《整式的加减》第三课时参考教案-PDF

合集下载

北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计

北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计

北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节课主要介绍整式的加减运算。

学生在之前的学习中已经掌握了整式的概念和基本运算,本节课将进一步深入学习整式的加减运算,为后续学习更复杂的代数式打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式的概念和基本运算已经有了一定的了解。

但学生在进行整式的加减运算时,可能会遇到一些困难,如合并同类项的方法不够熟练,对于复杂的式子缺乏运算技巧等。

因此,在教学过程中,需要引导学生回顾和巩固已学的知识,提供适当的例子和练习,帮助学生掌握整式的加减运算方法。

三. 教学目标1.理解整式加减的概念和意义。

2.掌握整式加减的运算方法,能够正确进行整式的加减运算。

3.能够运用整式加减解决实际问题,提高解决问题的能力。

四. 教学重难点1.重点:整式加减的概念和意义,整式加减的运算方法。

2.难点:整式加减的运算方法,特别是合并同类项的方法和技巧。

五. 教学方法采用问题驱动法、引导发现法、合作交流法等教学方法。

通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。

同时,通过合作交流,让学生互相学习和帮助,提高学生的合作能力和沟通能力。

六. 教学准备1.教学课件:制作教学课件,包括整式的加减运算的定义、方法和例子等。

2.练习题:准备一些整式的加减运算的练习题,包括不同难度的题目。

3.黑板:准备黑板,用于板书和展示解题过程。

七. 教学过程1.导入(5分钟)通过提问方式回顾整式的概念和基本运算,引导学生思考整式的加减运算的意义和必要性。

2.呈现(15分钟)展示一些实际的例子,让学生观察和分析整式的加减运算的过程和结果。

引导学生总结整式加减的运算方法。

3.操练(15分钟)让学生分组合作,进行一些整式的加减运算的练习题。

教师巡回指导,解答学生的问题,并及时给予反馈和评价。

4.巩固(10分钟)让学生独立完成一些整式的加减运算的练习题,巩固所学的知识。

最新人教版七年级数学上册《第3课时 整式的加减》优质教案

最新人教版七年级数学上册《第3课时 整式的加减》优质教案

2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(-32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12) 解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52 (4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

人教版-数学-七年级上册-《整式的加减》第三课时教案

人教版-数学-七年级上册-《整式的加减》第三课时教案

2.2 整式的加减第三课时整式的加减一、教学目标知识与技能1. 掌握整式加减的一般步骤,会熟练地进行整式的加减运算。

2. 会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

过程与方法经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力.情感、态度与价值观培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式加减的应用价值.二、学情分析三、教学重点、难点及关键重点能够正确地进行整式的加减运算.难点理解整式的加减实质,体会整式加减的必要性.关键明确问题中的数量关系,熟练掌握去括号规律.突破方法通过探索性练习,引导学生总结归纳整式加减运算的一般步骤,并应用其正确地进行整式的加减运算.四、教法与学法导航教学方法以旧引新,通过自己探究发现整式加减运算的一般步骤。

学习方法在自主探究学习的过程中,掌握整式加减运算的一般步骤.五、教学准备教师准备:多媒体课件、投影仪(用于展示问题,引导讨论,出示答案).学生准备:合并同类项、去括号的有关知识.六、教学过程(一)、导入新课活动一:一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?教师操作多媒体,展示问题,启发、•引导学生用不同方法列式表示小红和小明共花费的钱.学生独立思考,然后与同伴交流.思考点拨:方法一:小红买3本笔记本,花去3x元,2支圆珠笔花去2y元,•小红共花去(3x+2y)元;小明买4本笔记本,花去4x元,3枝圆珠笔花去3y元,小明共花去(•4x+3y)元,所以他们一共花去元.方法二,小红和小明买笔记本共花去(3x+4x)元,买圆珠笔共花去(2y+3y)元.买笔记本和圆珠笔共花去元.方法三,小红和小明共买了(3+4)本笔记本,(2+3)支圆珠笔,•因此他们共花费元.对上面的式子进行化简得出小红和小明共花费的钱数,从而引出课题——整式的加减。

