数学北师大版八年级下册公式法(一)
八年级数学下册北师大版期中概念、公式、定理归纳

八年级数学下册北师大版期中概念、公式、定理归纳第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
北师大版八年级下册第四章因式分解的常用方法(汇总)

因式分解常用方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
新北师大版八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
北师大版八年级下册数学《运用公式法》分解因式说课教学课件复习提高

④64x2y2 = (__8_x_y_)2
⑤
1 4
b2
=
(___12_b_)2
口算
1)(x 5)(x 5) _x_2___2_5_ 2)(3x y)(3x y) _9_x_2__y_2
3) (1 3a)(1 3a) 1_-__9_a_2
(a b)(a b) a2 b2 (整式乘法)
快 乘胜追击 乐
拓
真我风采
展
快乐合作
1、分解因式:
a2(x y) b2( y x)
解:原式 a2(x y) b2(x y) =(x y)(a2 b2) =(x y)(a b)(a b)
返回
2、分解因式:
(x 2)2 16(x 1)2 解:原式 16(x 1)2 (x 2)2
(3)a b2 6a b 9
分解因式:
(1)3am2 3an2 6amn
2 a 2 4b2 4ab
探索交流
下列分解因式是否正确?为什么?如果不正确,请给 出正确的结果.
x4 16 y4 (x2 )2 (4 y2 )2 (x2 4 y2 )(x2 4 y2 )
分解到不能再分解为止. 你能彻底分解下面的因式吗?
分解因式 x2-16 m2-2mn+n2 2x2-4x+2
请将这三个多项式分解因式, 并说明各自运用了什么方法
例5 把下列各式分解因式
⑴ x(x+6)+9
⑵ y(y+4)- 4(y+1)
= x2+6x+9
= y2+4y-4y-4
=(x+3)2
= y2-4 =(y+2)(y-2)
思考1 这个多项式是不是最简多项式。如果不是,该如何
北师大版八年级数学下册《公式法(第1课时)》精品课件

新知讲解 平方差公式的特点: a2−b2= (a+b)(a−b) ①左边 两个数的平方差;只有两项
②右边 两数的和与差相积 思考:什么形式的多项式可以用平方差公式分解因式? (1)两项 (2)平方 (3)异号
新知讲解
你对平方差公式认识有多深?
新知讲解
1:选择题
1)下列各式能用平方差公式分解因式的是( D )
A. 4m²+n² B. 4m- (-n)² C. -4 m²-n³ D. - m²+ n²
2) -4a² +1分解因式的结果应是 ( D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
C. -(2a +1)(2a+1)
D. -(2a+1) (2a-1)
新知讲解
2:把多项式9(a+b)2-4(a-b)2因式分解. 解:9(a+b)2-4(a-b)2
=[3(a+b)]2-[2(a-b)]2
=[3(a+b)+2(a-b)] [3(a+b)-2(a-b)] =(3a+3b+2a-2b) (3a+3b-2a+2b) =(5a+b)(a+5b)
公式法(一)
北师大版八年级下册
新知导入
问题1:你能叙述多项式因式分解的定义吗?
把一个多项式化成几个整式的乘积的形式,这样 式子的变形,叫做因式分解(或分解因式)。 问题2:我们已学过哪一种分解因式的方法?
提公因式法 问题3:把下列各式因式分解 (1)am-an (2)7x3-21x2 (3)a(x-y)+b(x-y)
4-3 公式法课件2022-2023学年北师大版数学八年级下册

2
2
2
2
跟踪练习1
把下列各式因式分解.
1 2 2 − 2
解: 原式 =(ab)2-m2
=(ab+m)(ab-m)
(2)-16x2+81y2
原式 =81y2-16x2
=(9y)2-(4x)2
=(9y+4x)(9y-4x)
例题讲解
例2.把下列各式因式分解.
1 9 m n m n
2.会用平方差公式进行因式分解
3.使学生了解提公因式法是分解因式首先考虑的方法,再
考虑用平方差公式分解
教学重难点
1.重点:会用平方差公式进行因式分解
2.难点:发展学生的逆向思维,渗透数学的
“互逆”、换元整体的思想
学习目标
1.经历通过整式乘法公式的逆向变形得出公式
法因式分解的过程,发展逆向思维和推理能力.
2.会用平方差公式进行因式分解.
平方差公式
公式法
完全平方公式
问题引入
模块一
1.计算下列各式
观察这些式子,等式两边
分别有什么共同特征?
9x 2 y 2
9m2 4n2
2
2
a
b
a
b
=
a
b
两数或式的和与差的乘积
结果都是二项式,其中每一项都
是某数或式的平方,且两项符号
相反(一正一负)
模块二
例题讲解
例1.把下列各式因式分解.
1 2
2 9a b
4
1 25 16x
2
解:1 25 16x =52 - (4x)2 =(5 + 4x) (5 - 4x)
北师大版数学八年级下册第四章因式分解4.3公式法(第1课时)教案设计

