the particular element type using this set), or table names for tabular input of boundaryconditions. Use RMORE command if more than six real constants per set are to be input.MP, Lab, MAT, C0, C1, C2, C3, C4Defines a linear material property as a constant or a function of temperature. Lab :Valid material property label. Applicable labels are listed under "Material Properties" in the inputtable for each element type in the Element Reference. See Linear Material Properties of the Element Referencefor more complete property label definitions:EX — Elastic moduli (also EY, EZ).ALPX — Secant coefficients of thermal expansion (also ALPY, ALPZ).CTEX — Instantaneous coefficien ts of thermal expansion (also CTEY, CTEZ).THSX — Thermal strain (also THSY, THSZ).REFT — Reference temperature. Must be defined as a constant; C1 through C4 are ignored.PRXY — Major Poisson's ratios (also PRYZ, PRXZ).NUXY — Mino r Poisson's ratios (also NUYZ, NUXZ).GXY — Shear moduli (also GYZ, GXZ).DAMP — K matrix multiplier for damping.Note: If used in an explicit dynamic analysis, the value corresponds to the percentageof damping in the high frequency domain. For example, 0.1 roughly corresponds to10% damping in the high frequency domain.DMPR — Constant material damping coefficient.MU — Coefficient of friction.DENS — Mass density.C — Specific heat.ENTH — Enthalpy.KXX — Thermal conductivities (also KYY, KZZ).HF — Convection or film coefficient.EMIS — Emissivity.QRATE — Heat generation rate.VISC — Viscosity.SONC — Sonic velocity.RSVX — Electrical resistivities (also RSVY, RSVZ ).PERX — Electric relative permittivities (also PERY, PERZ).Note: If you enter permittivity values less than 1 for SOLID5, PLANE13, or SOLID98, theprogram interprets the values as absolute permittivity. Values input for PLANE223,SOLID226, or SOLID227 are always interpreted as relativepermittivity.MURX — Magnetic relative permeabilities (also MURY, MURZ).MGXX — Magnetic coercive forces (also MGYY, MGZZ).LSSM — Magnetic loss tangent.LSST — Electric loss tangent.SBKX — Seebeck coefficients (also SBKY, SBKZ).MAT :Material reference number to be associated with the elements (defaults to the current MAT setting [MAT]).C0 :Material property value, or if a property-versus-temperature polynomial is being defined, the constant term in the polynomial. C0 can also be a table name (%tabname%); if C0 is a table name, C1 through C4 areignored.C1, C2, C3, C4 :Coefficients of the linear, quadratic, cubic, and quartic terms, respectively, in the property-versus-temperature polynomial. Leave blank (or set to zero) for a constant material property. Notes :MP defines a linear material property as a constant or in terms of a fourth order polynomial as a function of temperature. (See the TB command for nonlinear material property input.) Linear materialproperties typically require a single substep for solution, whereas nonlinear material properties require multiple substeps; see Linear Material Properties in the Element Reference for details.If the constants C1 - C4 are input, the polynomial234Property = C0 + C1(T) + C2(T) + C3(T) + C4(T)is evaluated at discrete temperature points with linearinterpolation between points (that is, a piecewise linear representation) and a constant-valued extrapolation beyond the extreme points. First-order properties use two discrete points (?9999?). The MPTEMP or MPTGEN commands must be used for second and higher orderproperties to define appropriate temperature steps. To ensure thatthe number of temperatures defined via the MPTEMP and MPTGEN commands is minimally sufficient for a reasonable representation of the curve, ANSYS generates an error message if the number is less than N, and a warning message if the number is less than 2N. The value N represents thehighest coefficient used; for example, if C3 is nonzero and C4 is zero,a cubic curve is being used which is defined using 4 coefficients sothat N = 4.A polynomial input is not valid in an explicit dynamic analysis orfor Lab = DAMP. C1, C2, C3, and C4 areignored.The use of tabular material properties ( = %%) is available only for FLUID116. Fluid properties C0tabnamecan be evaluated as a function of pressure, temperature, velocity, time, and location (independent variables). Use the *DIM command to create the table of property values as a function of the independent variables. Then refer to this table via the MP command for the property. If using temperature or pressure independent variables, you need to activate the appropriate pressure or temperature degrees of freedom on the element. Tabular material properties are calculated before the first iteration (that is, using initial values [IC]).For more information about using table-type array parameters, seethe discussion on applying tabular boundaryconditions in the . Basic Analysis GuideWhen defining a reference temperature (MP,REFT), you can convert temperature-dependent secant coefficientsof thermal expansion (SCTE) data from the definition temperature to the reference temperature. To do so,issue the MPAMOD command.This command is also valid in SOLUTION.Product RestrictionsCommand Option Lab Available ProductsALPX MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS ALPY MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS ALPZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS C MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS CTEX MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS CTEY MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS CTEZ MP ME ST PR PRN DS DSS <><> <> DY PP <> EME MFS DAMP MP ME ST <> <> <> <> <> <> <> DY PP <> EME MFS DENS MP ME ST PR PRN DS DSS <> <> EH DY PP <> EME MFS DMPR MP ME ST PR PRN <> <> <> <> <> DY PP <> EME MFS EMIS MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS ENTH MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS EX MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS EY MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS EZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS GXY MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS GXZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS GYZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS HF MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS KXX MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS KYY MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS KZZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS LSSM MP <> <> <> <> <> <> <> EM EH <> PP <> EME <> LSST MP ME <> <> <> <> <> <> EM EH <> PP <> EME MFS MGXX MP ME <> <> <> <> <> <> EM <> DY PP <> EME MFS MGYY MP ME <> <> <> <> <> <> EM <> DY PP <> EME MFSMGZZ MP ME <> <> <> <> <> <> EM <> DY PP <> EME MFS MU MP ME ST <> PRN <> <> <> <> <> DY PP <> EME MFS MURX MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS MURY MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS MURZ MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS NUXY MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS NUXZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS NUYZ MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS PERX MP ME <> <> <> <> <> FL EM EH DY PP <> EME MFS PERY MP ME <> <> <> <> <> FL EM EH DY PP <> EME MFS PERZ MP ME <> <> <> <> <> FL EM EH DY PP <> EME MFS PRXY MP ME ST PR PRN DS DSS FL <> <> DY PP <> EME MFS PRXZMP ME ST PR PRN DS DSS FL <> <> DY PP <> EME MFS PRYZ MP ME ST PR PRN DS DSS FL <> <> DY PP <> EME MFS QRAT MP ME ST PR PRN DS DSS <> EM <> DY PP <> EME MFS REFT MP ME ST PR PRN DS DSS <> <> <> DY PP <> EME MFS RSVX MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS RSVY MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS RSVZ MP ME ST PR PRN DS DSS FL EM EH DY PP <> EME MFS SBKX MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS SBKY MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS SBKZ MP ME <> <> <> <> <> <> EM <> <> PP <> EME MFS SONC MP ME <> <> <> <> <> FL <> <> DY PP <> EME MFS THSX MP ME ST <> <> <> <> FL <> <> DY PP <> EME MFS THSY MP ME ST <> <> <> <> FL <> <> DY PP <> EME MFS THSZ MP ME ST <> <> <> <> FL <> <> DY PP <> EME MFS VISC MP ME ST <> <> <> <> FL <> <> DY PP <> EME MFS ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR MP,Lab,MAT,C0,C1,C2,C3,C4(定义线性材料特性)lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号), 对应ET所定义的号码(ITYPE),表示该组属性属于ITYPE。