3.4《整式的加减第3课时》 北师大版七年级数学上册教案

3.4《整式的加减第3课时》 北师大版七年级数学上册教案

第三章整式及其加减4 整式的加减第3课时一、教学目标1.在具体情境中体会去括号的必要性.2.利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.3.能利用去括号法则进行运算.4.培养学生观察、语言组织与表达的能力.二、教学重难点重点:利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.难点:能利用去括号法则进行运算.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:教师提出问题,引导学生复习之前所学知识.师:同学们还记得如何去括号和合并同类项吗?预设答案:(1)去括号,括号前是“+”号,直接去掉“+” 和括号;括号前是“-”号,去掉“-”和括号,括号里边的各项都变号;(2)如果括号前有数字因数时,运用乘法分配律运算,切勿漏乘;(3)出现多层括号时,一般是由里向外逐层去括号.把同类项的系数相加,字母和字母的指数不变.学生思考并反馈.通过回顾之前学习过的去括号和合并同类项的知识,为接下来进行整式的加减运算奠定基础.环节二探究新知【操作】教师活动:教师出示要求,学生动手计算并集体交流反馈.数字游戏1两个数相加后的结果有什么规律?预设答案:能被11整除.追问:换一些数试试,对于任意一个两位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立. 【证明】如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.预设答案:10a+b交换这个两位数的十位数字和个位数字,得到的数是:.预设答案:10b+ a将这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a学生写出两位数动手计算并反馈.学生在老师的引导下总结并反馈.让学生通过动手计算的过程,找到这两个两位数相加后的结果的特征,然后再引导学生通过列代数式进行验证,不仅让学生进一步熟悉了去括号和合并同类项的法则,还积累了一些经验,为接下来探究三位数相减后的规律做铺垫.=11a+11b=11(a+b)小结:这些和都是11的倍数【操作】数字游戏2两个数相减后的结果有什么规律?预设答案:它们的差是99的倍数追问:换一些数试试,对于任意一个三位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立. 【证明】任意一个三位数可以表示为:100a+10b+c交换它的百位数字和个位数字,得到的数为:100c+10b+a将这两个数相减:(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c)小结:它们的差都是99的倍数.【议一议】在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?学生动手做一做并交流反馈.学生认真思考,并交流反馈.学生认真思考并回答.、通过之前学习的探究方法,探索三位数交换百位数字与个位数字之后,与原来三位数作差后结果的规律,让学生感受整式加减运算的必要性.通过议一议的活动,让学生预设答案:整式的加减运算,通过去括号,合并同类项进行运算.小结:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.【做一做】计算.(1)2x 2-3x +1与-3x 2+5x -7的和;(2) -x 2+3xy -12 y 2与-12x 2+4xy -32y 2 的差.预设答案:解:(1)(2x 2-3x +1)+(-3x 2+5x -7)=2x 2-3x +1-3x 2+5x -7=2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6提示:先去括号,再合并同类项,合并同类项时把系数相加减,字母和字母的指数不变字母.(2) (-x 2+3xy -12y 2)-(12x 2+4xy -32y 2)=-x 2+3xy -12y 2-12x 2-4xy +32y 2=-x 2-12x 2+3xy -4xy -12y 2+32y 2=-12x 2-xy +y 2提示:去括号时,当括号前面是负号时,括号内各项都要变号.【归纳】1. 几个整式相加减,通常用括号把每一个整式括起来,再用加、减符号连接,然后进行运算.2. 整式加减实际上就是去括号、合并同类项.学生动手计算并反馈.明确整式加减运算实际上就是去括号和合并同类项的过程,也是为接下来进行整式的加减运算奠定基础.通过做一做,让学生进一步巩固整式加减运算的运算步骤,加强学生的运算能力..环节三应用新知教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.【典型例题】例1 计算:(1) (4k2+7k)+(-k2+3k-1)(2) (5y+3x-15z2)-(12y+7x+z2)(3) 7(p3+p2-p-1)-2(p3+p)(4) -(13+m2n+m3)-(23-m2n-m3)分析:进行整式加减运算时,通常要先去括号,再合并同类项.解:(1)原式=4k2+7k-k2+3k-1=4k2-k2+7k+3k-1=3k2+10k-1.(2) 原式=5y+3x-15z2-12y-7x-z2=5y-12y+3x-7x-15z2-z2=-7y-4x-16z2.(3) 原式=(7p3+7p2-7p-7)- (2p3+2p)=7p3+7p2-7p-7-2p3-2p=7p3-2p3+7p2-7p-2p-7=5p3+7p2-9p-7.(4) 原式=-13-m2n-m3-23+m2n+m3=-13-23-m2n+m2n―m3+m3=-1.例2从1~9这九个数字中选择三个数字,由这三个数字可以组成六个两位数,先把这六个两位数相加,然后再用所得的和除以所选三个数字之和。