4.3 公式法(第1课时运用平方差公式因式分解)教学目标1.理解平方差公式,弄清平方差公式的形式和特点;2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式,培养学生多步骤分解因式的能力.教学重点掌握运用平方差公式分解因式的方法.教学难点能会综合运用提公因式法和平方差公式对多项式进行因式分解.课时安排1课时教学过程复习巩固1.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.2.平方差公式:(a+b)( a-b)=a2-b2.导入新课活动1(学生交流,教师点评)【问题1】填空:(1)(x+5)(x-5)=;(2)(3x+y)(3x-y)=;(3)(3m+2n)(3m–2n)=.它们的结果有什么共同特征?答案:(1)x2–25;(2)9x2–y2;(3)9m2–4n2学生:以上都是用平方差公式:(a+b)( a-b)=a2-b2计算得出来的.【问题2】根据问题1中等式填空:(1)x2-25=;(2)9x2−y2=;(3)9m2-4n2=.答案:(1)(x+5)(x-5)(2)(3x+y)(3x-y);(3)(3m+2n)(3m–2n).教师总结:公共特点:是两个数(式)的和与这两个数(式)的差的积,等于这两个数(式)的平方差,反过来,两个数(式)的平方差就可以化成这两个数(式)的和与这两个数(式)的差的积的形式,这种变形就是我们今天学习的内容,引出课题.探究新知探究点一用平方差公式因式分解(a+b)( a-b)=a2-b2反过来,a2-b2=(a+b)( a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.【注意】公式中的a,b既可以是单项式,也可以是多项式活动2(学生交流,教师点评)【问题3】(师生互动)下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9解析:A中a2+(-b)2符号相同,不能用平方差公式分解因式,错误;B中5m2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C中-x2-y2符号相同,不能用平方差公式分解因式,错误;D中-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.【方法总结】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【互动】(小组交流)下列各式中,能运用平方差公式分解的多项式是.(填序号)①x2+y2;②1-x2;③-x2-y2;④x2-xy.答案:②.活动3小组讨论(师生互学)【例1】因式分解:(1)a4-116b4;(2)x3y2-xy4.【探索思路】(引发学生思考)观察各式的特点,运用平方差公式进行因式分解.解:(1) a4-116b4=⎝⎛⎭⎪⎫a2+14b2⎝⎛⎭⎪⎫a2-14b2=⎝⎛⎭⎪⎫a2+14b2⎝⎛⎭⎪⎫a-12b⎝⎛⎭⎪⎫a+12b.(2) x3y2-xy4=xy2(x2-y2)=xy2(x+y)(x-y).【总结】(学生总结,老师点评)因式分解前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【例2】分解因式:9(m+n)2-(m-n)2.解:原式=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).【总结】1.如果一个二项式,它能够化成两个整式的平方差的形式,那么就可以用平方差公式分解因式,将多项式分解成两个整式的和与差的积.2.当多项式各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解.【注意】多项式的因式分解有没有分解到不能再分解为止.【即学即练】(学生独学)因式分解:(1)(a+b)2-4a2; (2) x4-y4.解:(1) (a+b)2-4a2=(a+b-2a)(a+b+2a)=(b-a)(3a+b);(2)x4-y4=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).活动4(合作探究,解决问题)探究点二用平方差公式因式分解解决综合问题.