人教版七年级数学上册整式的加减《整式(第3课时)》示范教学设计

人教版七年级数学上册整式的加减《整式(第3课时)》示范教学设计

2.1整式(第3课时)教学目标1.理解多项式、多项式的项及其次数以及整式的概念.2.能确定一个多项式的项和次数,会用多项式表示简单的数量关系.教学重点理解整式及多项式的有关概念,会用多项式表示实际问题中的数量关系.教学难点准确确定多项式的项及次数.教学过程新课导入填空:1.买一个书包需要x元,买一支铅笔需要y元,买一个本子需要z元,买1个书包、2支铅笔、2个本子共需要(x+2y+2z)元.2.若三角形的三条边长分别为a,b,c,则三角形的周长是a+b+c .3.如下图,长方形的宽为a,长为b,圆的半径为r,则阴影部分面积是ab-πr² .新知探究一、探究学习【问题】思考:列出的这些式子有什么共同特点?与单项式有什么联系?x+2y+2z,a+b+c,ab-πr².【师生活动】学生先独立分析所写出的三个式子,尽自己努力找到它们的共同特点,师生再共同进行总结.【设计意图】通过自主探究,让学生更深刻地理解多项式和单项式之间的关系.二、新知精讲【新知】多项式的定义几个单项式的和叫做多项式.【师生活动】学生复述这一定义.【设计意图】通过重复记忆,让学生进一步加深对多项式的定义的理解.【新知】多项式的相关概念:x2-2x+18多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里,次数最高项的次数,叫做这个多项式的次数.【师生活动】结合实例,让学生认识多项式的项和次数.【设计意图】为后面确定多项式的项和次数做好铺垫.【问题】多项式的次数与单项式的次数有什么区别?【师生活动】引导学生结合定义做出回答.【设计意图】通过对问题的解答,使学生理解多项式和单项式的次数之间的联系和区别.【思考】展示单项式与多项式的动图,想一想单项式和多项式有什么关系.【思考】多项式是几个单项式的和,那么多项式与单项式有统称吗?【新知】整式的概念单项式与多项式统称整式.【思考】单项式、多项式、整式之间有什么关系?【师生活动】对三者的定义进行区分,明确它们之间的关系.【设计意图】巩固并加深学生对概念的理解.三、典例精讲【例1】请指出下列式子中的多项式:(1)12xy3-5x+3;(2)222+a b;(3)2+mnm n;(4)-7.【答案】解:根据“多项式是几个单项式的和”进行判断即可.(1)12xy3-5x+3可看成单项式12xy3,-5x,3的和,是多项式;(2)222+a b可看成单项式22a,22b的和,是多项式;(3)2+mnm n的分母中含有字母,显然不符合题意;(4)-7是单项式.所以,(1)(2)是多项式.【师生活动】学生回答,老师点评.【设计意图】巩固学生对多项式的概念的理解和掌握.【例2】指出下列多项式的项与次数:(1)a3-a2b+ab2-b3;(2)3n4-2n2+1.【答案】解:(1)多项式a3-a2b+ab2-b3的项有a3,-a2b,ab2,-b3,次数是3.(2)多项式3n4-2n2+1的项有3n4,-2n2,1,次数是4.【师生活动】学生独立解决,组内探讨答案是否正确.【设计意图】让学生熟练找出多项式的项和次数.【例3】如图,用式子表示圆环的面积.当R=15 cm,r=10 cm时,求圆环的面积(π取3.14).【答案】解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10 cm时,圆环的面积(单位:cm2)是πR2-πr2=3.14×152-3.14×102=392.5.这个圆环的面积是392.5 cm2.【师生活动】首先用式子表示出圆环面积,再把数值代入求解.【设计意图】掌握用多项式表示数量关系的方法,并能对多项式进行求值.课堂小结板书设计一、多项式的定义二、多项式的项和次数三、整式的定义课后任务完成教材第58页练习1~2题.。