(师生互动)【例2】248-1可以被60和70之间某两个自然数整除,求这两个数.【探索思路】被自然数整除的含义是什么?248-1这个数比较大,怎样求出符合要求的两个数?解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.【题后总结】(学生总结,老师点评)解决整除的基本思路就是将数化为整数乘积的形式,然后分析被哪些数整除.活动5拓展延伸(学生对学)【例3】利用因式分解计算:(1)1012-992;(2)5722×14-4282×14.【探索思路】观察式子特点,用提公因式法和平方差公式进行因式分解. 解:(1)1012-992=(101+99)(101-99)=400.(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36 000.【题后总结】(学生总结,老师点评)对于一些比较复杂的计算,如果通过变形转化为平方差公式的形式,使运算简便.【即学即练】 (学生独学)求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除.证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n ,∵n 为整数,∴8n 被8整除,即多项式(2n +1)2-(2n -1)2一定能被8整除.课堂练习1下列多项式中能用平方差公式因式分解的是( )A.a 2+(−b )2B.5m 2−20mnC.x 2−y 2D.x 2+92.因式分解(2x +3)2 -x 2的结果是( )A.3(x 2+4x +3)B.3(x 2+2x +3)C.(3x +3)(x +3)D.3(x +1)(x +3)3 若a +b =3,a -b =7,则b 2-a 2的值为( )A.-21B.21C.-10D.104.用平方差公式进行简便计算:(1)38²-37² ; (2)213²-87²;(3)229²-171²; (4)91×89.5.已知x 2-y 2=-1,x +y =12,求x -y 的值.6.已知4m +n =40,2m -3n =5.求(m +2n )2-(3m -n )2的值.参考答案:1.C 解析:A.a 2+(−b )2中两项符号相同,不能用平方差公式因式分解,故A 选项错误;B.5m 2−20mn 两项不都是平方项,不能用平方差公式因式分解,故B 选项错误;C.x 2−y 2中两项符号相反,能用平方差公式因式分解,故C 选项正确;D.x 2+9中,两项符号相同,不能用平方差公式因式分解,故D 选项错误.选C.2.D 解析:(2x +3)2 -x 2=(2x +3+x )(2x +3-x )=(3x +3)(x +3)=3(x +1)(x +3)3.A 解析: b 2-a 2=(b +a )(b -a )= 3×(−7)= −21.4.解:(1)38²−37²=(38+37)(38−37)=75.(2)213²-87²=(213+87)(213-87)=300×126=37800.(3)229²-171²=(229+171)(229-171)=400×58=23200.(4)91×89=(90+1)(90−1)=90²-1=8100-1=8099.5.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2.6.解:原式=(m +2n +3m −n )(m +2n −3m +n )=(4m +n )(3n −2m )=− (4m +n )(2m −3n ).当4m +n =40,2m −3n =5时,原式=−40×5=−200.课堂小结(学生总结,老师点评,当堂达标)一、运用平方差公式因式分解:a2-b2=(a+b)(a-b).二、平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.布置作业教材第100页习题4.4板书设计3 公式法第1课时运用平方差公式因式分解用平方差公式因式分解:a2-b2=(a+b)(a-b).【问题1】例1因式分解:(1)a4-116b4;(2)x3y2-xy4.【问题2】例2 248-1可以被60和70之间某两个自然数整除,求这两个数.。
北师大版八下数学《公式法》典型例题1(含答案)

《公式法》典型例题例题1 用平方差公式分解因式:(1)291x -;(2)221694b a -;(3)22)(4)(n m n m --+例题2 用平方差公式分解因式:(1)22)(9y x x -+-;(2)22331n m -例题3 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+.参考答案例题1 分析 平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式,在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么.解答 (1)291x -)31)(31()3(122x x x -+=-=;(2)221694b a -)132)(132()13()2(22b a b a b a -+=-=;(3)22)(4)(n m n m --+[]22)(2)(n m n m --+= [][])(2)()(2)(n m n m n m n m --+-++=)3)(3(m n n m --=例题2 分析 以上两题看上去好像都不符合平方差公式,但仔细观察可以发现:(1)式交换二项的位置,(2)式将31提出,使括号内化为整系数多项式后,均可以用平方差公式分解因式.解答(1)22)(9y x x -+-229)(x y x --=)3)(3()3()(22x y x x y x x y x --+-=--=)2)(4()2)(4(y x y x y x y x +--=---= (2)22331n m -)3)(3(31)9(3122n m n m n m -+=-= 说明因式分解的结果中,每个多项式因式的第一项的符号一般不能为负,若是负应将符号为正的项写在第一项,若各项都为负,则提出负号放在结果的前面,如)2(y x +-应为)2(x y -,)2(y x --应为)2(y x +-.例题3 分析 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.解答 (1))1(45-=-a ab ab b a[]1)(22-=a ab)1)(1(22-+=a a ab (继续分解))1)(1)(1(2-++=a a a ab(2))()(44n m b n m a +-+ ))((44b a n m -+=))()((2222b a b a n m -++=))()()((22b a b a b a n m -+++=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2x-1)2=4x2-4x+1
2. 3x2+9xy-3x=3x(x+3y-1)
3.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y)
4.
a2
+ a - 2 = a( a +1-
2
)
a
比一比
• 比一比,看谁算的又快又准确!
a2 - b2= (a + b) (a - b)
把下列各式分解因式:
看(1)a2-82 = (a+8) (a -8) 谁 快(22)16x2 -y2 = (4x)2-y2=(4x+y) (4x -y)
又 对
(33)
-
1 9
y2
+
4x2=(2x +
1 3
y) ( 2x -
1 3
y)
(44) 4k2 -25m2n2 =(2k+5mn) (2k -5mn)
整式乘法 因式分解
这种分解因式的方法称为公式法。
a 2 ▲- b 2 = ( a ▲+ b )( a -▲ b )
(1)公式左边:(是一个将要被分解因式的多项式)
★被分解的多项式含有_两_项,且这两项异__号__, 并且能写成(____)__2_-__(____)__2__的形式。
(2) 公式右边: (是分解因式的结果)
在横线内填上适当的式子,使等式成立:
(1)(x+5)(x-5)=
x2-25 ;
(2)(a+2b)(a-2b)= a2-4b2
;
(3) x2-25 = (x+5)( x-5
);
(4) a2-4b2 = (a+2b)( a-2b
)。
知识归纳
平方差公式:
(a+b)(a-b)=a2-b2
a2-b2= (a+b)(a-b)
牛刀小试(二)
• 利用因式分解计算: (1)5652-4352; (2)65.52-34.52。
首页 上页 下页
解决问题
例2:如图,求圆环形绿地的面积。
不信难不倒你!
用你学过的方法分解因式:
方法:
4x3 - 9xy2
先考虑能否用提取公因式法,再考虑能否用 平方差公式分解因式。
结论:
多项式的因式分解要分解到不能再分解为止。
322-312
682-672
(
8 15
2
)
-
(
7 15
2
)
5.52-4.52
教学目标
1.使学生了解运用公式法分解因式的意义; 发展学生的观察能力和逆向思维能力.
2.会用平方差公式进行因式分解.(重点) 3.使学生了解提公因式法是分解因式首 先考虑的方法,再考虑用平方差公式分解 因式.(重、难点)
a 2 - b 2 = ( a + b )( a - b )
(2(2x0m+0nz6))22--22-0(y0(+5p32)x=2y)=2 =
结论: 公式中的a、b无论表示数、单项式、还是多 项式,只要被分解的多项式能转化成平方差 的形式,就能用平方差公式因式分解。
解决问题
例1:把下列各式分解因式: (1) 16a2-9b2 (2) −4 - (2m-n)2
(4)x2 -25y 2 = x2 -(5y)2 (5) -x2 -25y2 不能转化为平方差形式 (6) -x2+25y2 = 25y2-x2 =(5y)2 -x2
做一做
你能试着把下列各式分解因式吗?
(1)a2-1(2)64-b2 =( 8 ) 2-b2=(8+b)(8-b)
25
(3) 9(m+n)2-(m-n)2
在使用平方差公式分解因式时,要 注意:
先把要计算的式子与平方差公式对照, 明确哪个相当于 a , 哪个相当于 b.
牛刀小试(一)
把下列各式分解因式: ① 0.25m2n2 – 1 ② (2a+b)2 - (a+2b)2 ③ 25(x+y)2 - 16(x-y)2
★分解的结果是:两个底数的和乘以这两个底 数的差的形式。
a2 - b2= (a + b) (a - b)
下列多项式能转化成( )2-( )2的形式吗? 如果能,请将其转化成( )2-( )2的形式。
(1) m2 -1 = m2 -12 (2)4m2 -9 = (2m)2 -32 (3)4m2+9 不能转化为平方差形式
分解因式:
1. 4x3 - 4x
2. 3ax4-3ay4
解:1. 4x3-4x=4x(x2-1)=x(x+1)(x-1)
2. 3ax4-3ay4=3a(x4-y4 )=3a (x2+y2) (x2-y2) =3a(x2+y2)(x+y)(x-y)
结论: 分解因式的一般步骤:一提二套 多项式的因式分解要分解到不能再分解为止。
a2 - b2=(a+b)(a - b)
如图,在边长为6.8cm 正方形钢板上,挖去4个边 长为1.6cm的小正方形,求 剩余部分的面积。
考考你
你会计算: 992-982+972-962+…+22-12 说说你是怎么想的?