七年级数学上册第3章整式的加减第3节整式3《升幂排列与降幂排列》教案(新版)华东师大版

七年级数学上册第3章整式的加减第3节整式3《升幂排列与降幂排列》教案(新版)华东师大版
在讲解前,应适当复习有关多项式的相关概念,特别是多项式的次数与各项的次数。
在排列中,应能让学生说出哪几种排列比较整齐,这样让学生去体验它所蕴含的排列组合思想与数学美感,能培养学生的审美观,也有利于教师把握本节课的情感因素,为本节课打下良好的情感基础。
这里头的两个注意点都是以Βιβλιοθήκη 我们继续学习多项式必须时时注意的点。
三、巩固训练:
P100 练习题
四、知识小结:
本节课的学习涉及到数学美感的问题,通过对多项式按照某一个字母的指数从大到小或是从小到大的顺序重新排列,在排列中必须认识到排列后的结果仍然是一个多项式,只是项的位置发生了一定的变化而已。
五、家庭作业:
P100 习题3.3 4、5
六、每日预题:
什么是同类项?如何确定两个单项式是同类项?
讲透升(降)排列的方法。
在讲解几个例题时,都可以引导学生用另一种的排列方式(包括用另外的字母),从面举一反三。
注:(1)重新排列多项式时,每一项一定要连同它的符号一起移动;
(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。
所以,“ ”是按 的降幂排列,“ ”是按 升幂排列。
例:把多项式 按 升幂排列。
例:把多项式 重新排列:
(1)按 升幂排列;
(2)按 降幂排列。
例:把多项式 按 升幂排列。
二、新课拆析:
1、知识尝试:
从多项式 的任意排列(运用加法交换律),我们知
道:此多项式有多种的排列方式,这就要求能从中找到更好的排列方式。
2、知识形成:
从尝试的结果我们知道:任意交换多项式 中各项的位置,可以得到6种不同的排列方式,在这其中排列方式中,“ ”与“ ”的排列是比较整齐的,为什么?

整式的加减第三课时教案

整式的加减第三课时教案

整式的加减第三课时教案教案标题:整式的加减第三课时教案教学目标:1. 理解整式的加法和减法的定义及运算规则。

2. 掌握整式加法和减法的基本技巧。

3. 能够灵活运用整式的加减法解决实际问题。

教学重点:1. 整式的加法和减法的定义及运算规则。

2. 整式加法和减法的基本技巧。

教学难点:1. 运用整式的加减法解决实际问题。

教学准备:1. 教材:教科书、练习册。

2. 教具:黑板、彩色粉笔、计算器。

教学过程:Step 1:导入(5分钟)通过一个简单的问题导入本节课的内容:小明手上有3个苹果,小红给了他2个苹果,小明手上一共有几个苹果?引导学生思考并回答。

Step 2:知识讲解(15分钟)1. 复习整式的定义:由常数、字母和它们的乘积(称为单项式)以及单项式之和(称为多项式)组成的代数式。

2. 整式的加法和减法定义:- 加法定义:将同类项的系数相加,保留字母和指数不变。

- 减法定义:将减数中的每一项的系数变为相反数,然后按照加法的规则进行运算。

3. 整式加法和减法的运算规则:- 同类项:具有相同字母和指数的项。

- 合并同类项:将同类项的系数相加,保留字母和指数不变。

- 简化整式:将合并同类项后的整式写成系数从大到小排列的标准形式。

Step 3:示范演示(10分钟)通过几个例题演示整式的加法和减法的步骤和技巧,引导学生掌握加减法的基本运算方法。

Step 4:练习训练(20分钟)学生进行课堂练习,通过计算器辅助计算,完成练习册上的相关题目。

教师巡回指导,及时纠正学生的错误。

Step 5:拓展应用(10分钟)引导学生将整式的加减法应用到实际问题中,例如:小明去购物,买了3本书,每本书的价格是x元;小红也去购物,买了2本书,每本书的价格是y元。

问两人一共花了多少钱?通过列式和整式的加减法解决该问题。

Step 6:归纳总结(5分钟)让学生总结整式的加减法的定义、运算规则和基本技巧,并记录在黑板上。

Step 7:作业布置(5分钟)布置课后作业:完成练习册上的相关习题,并思考如何运用整式的加减法解决实际问题。

4.2 整式的加减 第3课时 教案 2024-2025学年数学人教版七年级上册

4.2 整式的加减  第3课时  教案  2024-2025学年数学人教版七年级上册

4.2整式的加减第3课时【教学目标】1.会进行整式加减的运算,并能说明其中的算理,让学生从实际背景中去体会进行整式的加减的必要性.2.经历探索的整式加减运算的法则的过程,进一步培养学生观察、归纳、类比、概括等能力.【重点难点】重点:熟练进行整式的加减运算.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号.灵活准确的运用整式的加减的步骤进行运算.【教学过程】一、创设情境(一)复习回顾1.计算(1)4x-x=;(2)-6ab+ab+8ab=.2.化简下列各式:x=;(1)125x+16(2)3x-1x=.33.化简:(1)6y-(3x+2y);(2)3a2-(3a2+2a).(二)情境导入李亮和张莹到希望小学去看望小同学,李亮买了10支钢笔和5本字典作为礼物;张莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a 元,字典的售价为每本b元,文具盒的售价为每个c元.请你计算:(1)李亮花了元;张莹花了元;李亮和张莹共花元.(2)李亮比张莹多花元.想一想:如何进行整式的加减运算?二、探究归纳探究点1:整式的加减【典例评析】例1:教材P100【例6】(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).这是课本例题的处理,学生对如何去括号已经能够很好地掌握,学生完全可以利用以前所学习的知识进行问题的解决,稍有难度的点是合并同类项,因为有多个同类项如何处理需要教师进行点拨指导.教师可以类比有理数的加减运算,进行处理(见课本例题详解);也可以使用添括号方式进行处理,解答过程如下:(1)解:原式=2x-3y+5x+4y=(2x+5x)+(-3y+4y)=7x+y;(2)解:原式=8a-7b-4a+5b=(8a-4a)+(-7b+5b)=4a-2b教师可以对两种情况进行对比,让学生择优选择.【针对性训练】化简(x +3y )-2(x -3y )-12(x +3y )+(x -3y ) =x +3y -2x +6y -12x -32y +x -3y =x -2x -12x +x +3y +6y -32y -3y =-12x +92y 要点归纳:整式的加减运算归结为 、 ,运算结果仍是 .运算结果,常将多项式的某个字母(如x )降幂(升幂)排列.探究点2:整式的加减的应用例2:教材P100【例7】教师引导:(1)求纸盒用料实际应该求什么?(2)怎样解决这两个问题?展示两个长方体纸盒实物模型,引导学生围绕以上两个问题观察,学生分组讨论、交流,教师倾听学生交流,指导学生探究.或借助多媒体展示长方体各个面的长、宽,引导学生完成列代数式,合并同类项,解决实际问题.师生活动:师:我们利用整式的加减解决实际问题的步骤是什么?整式加减的实质是什么?学生分组讨论、交流后归纳出(学生自己表述).要点归纳:整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【针对性训练】教材P102练习T3例3:教材P101【例8】师生活动:教师板书示范,同时引导学生领会每一步的计算依据.注意引导学生总结整式化简求值的一般步骤.使学生领会整式的求值过程,能自觉地运用“先化简,然后再求值”的这一思路解决问题.同时进一步使学生体会整式的加减在求代数式的值时的便捷.三、检测反馈1.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A.-5x -1B.5x +1C.-13x -1D.13x +12.长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是( ) A.14a +6b B.7a +3bC.10a +10b D .12a +8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是 ( )A.二次多项式 B .三次多项式C.五次三项式 D .五次多项式4.多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 为( )A.2 B .-2C.4 D .-45.已知A =3a 2-2a +1,B =5a 2-3a +2,则2A -3B = .6.若mn =m +3,则2mn +3m -5mn +10= .7.计算:(1)-53ab 3+2a 3b -92a 2b -ab 3-12a 2b -a 3b ; (2)(7m 2-4mn -n 2)-(2m 2-mn +2n 2);(3)-3(3x +2y )-0.3(6y -5x );(4)(13a 3-2a -6)-12(12a 3-4a -7). 8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?四、本课小结整式的加减{ 整式加减的步骤{ ①列代数式②去括号③合并同类项整式加减的应用五、布置作业基础:教材P102习题T3、4、5.综合:教材P102习题T6,P103习题T11.六、板书设计七、教学反思整式的加减是学生进入第三学段后最先遇到的有关式子的运算,是由具体的数字运算发展到代数式运算的转折点.整式的加减运算是今后学习整式的乘除、分式的化简等涉及(代数)“式”运算的基础.由于整式中的字母可以表示任意有理数,因此整式的加减运算可以类比和应用有理数的运算与加法、乘法的运算律,进一步体会“(有理)数”与“(整)式”运算的相通性.用字母可以表示数或数量关系,也可以表示特定意义的公式或具有某些规律的数.用整式表示和分析实际问题中的数量关系,能使数量之间的关系更简明,更具有普遍意义.当整式中所含字母的取值确定后,可以求得此时整式的值,通常的做法是,先将整式化简,即先去括号、合并同类项,再将字母的值代入计算,这样可以化繁为简,使运算简便,这也说明,式的运算更具有一般性,数的运算是式的运算的特殊情形.本课旨在通过探索整式加减运算法则的过程,进一步培养学生观察、归纳、类比、概括等能力,提高有条理的思考及语言表达能力.让学生在探索整式加减运算法则的活动中通过相互间的合作与交流,进一步挖掘学生合作交流的能力和数学表达能力.在解决问题的过程中了解数学的价值,增强“用数学”的信心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、教学重点、难点及关键 重点 能够正确地进行整式的加减运算. 难点 理解整式的加减实质,体会整式加减的必要性. 关键 明确问题中的数量关系,熟练掌握去括号规律. 突破方法 通过探索性练习,引导学生总结归纳整式加减运算的一般步骤, 并应用其正确地进行整式的加减运算. 四、教法与学法导航 教学方法 以旧引新,通过自己探究发现整式加减运算的一般步骤。 学习方法 在自主探究学习的过程中,掌握整式加减运算的一般步骤. 五、教学准备 教师准备:多媒体课件、投影仪(用于展示问题,引导讨论,出示答案). 学生准备:合并同类项、去括号的有关知识.

一般地,几个整式相加减,如果有括号
23
= 1 x-2x+ 2 y2- 3 x+ 1 y2
2
3 23
=( 1 -2- 3 )x+( 2 + 1 )y2
22
33
=-3x+y2
当 x=-2,y= 2 时 3
原式=-3×(-2)+( 2 )2=6+ 4 =6
3
9
特别强调:对于条件求值题要先化简,再求值。
(五)小结
本节课我们学习了整式的加减,下面我们一起来回顾一下:
2.2 整式的加减 第三课时 整式的加减
一、教学目标 知识与技能 1. 掌握整式加减的一般步骤,会熟练地进行整式的加减运算。 2. 会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语 言表达能力。 过程与方法 经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力 及综合运用知识进行分析、解决问题的能力. 情感、态度与价值观 培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体 会整式加减的应用价值. 二、学情分析
(多媒体展示)(学生填空)
1.整式的加减实际上就是______________________.
2.整式的加减的步骤,一般分为_____________________.
3.整式加减的结果是__________或__________(单项式或多项式)。
七、板书 展示
2.2.3 整式的加减
整式加减的运算法则:
1/5
六、教学过程 (一)、导入新课 活动一:一种笔记本的单价是 x(元),圆珠笔的单价是 y(元),小红买这 种笔记本 3 本,买圆珠笔 2 枝;小明买这种笔记本 4 个,买圆珠笔 3 枝,买 这些笔记本和圆珠笔,小红和小明共花费多少钱? 教师操作多媒体,展示问题,启发、•引导学生用不同方法列式表示小红和小 明共花费的钱.学生独立思考,然后与同伴交流. 思考点拨:方法一:小红买 3 本笔记本,花去 3x 元,2 支圆珠笔花去 2y 元, •小红共花去(3x+2y)元;小明买 4 本笔记本,花去 4x 元,3 枝圆珠笔花去 3y 元,小明共花去(•4x+3y)元,所以他们一共花去[(3x+2y)+(4x+3y)] 元.方法二,小红和小明买笔记本共花去(3x+4x)元,买圆珠笔共花去(2y+3y) 元.买笔记本和圆珠笔共花去[(3x+4x)+(•2y+3y)]元.方法三,小红和 小明共买了(3+4)本笔记本,(2+3)支圆珠笔,•因此他们共花费[(3+4) x+(2+3)y]元. 对上面的式子进行化简得出小红和小明共花费的钱数,从而引出课题——整 式的加减。(板书课题) (二).整式的和差 活动二:问题 1:求整式 2a2+ab+3b2 与 a2-2ab+b2 的差 学生活动:在练习本(或投影胶片)上用数学式子表示出来,然后用投影仪 显示出部分胶片来,正确的师生给予掌声,不对的则由自己或他人找出错在 何处,并及时改正. 师做相应的板书: 学生活动:学生在练习本上接着计算(或在投影胶片上计算),一个学生接着 老师板书继续完成以下过程.把不同层次学生的胶片显示在投影上,师生给 予肯定或纠正. 师提问题:在这几个整式相加时,为什么 2a2+ab+3b2 与 a2-2ab+b2 要加上括号 (学生讨论后回答,师做必要的强调). 问题 2:l.说出下列单项式的和(口答) (1)-3x,-2x,-5x2,5x2;(2)-2n,3n2,-5n2.
3/5
(四)范例学习
活动三: 例.求 1 x-2(x- 1 y2)+(- 3 x+ 1 y2)的值,其中 x=-2,y= 2 .
2
3
23
3
思路点拨:先去括号,合并同类项化简后,再代入数值进行计算比较简便,
去括号时,特别注意符号问题.
解: 1 x-2(x- 1 y2)+(- 3 x+ 1 y2)
2
3
解:(1)(2ab+2ac+2bc)+(6ab+6ac+8bc) =2ab+2ac+2bc+6ab+6ac+8bc) =8ab+8ac+10bc
(2)(6ab+6ac+8bc)-(2ab+2ac+2bc) =6ab+6ac+8bc-2ab-2ac-2bc =4ab+4ac+6bc
因此做这两个纸盒共用料(8ab+8ac+10bc)平方厘米,做大纸盒比小纸盒多 用料(4ab+4ac+6bc)平方厘米. 通过上面的学习,你能得到整式加减的运算法则吗? 教学策略:让学生自己归纳整式加减运算法则,发展归纳、表达能力. 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
2/5
2.写出下列第一个式子减去第二个式子的差 (1)3ab,-2ab;(2)-4x2,3x;(3)-5ax2,-4x2a. 学生活动:1 题学生在练习本上完成后口答.2 题直接观察回答(先答所列式 子,再回答结果). (三).整式的加减 问题 3:做大小两个长方体纸盒,尺寸如下(单位:厘米).
长 宽高 小纸盒 a b c 大纸盒 1.5a 2b 2c (1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比小纸盒多用料多少平方厘米? 教师操作投影仪,展示问题 3,学生小组学习,讨论解题方法. 思路点拨:长方体有 6 个面,相对的两个面是完全相同.如图所示,上、下 底面积都是 ab,前后两面面积都是 ac,左右两侧面积都是 bc,所以小纸盒 的 表 面 积 为 2ab+2ac+2bc , 同 样 , 大 纸 盒 的 表 面 积 为 2×1.5a×2b+2×1.5a+2c+2×2b×2c=6ab+6ac+8bc.
相关文档
最新文档